Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Part VI – June 1968 - Papers - Microstrain Compression of Beryllium and Beryllium Alloy Single Crystals Parallel to the [0001]- Part II: Slip Trace Analysis and Transmission Electron MicroscopyBy H. Conrad, V. V. Damiano, G. J. London
The slip mode activated during the c axis compression of single crystals of commercial-purity ingot SR beryllium, high-purity (twelve-zone-pass) beryllium, and Be-4.4 wt pct Cu and Be-5.2 wt pct Ni alloys in the temperature range of 25° to 364°C was determined using two-surface slip trace analysis, slip-step height analysis, and electron transmission microscopy. All three techniques indicated the occurrence of copious pyramidal {1 122) (1123) slip in the alloys over the entire temperature range, the amount increasing with temperature. Pyramidal slip was also indicated in the high-purity beryllium by slip trace analysis and electron transmission microscopy, but the amount was somewhat less than in the alloys. For the commercial-purity ingot crystals, only a very small number of pyramidal slip lines were observed, and these were in the immediate vicinity of the fracture surface. No pyramidal dislocations could be detected by electron transmission microscopy in this material. Dislocatransmissiontions with Burgers vectors [0001] and +(ll20) were identified by electron transmission microscopy inthe (1122) slip bands, as well as those with the j (1123) vector. This was interpreted to indicate that the edge components of the 3(1123) vector dislocations activated during c axis compression dissociate upon unloading according to the reaction i (1123) — [0001] + 3(1120) THE microstrain c axis compression of single crystals of commercial-purity ingot SR beryllium (99.6 pct), high-purity twelve-zone-pass beryllium (99.98 pct), Be-5.24 pct Ni and Be-4.37 pct Cu alloys was described in a previous paper.1 This paper covers in detail the analysis of slip traces observed on two mutually perpendicular lateral surfaces of these specimens, and a detailed description of transmission electron microscopy studies performed on foils cut from the bulk crystals after they had been deformed to fracture in the c axis compression. Observation of slip traces on single surfaces of deformed single crystals are generally insufficient to positively identify slip or twinning modes. The use of two carefully cut and oriented perpendicular surfaces can greatly aid in the positive identification and index- ing of slip traces, although even this technique may be quite inadequate if more than one type of slip system operates and if an insufficient number of traces are observed on the surfaces. The problem is greatly simplified for symmetric cases like that for c axis compression of an hep crystal such as beryllium, in which the operating slip systems are all equally inclined to the direction of the applied stress, and each slip system of a given slip mode has an equal chance of operating. For such cases, the traces of any given slip mode observed on the surfaces cut parallel to the c axis are symmetrically tilted about the c axis. It is therefore possible to quickly determine whether one or more slip modes are operating. Confirmatory evidence in support of the observations made on the external surfaces can be obtained from foils cut from the deformed crystals and examined by transmission electron microscopy. This latter technique serves to identify not only the operating slip plane but also the Burgers vector of the dislocations which participate in the slip. For this purpose, a simplified technique based upon a double tetrahedron notation is used in the present paper. The planes and directions in the hep lattice are all designated by letters rather than indices and extinction conditions are easily determined if the Burgers vector lies in the plane contributing to the diffraction. RESULTS 1) Slip Trace Analysis. The standard (0001) stereo-graphic projection of beryllium is shown in Fig. 1. The two mutually perpendicular, lateral surfaces of the compression specimen are represented by the diametrical planes AA' and BB', also referred to as surface A and surface B. For the specific case represented (a Be-5.24 pct Ni specimen deformed by c axis compression at room temperature), the A surface is tilted 5 deg to the (10i0') plane and the B surface is tilted 5 deg to the (1120) plane. Two surface trace analyses may be facilitated by examining in turn the intersection of various great circle traces of specific pyramidal planes with two surfaces and comparing the angles made with the (0001) plane with those actually observed on the two surfaces. One then identifies the slip traces by trial and error on a best-fit basis. The (1122) type planes (it was found that slip occurred on these planes) are shown plotted on the stereographic projection in Fig. 1. One obtains directly the angles between the (0001) plane and the {1122) traces by measuring the angle from the periphery to the point of intersection along the lines
Jan 1, 1969
-
Part X – October 1968 - Papers - Segregation and Constitutional Supercooling in Alloys Solidifying with a Cellular Solid-Liquid InterfaceBy K. G. Davis
Dilute alloys of silver and of thallium in tin have been solidijzed unidirectionally under controlled conditions, to study the segregation associated with a cellular interface under conditions where both thermal and solute convection are present. Autoradiography and radioactive tracer counting techniques were combined with electron-probe microanalysis to study both macro- and microsegregation. It was found that, for concentrations giving only small amounts of constitutional supercooling, cell formation had little effect on the macroscopic distribution of solute along the specimen. At higher concentrations the effective distribution coefficient was higher than that expected for a smooth interface. Node spacing was independent of initial solute content at lower concentrations, becoming greater as keff increased. Silver content at the segregation nodes of silver in tin alloys was independent of initial concentration and considerably in excess of the eutectic composition. SINCE the investigation of cell formation at advancing solid-liquid interfaces by Rutter and Chalmers,' a large volume of work has been dedicated to the determination of solidification conditions under which a planar interface will break down into cellular form. Early experiments were explained satisfactorily by the concept of constitutional supercooling,2 but, due to poor measurement of temperature gradients in the liquid, lack of accurate data on liquid diffusion and equilibrium distribution coefficients, and uncertainty about the effects of thermal and solute convection, these experiments cannot be used as proof for the theory. More recent work, however, has shown that under conditions where convection is eliminated or can be ignored good correlation is observed.3,4 Investigations into segregation at cell caps5 and at cell nodes6-'' have been made, but no measurements appear to have been done on the overall, macroscopic segregation down a unidirectionally solidified rod of material which has solidified with a cellular substructure. This has practical importance in casting, where regions of material with cellular substructure are often encountered, and also in zone refining where the thermal conditions necessary for a planar interface are unattainable. Further, as will be shown, the macroscopic segregation can give information on the following question. Granted that a cellular solid-liquid interface develops from a planar one when the conditions for constitutional supercooling are exceeded, how much supercooling is present after the cells have formed? EXPERIMENTAL PROCEDURE AND RESULTS Specimen Preparation. Specimens 25 cm long with a square cross section 0.6 by 0.6 cm were grown in graphite boats by solidification from one end. Alloy compositions are given in Table I. Two specimens of each composition were grown. The tin was 5-9 grade and the silver and thallium both 4-9 grade. Ag110 and Tl204 were used as tracers. Each composition had the same quantity of tracer so that auto radiographs of specimens containing different concentrations of the same element could be easily compared. Thermocouples inserted through the lid of the boat into a dummy specimen showed that, over the first 10 cm of growth, thermal conditions were quite steady, with a rate of interface advance of 5.8 cm per hr and a temperature gradient in the melt ahead of the interface of 3.0°C per cm. The specimens were seeded from tin crystals of a common orientation to eliminate orientation effects. Dilution of the specimen by seed material was minimized by the provision of a narrow neck between specimen and seed crystal. Macrosegregation. After growth, the specimens were sectioned with a spark cutter. The rods of silver alloy were cut into 1-cm lengths and analyzed for Ag110 using a y -ray counter with fixed geometry. The specimens containing thallium were cut into 2-cm lengths and analyzed for T1 204 by taking 13 counts from each end of the cut lengths through an aperture in lead sheet approximately 0.4 cm square. The results are summarized in Figs. 1 and 2. To find the effective distribution coefficient for the silver in tin alloys under smooth interface conditions, the region of substructure at the bottom surface of one of the 10 ppm specimens, see Fig. 3, was removed by spark machining before counting. Autoradiography. For both alloy systems the samples were polished on sections taken alternately parallel and perpendicular to the growth direction, and autoradiographed by placing the polished surfaces in contact with Kodak "Process Ortho" film. Figs. 3 and 4 show the structures revealed. The alloy containing 10 ppm Ag showed substructure only after a few centimeters of growth, and then substructure was limited to a narrow layer at the base. The "speckled" substructure reported previously in this system4 is here clearly seen to be an intermediate stage between planar and cellular interface conditions. The other samples show a remarkable similarity considering
Jan 1, 1969
-
Institute of Metals Division - Dislocation Substructure and the Deformation of Polycrystalline BerylliumBy W. Bonfield
A study has been made of the dislocation substructures produced in hot-pressed beryllium specimens strained to various levels in the range from 800 x 10-6 In. pev in. to fracture. A number of distinctive dislocation configurations were observed in this region which had not been noted at lower levels of strain. These included dislocation-dislocation interactions to form networks, dislocation "walls", subgrain boundaries and complex arrays, interactions between dislocations and large beryllium oxide particles, and the generation of dislocations from certain particles. The nature of these differences in substructure and their relation to the stress-strain characteristics of polycrystalline beryllium are discussed. In a previous study1 of the plasticity of commercial-purity, hot-pressed beryllium a transition was found in the deformation characteristics in the mi-crostrain region. The initial plastic deformation could be represented by a parabolic stress-strain equation, but above a critical stress there was a complete departure from this relation and a reduction in the strain-hardening rate. The dislocation configurations produced by various levels of micro-strain in this region were examined by transmission electron microscopy and a general correlation was established between the observed transition in deformation characteristics and the dislocation structure of the material. The two stages in the micro-strain region distinguished in these experiments were designated as Stage A' and Stage B'. Stage A' type deformation generally was noted up to a plastic strain of -80 x 10"6 in. per in. and Stage B' type from -80 x 10-6 to -800 x 10'6 in. per in. The discovery of two stages in the microstrain region naturally posed pertinent questions as to the existence of any further distinct stages in the subsequent plastic deformation. The purpose of this paper is to present a study of the dislocation configurations produced in similar beryllium specimens strained to various levels in the range from -800 x 10 in. per in. to fracture and to discuss the relation between substructure and the stress-strain characteristics. It is concluded that this region of strain can be considered as a distinct stage in the plastic deformation of polycrystalline beryllium. Tensile specimens of gage length 1 in. and cross section 0.18 by 0.06 in. were prepared from commercial-purity, hot-pressed QMV beryllium and then annealed at 1100°C for 2 hr. 2 followed by a careful chemical polishing procedure.3 The specimens were strained at a constant rate to various levels of strain in the range from -800 x 10-6 in. per in. to fracture (at 0.5 to 2 pct elongation), using the Tuckerman strain-gage technique1 to measure plastic and total strain. Thin foils were obtained from the strained and fractured specimens by chemical polishing3 and were examined using an RCA-EMU 3 electron microscope. Considerable care waS taken to avoid both accidental deformation during the preparation of the thin foils and excessive heating during their examination. Selected-area diffraction patterns were determined for each micrograph. Tilting experiments were also performed whenever appropriate to establish the dislocation zero-contrast position and hence determine the Burgers vector. This operation was sometimes not possible due to the rapid contamination of the foils which occurred in the electron microscope. RESULTS AND DISCUSSION To enable the distinctions between the dislocation arrays at high and low strain levels to be adequately made, the main characteristics of Stage A' and Stage B' deformation are briefly reviewed. 1) Stage A'. In the annealed starting condition there was a variable density (5 x 107 to 3 x 10' cm per cu cm) of isolated dislocations within a grain. The initial deformation in a tensile specimen was heterogeneous, with the dislocation density increasing in a few grains to 5 x 10g to 1.5 x 101° cm per cu cm. The deformation occurred exclusively on the basal plane by the movement of one or more 1/3 (1130) type dislocation systems. The dislocations were long and regular in form and nearly all the intersections exhibited a simple four-point node configuration. No interactions between glide dislocations and beryllium oxide particles were observed. 2) Stage B. In Stage B' there was a large increase in the number of grains exhibiting dislocation movement and also a change in the nature of the deformation, in which jogged dislocations and elongated loops became the characteristic feature. The splitting up of the elongated loops into smaller loops and the possibility of source action from the re-
Jan 1, 1965
-
Institute of Metals Division - 475°C (885°F) Embrittlement in Stainless SteelsBy A. J. Lena, M. F. Hawkes
Changes in hardness, tensile properties, microstructure, electrical resistance, and X-ray diffraction effects indicate that lattice strains are necessary for the embrittlement of ferritic stainless steels when heated for relatively short times at 475°C (885°F). It is suggested that 475°C (885°F) embrittlement is due to the accelerated formation of an intermediate stage in the formation of s under the influence of these strains. FERRITIC stainless steels (low carbon alloys of iron with more than 15 pct Cr) are subject to two forms of embrittlement when heated in the temperature range of 375° to 750°C. The embrittlement which occurs after long time heating between 565" and 750°C is well understood; it is caused by the precipitation of the hard, brittle s phase. Sigma is an intermetallic compound of approximate equi-atomic composition with an extended range of formation in Fe-Cr alloys. The maximum temperature at which this form of embrittlement can occur is dependent upon chromium content; and is approximately 620°C for a 17 pct Cr steel and 730°C for a 27 pct Cr steel. The other form of embrittlement occurs after relatively short heating periods in the range of 375" to 565°C; in the higher chromium steels, hours may be sufficient as compared to months for s embrittlement. This phenomenon is not at all well understood and several controversial theories have been proposed. The rate and intensity of embrittlement increase with increasing chromium content but the maximum rate occurs at 475°C re-gardless of chromium content. As a result of this, the phenomenon has been termed 475°C (885°F) embrittlement. The effect of 475°C embrittlement on the properties of ferritic stainless steels has been thoroughly reviewed by Heger.1 The embrittlement causes a pronounced decrease in room temperature impact strength and ductility, a large increase in hardness and tensile strength, and a decrease in electrical resistivity and corrosion resistance. Microstructural changes accompanying embrittlement are minor and difficult to interpret with a general grain darkening, appearance of a lamellar precipitate, grain boundary widening, and precipitation along ferrite veins having been reported at various times. With the exception of reported line broadening, X-ray diffraction studies by conventional Debye analysis of solid samples have been of little value. BY making use of electron diffraction methods, Fisher, Dulis, and Car-roll' have recently shown the existence of a chromi-um-rich, body-centered cubic phase in 27 pct Cr steels which had been aged at 482°C (900°F) for as long as four years. Two types of theories have been advanced to account for the embrittlement. The first of these requires the precipitation of a phase not inherent in the Fe-Cr system with various investigators suggesting a carbide,3 nitride,3 phosphide,4 or oxide." Theories of this type have difficulty accounting for the influence of alloying elements on the embrittlement and for the facts that a minimum chromium content is necessary for embrittlement and the intensity of embrittlement increases with increasing chromium content. The second type of theory that has been proposed relates 475°C embrittlement to s phase formation which is inherent in the Fe-Cr system. An assumption of this kind can adequately explain the influence of alloying elements, for they exert an effect on 475°C embrittlement similar to that on s phase for-mation as can be seen in Table I. The minimum chromium content is essentially the same for both phenomena and it has been shown12,13 that s is a stable phase in the embrittling temperature range. In addition, it has been reported14,15 that pure alloys embrittle to the same extent as commercial type alloys. There are, however, several factors which have prevented complete acceptance of a s phase theory. Foremost of these is that the embrittlement can be removed by reheating for short time periods above 600°C, which in the higher chromium steels is within the stable s region. No s has ever been observed after one of these curing treatments, nor has any s been found as a result of embrittlement at 475°C. In addition, the simple precipitation of s cannot explain the time-temperature relationships for reactions between 350°and 750°C. This behavior is shown schematically in Fig. 1. Newell 16 and Ried-rich and Loib4 have shown that 475°C embrittlement follows a C-type curve as illustrated, while Short-
Jan 1, 1955
-
Part V – May 1969 - Papers - Predicting Ternary Phase Diagrams and Quaternary Excess Free-Energy Using Binary DataBy N. J. Olson, G. W. Toop
A series of equations previously derived for calculating ternary thermodynamic properties using binary data has been applied to the problem of predicting ternary phase diagrams and quaternary excess free energy. The methods are considered to be rigorous for regular ternary and quaternary systerns and empirical for nonregular systems. The equations have been used to predict ternary phase boundaries in the Pb-Sn-Zn system at 926°K and the Ag-Pd-Cu system at 1000ºK. Calculated quaternary excess free-energy values are presented for the Pb-Sn-Cd-Bi system at 773°K. A method for predicting the location of ternary phase boundaries would be a useful supplement to experimental measurements in ternary systems. This has been recognized with the considerable work that has been done to find models to predict or extend thermodynamic properties and phase diagrams in binary and ternary systems1-18 for which direct experimental measurements are limited. With the access to highspeed digital computers and mechanical plotting devices, it is currently rather easy to compare mathematical models with experimental data. The regular-solution model is consistent with systems which exhibit negative heats of mixing, positive heats of mixing, and miscibility gaps, and therefore it is applicable to simple phase diagrams. The purpose of this paper is to illustrate the use of regular-solution equations to predict, empirically, phase equilibria in some types of nonregular ternary systems. Corresponding equations for regular quaternary systems are given and used to calculate empirical quaternary excess free-energy data. METHOD FOR PREDICTING THE LOCATION OF TERNARY PHASE BOUNDARIES USING BINARY DATA Meijerin1,6 has used the regular-solution model to calculate common tangent points to ternary free energy of mixing surfaces and hence to determine phase boundaries in ternary systems involving miscibility gaps. He used the following equation to calculate ternary excess free energy of mixing values: stants characteristic of the binary solutions, and Ni is the mole fraction of component i. An alternate expression which gives for regular solutions as a function of binary values of along composition paths with constant N1/N2, N2lN3, and N1/N3 may also be derived:15 ternary r xs 1 ?c-*n.Ti*.U*. This expression for is more useful for the empirical calculation of ternary excess free-energy values for nonregular systems because actual binary AFXS data may be used in the expression rather than attempting to find suitable constants for Eq. [I]. The results of this feature of Eq. [2] are illustrated in Table I where calculated excess free-energy values for the Ni-Mn-Fe system at 1232°K are compared with experimental data of Smith, Paxton, and McCabe.19 Although regular-solution equations have been shown to give calculated thermodynamic quantities which agree quite well with experiment for single-phase nonregular ternary systems,14,15 care should be exercised in the use of the equations to predict thermo-dynamic properties of multiphase ternary systems in which strong compound formation is suspected. This precaution is consistent with the simple regular-solution model which for negative values of ai_j will indicate a tendency toward compound formation but even for very large negative values of ai-jwill not give multiphase binary or ternary systems involving a distinct stable compound. Hence, calculated ternary free-energy data using Eq. [2] might be expected to vary between being rigorous and poor, in the following order, for ternary systems which are: a) regular solutions, b) nonregular single-phase liquids in which random mixing is nearly realized, c) nonregular single-phase solids, d) nonregular multiphase systems exhibiting miscibility gaps, e) nonregular multiphase systems with binary compounds but no ternary compounds, f) nonregular multiphase systems with highly stable binary and ternary compounds. The calculated data will be expected to be least accurate for the last two cases. The general method adopted in this paper involves two-dimensional plots of ternary activity curves. The principle used is that tie lines indicating two-phase equilibria join conjugate phases a and B for example, for which a1(a) = a1(B), a2(a) = a2(B), and a3(a) = a3(B). Tie lines may be determined by plotting the ternary activities of two components along an isoactivity line for the third component and the unique points where the above equalities hold may be found graphically.
Jan 1, 1970
-
Part VII - Structural Characteristics of the Fe-FeS EutecticBy D. L. Albright, R. W. Kraft
High-purity materials have been used in producing as-cast, controlled, colony, and degenerate solidification structures in the Fe-FeS eutectic. Experiments disclosed that this eutectic can be classified as normal and has a natural morphology composed of rodlike iron particles dispersed in a matrix of iron sulfide. The metallography of the various structures was studied, and a preferred crystallography was revealed in the controlled specimens produced by unidirectional solidification. The orientation effects found in these latter specimens are an [001] fiber texture in the -mowth direction of the bcc iron bhase and a texture corresponding to bicrystalline behavior in the hexagonal iron sulfide, with the growth direction near to (2111) poles. The observed texture of the iron phase is considered as indirect evidence that the alloy un-dercooled by at least 75°C before solidification. The unidirectional solidification of binary eutectic alloys has produced materials which exhibit a structure and properties markedly dependent upon the solidification process. In many cases a controlled microstructure with pronounced metallographic and crystallographic anisotropy can be experimentally achieved by proper regulation and balance of the growth rate of the alloy, the chemical purity of the starting materials, and the thermal gradient in the liquid at the liquid-solid interface. The purposes of this investigation were to produce various micro-structures in the Fe-FeS eutectic for subsequent study of their magnetic properties and to correlate the different structures with the solidification conditions in order to obtain a better understanding of the structure of eutectics. The Fe-S equilibrium diagram exhibits a eutectic composed of nearly pure iron and stoichiometric iron sulfide (FeS1.00), with the eutectic reaction occurring at 988°C and 31.0 wt pct S.1 Calculations indicate that this eutectic should solidify with about 9.5 vol pct Fe and 90.5 vol pct FeS, which in turn suggests2 that the micros tructure will consist of a rodlike iron constituent dispersed in a matrix of FeS. This characteristic has in fact been revealed some years ago.3 Thus, controlled solidification of this alloy might yield a material whose micromorphology would consist of very small ferromagnetic iron particles, rod-like in shape and aligned parallel to one another, supported in a matrix of antiferromagnetic FeS. Such specimens, because of the magnetic characteristics of the two phases, would be interesting subjects of study as magnetic materials. Hence the magnetic properties were considered in detail and are reported elsewhere.4 EXPERIMENTAL PROCEDURE The specimens of Fe-FeS eutectic were prepared from ultrapure iron (99.99+ pct) and high-purity sulfur (99.999+ pct). The iron was estimated to contain 60 ppm impurities (99.994 pct Fe) after zone purification.5 The ingots of iron were cut into chips, and the lumps of sulfur were ground into powder. In order to redice any nometallic impurities which might have accumulated during handling, the iron chips were annealed for 5 hr at 750° ± 10°C in a dry hydrogen atmosphere. Immediately after this treatment the chips were blended with the sulfur powder in eutectic proportions; the mixture was tamped into transparent fused quartz tubing and then vacuum-encapsulated under a pressure of 40 to 60µ of Hg. Because FeS expands upon solidification it was necessary to re-encapsulate the initial capsules so that oxidation reactions would be avoided when the inner tube cracked during solidification. For purposes of homogenizing the blended mixtures before solidification, the double capsules were heated to 750° ± 20°C and held for 20 hr; after this treatment the reacted product was weakly agglomerated. Each sample was then loaded into an apparatus for very rapid melting and freezing; this was accomplished by passing a molten zone through the specimen, using induction heating and a traverse mechanism. The resulting specimens solidified in the shape of the quartz tubing. Two sizes of specimens were used in this work, 18 mm diam by 100 mm long and 5 mm diam by 30 mm long. Metallographic examination of several ingots of both sizes after the above consolidation indicated no lack of compositional homogeneity and a random "as-cast" structure, because the travel rate was so rapid that unidirectional solidification was not achieved. Unidirectionally solidified specimens were resolidified in the apparatus shown schematically in Fig. 1, This equipment consisted of a kanthal resistance furnace mounted on the carriage of a zone-melting unit so that the heating element could traverse the length of the sample at a selected rate of speed. Large specimens were solidified with the mechanism tilted at ap-
Jan 1, 1967
-
Part VII – July 1968 - Papers - Structures and Migration Kinetics of Alpha:Theta Prime Boundaries in AI-4 Pct Cu: Part I-Interfacial StructuresBy H. I. Aaronson, C. Laird
Although the past results of X-ray experiments indicate that the broad faces of 0' plates are coherent with their matrix, dislocations lying in arrays have frequently been observed at these boundaries by transmission electron microscopy. Critical experiments employing the latter technique have been carried out in order to determine the origin of these dislocations. It is concluded that 8' plates are essentially coherent with the matrix at their broad faces throughout the aging temperature/time envelope studied. Virtually all of the dislocation arrays observed are deduced to have been formed by plastic deformation accompanying transformation. The proportion of dislocations arising from convexity of the plates is shown to be negligible by comparison with that from plastic deformation. At the higher aging temperatures, a[001] dislocations appeared in moderate numbers. These dislocations were traced directly, however, to the ledgewise dissolution of 0' occasioned by the formation nearby of 0 crystals. On the other hand, since there is a parametric difference normal to the broad faces of the ?' plates, mismatch dislocations do form at their edges. A previous conclusion that these dislocations have Burgers vectors of type a[001] was confirmed directly. The edges of 0' plates were observed to develop octagonal shapes when growing, but circular shapes during dissolution. 1 HIS paper presents the results of an investigation of the interfacial structures of plates of the transitional phase, 8', formed in an A1-4 pct Cu alloy. In a companion paper, Part 11, the effects of these structures upon the migration kinetics of a:?f boundaries are reported. This work is pa.rt of a general program designed to establish the basis of precipitate morphology. The present authors in Al-Ag,1 and whitton2 previously in U-C alloys, have used transmission electron microscopy to examine directly the vander Merwe3-6 networks of dislocations anticipated7 to compensate the small amount of lattice misfit normally founda at the broad faces of Widmanstatten plates. Since the broad faces of 0' plates are considered to be perfectly coherent with the corresponding habit planes in the a matrix,' no dislocations should be present at these faces. Many reports have been published, however, giving evidence to the contrary.10-18 The primary objective of this investigation was therefore to ascertain the nature of these dislocation structures. An attempt to do this is described in the first three sections of this paper. Inspection of the matching of the a and 8 ' lattices at the orientations of the 0:0' boundary corresponding to the edges of 0' plates raises the possibility that these edges may be made up of rather closely spaced edge- type misfit dislocations oriented so as to be sessile with respect to the lengthening or shortening of the plates. Since this structure should severely inhibit migration of the plate edges (Ref. 7, Part II), a situation not originally anticipated,' an experimental determination of the interfacial structure of the edges of 8' plates was clearly in order, and is reported in Section III. Those aspects of the experimental procedure applicable to both Parts I and I1 are presented in the next section. Specific procedures applicable to individual aspects of each investigation, and also the relevant surveys of the literature, are then individually reported in the appropriate sections. I) GENERAL EXPERIMENTAL PROCEDURE The material used in both parts of these studies was the same as that of a previous investigation:" strips of A1-3.93 pct Cu, 0.009 in. thick, prepared as before, solution-annealed at 548°C for 6 hr, and quenched. Details of subsequent aging, and in some cases deformation treatments, are given in the Experimental Procedure sections of the individual parts of both papers. Specimens of the heat-treated strips were electro-thinned as beforeLg and examined in a Philips EM 200 microscope equipped with a goniometer stage. A commercial hot stage, of the grid-heater type and capable of * 30-deg tilt about one axis in the plane of the specimen, was also used for kinetic studies. The usual precaution of calibrating for the additional heat supplied by the electron beam was taken.19 A 16-mm cine cam-I era mounted outside the viewing window was frequently used to record the transformations. Conventional selected-area diffraction and dark-field viewing techniques were used to identify the precipitates in the foils. Normal bright-field images corresponding to two-beam diffracting conditions or dark-field images were employed to characterize the dislocations observed at the interfaces of the precipitates. The application of these techniques to the study of an interphase boundary, and the interpretation of the images,20'21 has been fully described in a previous paper.'
Jan 1, 1969
-
PART III - CryoelectronicBy Hollis L. Caswell
The present status of integrated circuits utilizing. superconductive switching. elements is reviewed with special attention given to fabrication techniques, methods for interconnecting completed circuits, and refrigeration requirements. Cryoelectronics has been largely an "inte- grated-circuit" technology since its conception because the switching speed of superconductive devices is attractive only when these devices are fabricated with thin-film techniques. It is true that cryotron circuits can be constructed from wires of appropriate materials (as indeed was done by Dudley Buck 1 in his early investigations) but these circuits will switch in times characteristic of milliseconds whereas similar circuits fabricated by thin-film methods have potential switching times of nanoseconds. Furthermore, cryo-electronic devices such as the cryotron lend themselves readily to fabrication by thin-film techniques since these components may be made from polycrys-talline thin films and are relatively insensitive to the presence of impurities (as measured by semiconductor standards). Therefore, during the past decade considerable effort has been devoted to developing techniques for batch fabricating circuit arrays containing superconductive switching elements. Technology had developed to the point several years ago that fabrication of cryoelectronic arrays containing up to one hundred devices was rather straightforward. However, larger arrays containing between lo4 and 106 components which are required for commercial development of cryoelectronics still pose very severe yield problems. Thus in a sense cryoelectronics found itself in 1962 at the point semiconductor technology finds itself today; namely, individual devices and small groups of integrated devices could be fabricated with acceptable yield and the outlook for building larger integrated-circuit arrays was bright. Unfortunately, problems associated largely with yield have made fabrication of these larger arrays difficult. Unlike semiconductor technology, cryoelectronics had to solve the problems of large-scale integration before it could become economically attractive. This has proven to be a sizable burden to bear. Since several reviews exist on superconductivity,2 superconductive devices,3 and cryoelectronic technology, no attempt will be made in this paper to summarize these areas. Instead a few specific topics will be dealt with in more detail. First, a brief description is given of selected superconducting switching and storage devices with special attention to several metallurgical techniques which improve the performance of these devices. Second, techniques used to fabricate cryoelectronic devices are described with emphasis on problems affecting yield. Third, techniques for interconnecting a number of cryoelectronic planes are described. And last, refrigeration of cryoelectronic components is discussed briefly since the low operating temperature of superconductive devices is an important consideration in this technology. SUPERCONDUCTING STORAGE AND SWITCHING DEVICES The basic superconductive switching device is the thin-film cryotron. The geometry of this device is attractively simple, since it involves only the intersection of two lines that are electrically insulated from each other. The switching element (gate) and control element (control) of a crossed-film cryotron are arranged as illustrated in Fig. 1. The material for the gate is selected to permit the gate to be switched from the superconducting to the normal (resistive) state by the application of a control current. Tin, which has a critical temperature (T,) of 3.7°K, is commonly used for the gate and the cryotron is operated at a temperature just below T, (for example, 3.5°K). The control material (normally lead, with T, = 7.2°K) is chosen so that the control is never driven normal during circuit operation. To improve cryotron operation, a ground plane, also of lead, is placed under all of the circuitry to act as a diamagnetic shield and improve the current-density uniformity across the width of various thin-film elements. Normally, line widths vary from 0.005 to ^ 0.020 in. and film thicknesses from 300 to 10,000A, although new fabrication techniques make narrower lines feasible. In fabricating cryotrons it is important that the edges of the gate elements be geometrically sharp to avoid undesirable switching characteristics associated with a thinner edge region, Fig. 2. One technique which has been used extensively to form patterns consists of placing a physical mask containing the film pattern between the evaporation source and the substrate and depositing through the mask. Film strips formed in this manner possess a penumbra at the film edges due to shadowing of the evapor-ant under the mask. Several techniques have been proposed for minimizing effects due to this penumbra. One of the more promising metallurgical techniques
Jan 1, 1967
-
Drilling- Equipment, Methods and Materials - The Hydroxyl Factor in Shale ControlBy W. C. Browning
The influence of the hydroxyl factor is more damaging to formations penetrated and causes greater consumption of drilling mud additives than previously realized. This hydroxyl effect on clays is essentially independent of the cations present in the drilling fluid and thus differs from the base exchange reactions that have preoccupied mud chemistry with sodium and calcium bentonite concepts for nearly two decades. The new organic polyelectrolyte-con-ditioned muds haw made it possible to use materials other than sodium hydroxide to maintain the alkalinity of such muds. The properties of silicates, as indicated by their dissociation characteristics and buffering action, are such that they can control he pH and alkalinity of drilling muds at the desired level and, at the same time, minimize undesirable hydroxyl effects associated with sodium hydroxide. This use of silicate compounds is different and distinct from prior applications of silicates as deflocculants or shale preservers. Laboratory and field data presented in this report show that silicate compositions can be utilized to adjust the alkalinity of drilling muds and, at the same time, minimize hydmxyl-promoted clay cleavage. INTRODUCTION Studies for improving the efficiency of rotary drilling techniques must consider the chemistry of drilling fluids and of the formations being penetrated. The chemical aspects of drilling must be studied in conjunction with and in relation to the mechanical factors if, for example, penetration rates are to be optimized. Drilling fluid technology has been largely influenced by chemical reactions of the montmorillonite (bentonite) clay minerals. Most of the literature of mud chemistry concerns the properties of bentonite. Clays of the kaolin or illite type, which are nonswelling, are not generally regarded as sources of drilling mud problems. If these nonswelling shale clays are considered, they are commonly regarded as inert solids. Particularly noteworthy is the fact that the relation of surface and colloid chemistry to massive shale bodies has received only scant attention from drilling technologists. Clay studies reported in the drilling mud literature have dealt, for the most part, with the properties of clays in a finely divided state, and often in very dilute suspensions. Yet frequently during drilling, shale problems not related to the rheology of clay suspensions develop in massive non-bentonitic shale sections of zero or near zero permeability. This paper is concerned with surface chemical reactions that can influence the behavior of these non-bentonite clay masses in such a manner as to adversely affect drilling operations. Browning and Perricone1,2 have pointed out that some of the most troublesome shales to drill, such as the Atoka, contain no montmorillonites. They also pointed out that mud problems can frequently be mitigated by reduction of clay cleavage achieved by using drilling fluids with a minimum of available hydroxyl ions. If pronounced clay cleavage occurs during drilling, the borehole may soften, increasing the possibility of sloughing. In addition, the resulting increased incorporation of high-surface-area clay solids into the mud system can reduce penetration rates and necessitate greater chemical treatment. This increase of shale, of colloidal or near-colloidal dimensions, into the drilling mud is due to clay aggregate cleavage and not to base exchange or swelling reactions, such as occur with bentonites. Searle and Grimshaw3 point out the difference between cleavage or slaking reactions of nonswelling clays (such as illite and kaolinite) and the swelling of bentonite. They further state that the speed of slaking is increased in alkaline water. Eitel1 cites Salmang and Becker, who recognized that clay surface reactions impart plasticity and workability to clay masses. Their results clearly show that all liquids which contain hydroxyl groups in their molecules favor the workability of clays. The ancient technique of aging clays in the moist condition to increase their "workability" is evidence that these clay cleavage phenomena are of considerable importance. The same hydration cleavage that occurs during the aging of nonswelling clays for ceramic use also acts to break up cuttings and soften the borehole during drilling operations. The mechanism of cleavage of the crystalline aggregates of illitic, kaolinitic and other nonswelling clays; and the chemical means of controlling this cleavage are therefore of considerable significance to the drilling mud chemistry. Inasmuch as there is little reference in the drilling mud literature to the cleavage reactions of nonswelling clays, the structure of these clays and certain properties that relate to the mechanism of clay cleavage will be reviewed briefly. STRUCTURE OF NONSWELLING CLAYS Clays such as kaolinite, illite and montmorillonite are compmed of alternate layers of (1) silicon-oxygen tetra-
Jan 1, 1965
-
Iron and Steel Division - Silicon-Oxygen Equilibrium in Liquid IronBy N. A. Gokcen, John Chipman
SILICON is the most commonly used deoxidizer and an important alloying element in steelmak-ing; hence a detailed study of this element in liquid iron containing oxygen is of considerable interest. The equilibrium between silicon and oxygen in liquid iron has been studied by a number of investigators but generally with inconclusive or incomplete results. The variation of the activity coefficients of silicon and oxygen with composition is entirely unknown. Published investigations deal with the reaction of dissolved oxygen with silicon in liquid iron and the results are expressed in terms of a deoxidation product. For consistency and convenience in comparison of the published information, the deoxidation product as referred to the following reaction is expressed in terms of the percentage by weight of silicon and oxygen in the melt in equilibrium with solid silica: SiO (s) = Si + 2 O; K'l = [% Si] [% 012 [I] Theoretical attempts to calculate the deoxidation constant for silicon in liquid iron from the free energies of various reactions yielded results which were invariably lower than the experimental values. Thus, the deoxidation "constants" calculated by McCance,1,2 Feild,3 Schenck, and Chipman were of the order of 10, which is below the experimental values by a factor of more than 10. Experiments of Herty and coworkers" in the laboratory and steel plant resulted in an average deoxidation constant of 0.82x10 ' at about 1600°C. The technique employed in their investigation was crude and the reported temperature was quite uncertain. The concentration of silicon was obtained by subtracting silicon in the inclusions from the total. Since at least some of the inclusions resulting from chilling must represent a fraction of the silicon in solution at high temperatures, such a subtraction is not justifiable. Results of Schenck4 for K'1 from acid open-hearth plant data yielded a value of 2.8x10-5, which was later revised as 1.24x10 at 1600°C. Similarly Schenck and Bruggemann7 obtained 1.76x10-5 at 1600OC. The discrepancies and errors involved in the acid open-hearth plant data as compared with the results of more reliable laboratory techniques were attributed by these authors to the lack of equilibrium and the impurities in liquid metal and slag, and are sufficiently discussed elsewhere." Korber and Oelsen" investigated the relation between dissolved oxygen and silicon in liquid iron covered with silica-saturated slags containing varying concentrations of MnO and FeO. The deoxidation products obtained by their method scatter considerably, and their chosen average values of 1.34x10, 3.6x10-5, and 10.6x10-5 1550°, 1600°, and 1650°C, respectively, represent the best experimental results which were available until quite recently. Darken's10 plant data from a steel bath agree approximately with their data at 1575° to 1625°C. Zapffe and Sims" investigated the reaction of H2O and H2 with liquid iron containing less than 1 pct Si and obtained deoxidation products varying by a factor of more than 20. Inadequate gas-metal contact and lack of stirring in the metal bath should require a longer period of time than the 1 to 5.5 hr which they allowed for the attainment of equilibrium. Furthermore, their oxygen analyses were incomplete and irregular and confined to a few unsatisfactory preliminary samples. Their results did indeed indicate that the activity coefficient of oxygen is decreased by the presence of silicon, although they made no such simple statement. They chose to attempt to account for their anomalous data by the unlikely hypothesis that SiO is dissolved in the melt. Hilty and Crafts" investigated the reaction of liquid iron with acid slags under an atmosphere of argon, making careful determinations of silicon and oxygen contents at several temperatures. Despite erroneous interpretation of the data at very low silicon concentrations, their data represent the most dependable information on this equilibrium that has been published. In the range 0.1 to 1.0 pct Si, their data yield the following values for the deoxidation product: 1.6x10-5, 3.0x10- ', and 5.3x10 at 1550°, 1600°, and 1650°C, respectively. The purpose of the work described herein was to study the equilibrium represented by eq 1 as well as the following reactions, all in the presence of solid silica: SiO2 (s) + 2H2 (g) = Si + 2H2O (g);
Jan 1, 1953
-
Institute of Metals Division - Effect of Copper on the Corrosion of High-Purity Aluminum in Hydrochloric AcidBy O. P. Arora, M. Metzger, G. R. Ramagopal
Single-phase aluminum containing 0.0001 to 0.06 pct Cu was studied in strong acid, mainly through observations of hydrogen evolution. The strong influence of copper was exerted almost entirely through the imposition after a certain delay time of an auto-catalytic localized-corrosiott reaction. Additions of cupric ion to the acid produced lower accelerations. The significance of the quantity and distribution of copper was discussed, and the implications for intergranular corrosion and neutral chloride pitting were indicated. AN investigation of intergranular corrosion in single-phase high purity aluminum exposed to hydrochloric acid indicated the copper content of the metal to have an influence on corrosion at lower levels than previously suspected.' The work reported here was a closer examination of the action of copper but dealt with general corrosion to gain the advantage of having a continuous measure of corrosion through the volume of hydrogen evolved, the reduction of hydrogen ion to hydrogen gas being the principal or only cathode reaction in strong hydrochloric acid. Previous work on the hydrochloric acid corrosion of aluminum was sometimes insufficiently structure-conscious and the need for care in evaluating it arises from the low solubility of the iron impurity,' and of some alloying elements, and the known or possible presence in many of the compositions studied of second phases leading to greatly increased corrosion rates.3 These increases are attributed to the presence of low hydrogen-overvoltage cathodes provided by the second phase.3'4 For the present single-phase work, a few studies which used high-purity base material and small copper additions5-' provide the essential information most unambiguously. The corrosion rate was shown to be increased markedly by the introduction into the acid of small quantities of the ions of copper (and of certain other metals) which cement on the aluminum and provide cathodes of low overvoltage.5 When there was sufficient copper in the aluminum, the same result was produced during the course of corrosion leading to a rate which increased with time as the reaction was stimulated by one of its products (autocatalytic reaction). In 2N (7pct) HC1, an accelerating rate was observed at 0.1 pct Cu but not at 0.01 pct.5,7 The present work dealt with corrosion rate and morphology and their correlation with the quantity and distribution of copper catalyst for copper contents from 0.0001 to 0.06 pct. PROCEDURE A lot of high-purity aluminum containing 0.0021 pct Cu, 0.001 pct Fe and 0.003 pct Si (Alloy A) was alloyed with copper to yield aluminum containing 0.014 pct Cu (B) and 0.06 pct Cu (C). Later it was found necessary to include the lower copper Alloy K which contained 0.0001 pct Cu, 0.0004 pct Fe and 0.0004 pct Si. The upper limit for any other element can be confidently estimated as 0.0005 pct. No element other than copper appears to be present in quantities sufficient to have an effect on general corrosion as great as the observed effect of the copper in A, B, and C. The only other heavy metal detected by spectrographic examination was silver (< 0.0001 pct). The acid was made up from a selected lot of 37 1/2 pct CP hydrochloric acid containing 0.1 ppm heavy metals (mainly Pb), 0.05 ppm Fe, and < 0.008 ppm As and from water distilled from 1 megohm-cm demineralized water and believed to have contained negligible quantities of heavy metals influencing corrosion. Acid strength was adjusted to within 0.05 pct HCl of the stated value by using precision specific gravity measurements. Test blanks 10 by 41 mm were sheared from 1.65-mm cold-rolled sheet. Edges were finished by filing. The blanks were annealed in air at 645°C for 24 hr in alundum boats and rapidly water quenched. The anneal is thought to have produced a substantially homogeneous solid solution—for iron, copper, or silicon, for example, the annealing temperature was 200°C or more above the solvus-and the quench is considered to have preserved the high-temperature structure except for the condensation of lattice vacancies into dislocation loops.' The 0.06 pct Cu alloy did not appear unstable in respect to slow precipitation reactions at room temperature since two pairs of tests failed to show significant differences between specimens heat treated 3 1/2 years earlier and specimens heat treated 1 or 2 days before.
Jan 1, 1962
-
Part X - The Influence of Additive Elements on the Activity Coefficient of Sulfur in Liquid Lead at 600°CBy A. H. Larson, L. G. Twidwell
The influence which Au, Ag, Sb, Bi, Sn, and Cu have, both individually and collectively, on the activity coefficient of sulfur in liquid lead at 600"C zuas studied by circulating a H2S-Hz gas wlixture over a specific lead alloy until equilibrium was attained. Subsequently, the H2S concentration in the equilibrium gas mixture and sulfur concentration in the condensed phase were deterruined. The elements gold, silver, and antinzony (above 8 at. pct) increased the activity coefficient of sulfur. Bismuth had no apparent effect. Tin (above 3 at. pct) and copper decreased the coefficient. The influence of an individual element, i, on sulfur is best reported as the interaction parameter, riS, which is defined as The values o these first-order interaction zus are: ESzu = —55.0. These interaction parameters are used to predict the activity coefficient of sulfur in six fouv-component alloys and one seven-component alloy. Comparisons are made with direct experimental determinations. INTERACTIONS in dilute solution have been studied by many investigators. Most of the experimental work has been confined to solute-solvent interactions in simple binary systems and solute-solute interactions in ternary systems. Dealy and pehlke"~ have summarized the available literature on activity coefficients at infinite dilution in nonferrous binary alloys and have calculated from published data the values for interaction parameters in dilute nonferrous alloys. Interaction parameters are a convenient means of summarizing the effect of one solute species on another in a given solvent. Only a few investigators have studied interactions of the nonmetallic element sulfur in a metallic solvent. They are as follows: Rosenqvist,~ sulfur in silver; Rosenqvist and Cox,4 sulfur in steel; chipman, sulfur in alloy steels; Alcock and Richardson,% ulfur in copper alloys; Cheng and Alcock,' sulfur in iron, cobalt, and nickel; Cheng and ~lcock,' sulfur in lead and tin. The only reported work on the Pb-S system in the dilute-solution region is that of Cheng and Alcock.' Their investigation involved a study of the solubility of sulfur in liquid lead over the temperature range 500" to 680°C. The results may be summarized by the following relationship: S (dissolved in lead) + Pb(1) = PbS(s) log at. %S = -3388/T + 3.511 Experimentally, it was found that Henry's law was valid up to the solubility limit of sulfur in lead, i.e., at 600°C up to 0.43 pct. Their investigation did not include the study of sulfur in lead alloys. More accurate calculations could be made in smelting and refining systems if activity coefficients of solute species could be accurately predicted in complex solutions. One of the objectives of this study was to compare the experimental data with the values calculated from the equations derived from models for dilute solutions proposed by wagner9 and Alcock and Richardson. A temperature of 600°C was chosen as the experimental temperature to attain reasonable reaction rates and to minimize volatilization of the condensed phase. EXPERIMENTAL Materials. The Pb, Au, Ag, Sb, Bi, Sn, and Cu used for preparation of the alloys were American Smelting and Refining Co. research-grade materials. All were 99.999+ pct purity except the antimony and tin which were 99.99+ pct. The initial alloys prepared for this study consisted of twenty-one binary alloys, eleven ternary alloys, and one six-component alloy. The constituent elements were mixed for each desired alloy and were placed in a crucible machined from spectrographically pure graphite. The crucible was placed in a vycor tube which was evacuated with a vacuum pump and gettered by titanium sponge at 800°C for 8 to 12 hr. After the gettering was completed, the chamber containing the titanium was sealed and removed. The remaining sample chamber was placed in a tube furnace at 800°C for 2 hr and quenched in cold water. The final operation consisted of homogenization of the alloy for 1 to 2 weeks at a temperature just below the solidus for the individual system. The resulting master alloys were sectioned into small pieces and a random choice made for individual equilibrations. Cobalt sulfide (Cogs8) used to control the gas atmosphere in the circulation system was prepared by passing dried HzS for 24 hr over a Co-S mixture heated to 700°C in a tube furnace. This material was then mixed with cobalt metal to give a two-phase mixture which, when heated in hydrogen to a particular temperature, produced a desired H2S/H2 gas atmosphere in the circulation system. A Cu2S-Cu mixture also used in this study was prepared in a comparable manner. Apparatus for Equilibrium Measurements. The experimental technique of this study required apparatus
Jan 1, 1967
-
Reservoir Engineering-Laboratory Research - Effect of Hydration of Montmorillonite on the Permeability to Gas of Water-Sensitive Reservoir RocksBy Oren C. Baptist, Carlon S. Land
Laboratory research has been conducted to evaluute the effect of clay hydration on the permeability to gas of water-sensitive reservoir sands. Samples of a .sandstone containing trace amounts of montmorillonite and a sample of montmorillonite were .studied in the laboratory to detertnine whether swelling or dispersion was the cause of permeability reduction in these samples. Heliuin, containing various amounts of water vapor, was used to hydrate the clay minerals and to determine the gas permeability at various stages of clay hydration. The amount of water adsorbed by the samples using this method is small. The nonwetting-phase permeability at higher water saturations war investigated by saturating the with water and measuring the permeability to humid helium while decreasing the water saturation, Relative-permeability curves obtained from results of these procedures were used to estimate the effect of the swelling of trace amounts of mont/tlorillonite on the permeability of the .samples. Most of the damage to the permeability when reservoir sands containing trace amounts of montmorillonite are exposed to fresh water is due to dispersion and movement of clays. Blockage of pores by the increased volume of expanded montmorillonite is believed to result in permeability damage that is small in comparison to the observed damage to the samples tested. INTRODUCTION Studies have shown that permeability is severely damaged when sands containing only small amounts of montmorillonite are contacted by fresh water.15 When samples of sands containing large amounts of montmorillonite are placed in fresh water in the laboratory, these samples may completely disintegrate, forming an unconsolidated mass of larger volume than that occupied by the dry sample." In this case, it is apparent that the swelling of montmoril-lonite has destroyed the pore structure of the sand. If only a trace of montmorillonite is present in a sand. samples may remain intact when saturated with water, although the permeability to water is a small fraction of the gas permeability of the dry sample. Many workers in the field of water sensitivity have attributed this reduction in permeability to the blocking of pores and reduction of pore size by the increased volume occupied by expanded mont- niorillonite. if the sand contains a detectable amount of montmorill'onite or mixed-layer clay containing rnontmorillonite. Logically3 the smaller amount of montmorillonite present in a sand, the smaller should he the effect of montnlorillonite swelling on permeability; however, the quantity of montmorillonite sufficient to cause severe damage by swelling is not known. Although hundreds of samples have been tested in our laboratory, no correlation has been established between the amount of montmorillonite in samples and the permeability reduction caused by fresh water. To many petroleum engineers, the phrase "clay swelling" is synonymous with "water sensitivity", or "permeability reduction" implying that any formation damage due to the hydration of clays is caused by swelling. Although all clays adsorb water on their surfaces, montmorillonite is the only clay mineral commonly found in reservoir rocks which adsorbs water between intercrystalline layers, resulting in expansion of the clay particle. As montmoril-lonite swells, the first few layers of water adsorbed between platelets are strongly held and well oriented, and the montmorillonite retains its crystalline structure, although expanded. As swelling of sodium montmorillonite continues, the platelets become farther apart and the forces orienting the platelets in the crystalline structure become weaker, resulting in a less orderly orientation of platelets. In an abundance of water, small groups of platelets may become detached from the original monl-rnorillonite particle and may be dispersed throughout the water phase. Because of its swelling properties, sodium montmorillonite is very easily dispersed in water. Particles of other clay minerals. such as illite and kaolinite may also be dispersed in water. causing water sensitivity of sands not containing montmorillonite. The presence of an immobile layer of water adsorbed on the surface of clays has been considered a possible cause of the low permeability to water of dirty sands. Grim states that the thickness of the layer of immobile water held by sodium montrnorillonite is three nlolecular layers or 7.5 A (angstroms), with some orientation of water extending to 100 A. Assuming a very thick, immobile water layer adsorbed on the surface of a pore represented by a capillary tube, the maximum effect of the water layer on permeability can be calculated. Using a pore radius of 10 ' cm and an immobile water layer of 50 A. the calculation shows the permeability to be reduced only 2 per cent. Similar calculations can be used to show that the effect of electro-osmotic counterflow is of the same order of magnitude as that of bound water. The reduction of the permeability to water by either an immobile water layer
Jan 1, 1966
-
PART V - Phase Relations in the System PbS-PbTeBy Marius S. Darrow, William B. White, Rustum Roy
The PbS-PbTe systen has been studied by quench-ing and D.T.A. techniques f?om 400' to 1150°C. Runs were made in evacuated silica tubes so that all equilibria are at the vapor pressure of the system. Lattice parameters of the quenched salnples , measured by X-ray diffraction, show a complete crystalline-solution series existing over a narrow temperature range between approximately 805" and 871°C. An exsolution dome extends from a maximum of about 805"C (approximately 30 mole pct PbTe) to 1 and 96.5 pet PbTe at 400°C. A narrow melting region, deternined by D.T.A., extends form 918c (mp PbTe), The shapes of the liquides and solidus curves imply the existence of a minimum at 871°C at approximately 65 pct PbTe. THe exact composition of the minimum could not be established due to the very narrow two-phase region. At compositions containing less than 50 pet PbTe, liquidus temperatures begin to increase, while the solidus remains almost flat to about 15 mole pet PbTe before beginning to vise toward the mp of PbS (1075 C). LEAD sulfide and lead telluride are isostructural (NaC1 type) semiconductors whose electrical and optical properties have been extensively studied and used in recent years. If appreciable crystalline solution exists between these compounds, the variation of physical properties with composition could be of interest. The purpose of this investigation was to determine the extent, if any. of crystalline solution, and to obtain the phase diagram for the system. To the knowledge of the authors, only three studies of the system PbS-PbTe have been reported, and, in chronological order, each investigation found an increasing amount of crystalline solution. In 1956, Yamamoto reported finding no evidence of crystalline solution between the compounds. Sindeyeva and Godov-ikov,' in 1959, found very limited crystalline solution. but only under conditions of excess tellurium concentration. Finally Melevski s3 investigation in 1963 indicated that one solid phase exists in the region from PbS to 7 pct PbTe and from 82 pct PbTe to PbTe at 886'C, with an eutectic at 55 pct PbTe at that temperature. Detailed data on the solvus boundary were not given. EXPERIMENTAL EQUIPMENT AND MATERIALS Commercially produced PbTe and PbS powders were used as starting materials. Batches of specific mole percent composition were accurately weighed and mixed in a plastic bottle, in a shaker mill. An analy- sis of impurity content is given in Table I for pure PbS and PbTe and for two randomly selected batches after the powders were mixed. Individual samples, ranging in weight from 0.2 to 0.5 g, were sealed in evacuated silica tubes which had been thoroughly washed and rinsed with acetone and distilled water. Thus all data taken were at the pressure of the system. Subsolidus relations were studied down to 400°C by heating the samples in a vertical tube furnace for 24 hr. The sealed tubes were quenched in water with quench time from the hot zone not exceeding 1 sec. Temperatures were measured by a chromel-alumel thermocouple and controlled to 53°C for most runs. The number and composition of phases present were determined from powder X-ray diffraction patterns taken at room temperature on a Norelco diffractome-ter, using silicon as an external standard. Above 850°C quenching techniques were, in general, found to be unsatisfactory, and differential thermal analysis (D.T.A.) was used to determine melting relations. The evacuated tubes were recessed about 1 cm at one end to accommodate the differential thermocouple. Al203 was used as the reference material in a similar tube containing the other side of the differential couple. For temperature measurements, a separate thermocouple was placed in the recess of the tube containing the sample to be measured, thus providing an opportunity to obtain thermal, as well as differential, analysis. All thermocouples for these measurements were Pt-Pt 10 pct Rh. Temperature and differential curves were recorded separately on synchronized strip-chart recorders. Thermocouples and recording equipment were calibrated using NaCl and gold standards, using the melting points 801" and 1063 C, respectively, which span most of the temperature range of interest. Heating and cooling rates generally were from 4 to 7°C per min. It was found, in fact. that rates ranging from 1.5 to 25°C per min did not significantly change the data obtained.
Jan 1, 1967
-
Rock Mechanics - Drilling and Blasting at Smallwood MineBy A. Bauer, P. Calder, N. H. Carr, G. R. Harris
Since both rotary and jet piercing drills are used by the Iron Ore Co. at Smallwood, it is often desirable in planning to know in which regions of the orebody or new orebodies a particular drill will be the most economic. This makes it necessary to establish a correlation between drillability and pierceability and some physical rock properties. For rotary drills a good correlation was found with penetration rate and grinding factor index. The jet piercers were found to have a reciprocal relationship in the sense that the best rotary ground was the worst jet ground and vice versa. It is also indicated how an economic comparison could be made using these penetration rate versus grinding factor index curves, the hole size distribution curves for single pass and chambered holes and the mine distribution curve for grinding factor index. A discussion is presented on the fuel oxygen ratios to be used in jet piercing and on the site gas sampling and analysis which has been used to set up the drills. The fuel has been cut back so that stoichio-metric conditions exist, carbon monoxide is drastically reduced and pop-up or exploding holes eliminated. No decrease in penetration rate has been observed contrary to the published results of previous workers. The blasting procedure and results at Smallwood are discussed and the operation of Iron Ore Co.'s slurry pump-mix truck is also described briefly. Smallwood mine is part of the Iron Ore Co.'s Carol Lake operation and is situated in Labrador, 240 miles north of Sept-Iles, Quebec. Last year 15 million tons of crude ore were crushed to yield 6.3 million tons of concentrate and pellets. This year the figures will be 17 million tons of crude and 7% million tons of concentrate and pellets which is the full plant capacity. Carol Lake ores consist primarily of specularite and magnetite mixed with quartz. For convenience the ore has been split-into the following classifications depending on the percentage of magnetics in the sample, shown in brackets: specularite (0 to 10%), specularite-magnetite (10 to 20%), magnetite- specularite (20 to 30%), magnetite (>30%). The order of classification also represents the order of increasing grinding difficulty - the specularite generally being the easiest and the magnetite the hardest. The orebody also contains a small percentage of waste materials consisting of limonite carbonate, quartz carbonate and quartz magnetite. The first two materials are among the softest in the mine, generally softer than the specularite, and the quartz magnetite is amongst the hardest. The bulk of the material in the mine is of the specularite-magnetite and magnetite-specularite classifications. As a result of test drilling at Smallwood in 1960 with rotary, jet and percussion drills, the Iron Ore Co. purchased four JPM-4 jet piercers for the bulk of production drilling and set up an oxygen plant to supply 20 tons of oxygen per day. This oxygen is sufficient for two machines operating full time and one part time. In addition, there are two 50-R, one 60-R and one 40-R machines in use. The benches are 45 ft high and 50 ft holes are generally drilled. JET DRILLING At the onset of jet drilling in the late fall of 1962, two major problems were encountered: 1) freezing due to winter operations; experience and the use of heat at more places, such as the rotary head, has eliminated this,'" and 2) exploding or "popping" drilled holes; this happened frequently (several holes "popping" each day) and was the cause of two lost time accidents. In one instance a hole was being measured with a tape which fell down the hole causing it to "pop." Safety glasses though pulverized saved the wearer's eyesight. Various methods were then employed to detonate the holes before measuring or loading (dropping lighted rags of fusees down, or sparking across a spark gap). These methods were time consuming and far from completely successful. Consideration was given to the fuel oxygen ratio on the machines and what this would produce in the way of product gases. A fuel oxygen weight ratio of 0.35 which was quite oxygen negative was being used. Theoretically appreciable carbon monoxide would be produced at this fuel oxygen ratio. On the close down procedure of the jet which calls for low oxygen after flame out, oxygen would be left in the hole along with this carbon monoxide. This is an explosive mixture. The fuel oxygen ratio was cut back to stoichiometric
Jan 1, 1967
-
Institute of Metals Division - Electron-Microscope Observations on Precipitation in a Cu-3.1 wt Pct Co AlloyBy V. A. Phillips
Transmission-electron micrographs of electro-thinned samples of bulk-aged Cu-3.1 pet Co alloy show an aging sequence, supersaturated solid solution — coherent particles — quasi -coherent particles — noncoherent particles. Hardening is due to precipitation of coherent spherical fee coball-rich particles showing coherency strain fields, which are resolved at between 15 and 30A diameter. Loss of- full coherency did not occur until well into the overaged region, even with the assistance of deformation after aging. Different average particle diameters of 123, 92, and 149 ± 10Å were observed in samples aged to peak yield strength at 600°, 650°, and 700°C, respectively, indicating that there is no critical size for peak hardening. Noncoherent particles tended to develop (111) faces and became octahedral in shape. Dislocations tended to nucleate spherical coherent particles which eventually grew together forming large elongated particles. The surface energy of a noncoherent (low-angle) inter-phase boundary is estimated to he about 50 ergs per sq cm. A number of particle lining-up phenomena were observed. Overaging is principally attributed to increase in particle spacing, progressive loss of coherency, and increase in amount of discontinzdous precipitation. COPPER dissolves about 5.6 at. pet (5.2 wt pet) of cobalt at 1110oC1 and the solubility decreases to 0.75 at. petl (0.54 at. pet)2 at 650°C and to 0.1 at. pet or less at lower temperature.' It has been known for many years3-5 that Cu-Co alloys are capable of age hardening. Since cobalt is fee above 417°C and its atom size is only about 2 pet smaller than that of copper, precipitation of coherent particles would be expected. The equilibrium phase precipitated at 700°C and below contains about 10 pet Cu in solution which tends to stabilize the fee structure, lowering the transformation temperature to 340oc.l The alloy is known to undergo discontinuous precipitation in addition to general precipitation; while the former can be seen with an optical microscope, the latter precipitates are not visible except in the grosly overaged condition.5, 6 Extensive use has therefore been made of the ferromagnetic properties of the precipitate in order to follow the course of aging, and it has proved possible to measure the average particle size, spacing, approximate shape, and volume fraction and to determine that the particles are coherent without ever seeing a particle (see for example Refs. 2, 7, and 8). The magnetic measurements of particle size are limited to diameters below about 120Å.7 The present study was undertaken using the techniques of transmission-electron microscopy in order to check the above conclusions, to extend the previous magnetic work to larger particle sizes, and to attempt a more detailed correlation of properties and structure. A portion of this work has already been published.9-11 The present paper is concerned with the metallographic features of precipitation in relation to aging curves. Bonar and Kelly12'13 have published preliminary results of a similar study on single crystals of Cu-2 at. pet Co. EXPERIMENTAL Preparation of Alloy. A Cu-Co alloy, containing 3.12 wt pet (3.36 at. pet) Co by analysis, was prepared from 99.999 pet purity oxygen-free copper and electrolytic-grade cobalt. The alloy was melted and cast in vacuo in a high-frequency furnace using a graphite crucible and mold: Analysis showed chat 0.004 pet C was picked up during melting. The 1-1/2-lb ingot was homogenized in hydrogen for 24 hr at 1000°C. Slices were cold-rolled to 0.005 or 0.003 in. thickness, with an intermediate 650°C anneal in hydrogen at 0.080 in. thickness. Batches of six to ten strips were solution-treated in sealed-off quartz tubes in high vacuum in a vertical furnace and quenched by dropping into iced brine containing a device which snapped off the nose of the tube. Solution treatment consisted of 1 hr at 990°C or 2 hr at 965°C. The latter was employed for all mechanical-property studies, since a tendency was noted for the higher temperature to give porous material. Strips were usually aged individually in a horizontal vacuum furnace, inserting into the hot zone and withdrawing into a cold zone without breaking the vacuum. This method gave a rapid heating rate, permitting the use of short aging times. In some cases, particularly for the longer aging times at the higher temperatures, samples were sealed individually in quartz tubes in high
Jan 1, 1964
-
PART III - Contamination of Aluminum Bonds in Integrated CircuitsBy M. Khorouzan, L. Thomas
Designers of semiconductor devices have been strivi,ng to resolve problems associated with Au-A1 alloys in bonded in.tercomzeclions. One approach now being- used is that of waintaining a physical seyav-atioz between the two metals in bond areas. This is accolrzplished by alunzincnz-plating a bonding area on the tips oJ the kovar leads and using alcminurn wires to join the senzicondictor device to the leads. The portion of the kovar lead which is on the externul side of the sealed package is gold-plated to provide an oxide-free surface for soldering or welding. A discoloration condition originally thought to be sinilar to purple plague, occuving in the yluled uluninur bonding area after package sealing, has been investigated to determine its efiects ipm bond integrity. Electron-micro-probe analysis determined that no1 only gold, but lead, zinc, and silicon were also present in the discolored area. A series of samples conlaining' conkrolled umonts of these inzpitrities weve prepared and subjected to a sil.zuluted sealing process. The investigations swcued that, of the contawiinants, only zinc toas detrinenlul to Lhe bond integily. The discoloration condition itself was found not to be detrimental to the bond integrity. DESIGNERS of semiconductor devices have been striving to resolve problems associated with Au-A1 alloys in bonded interconnections. One approach now being used is that of maintaining a physical separation between the two metals in bond areas. This is accomplished by aluminum plating a bonding area on the tips of the kovar leads and using aluminum wires to join the semiconductor device to the kovar leads. The portion of the kovar lead which is on the external side of the sealed package is gold-plated to provide an oxide-free surface for soldering or welding. Contamination as evidenced by discoloration of the aluminum-plated area was observed in a number of integrated circuits undergoing examination for defect characteristics which cause electrical failures.' This paper contains the results of an investigation to determine the nature of this discoloration, its cause, and its effect upon the integrity of the interconnection bond. I) THE NATURE AND EXTENT OF ALUMINUM-BOND CONTAMINATION The initial hypothesis in the investigation was that the discoloration was caused by reaction of the aluminum film with some unknown contaminants during the sealing of the hermetically sealed integrated-circuit flat package. The package is a rectangular ceramic container sealed with glass which surrounds the kovar leads as well as joining the top to the bottom. The seal is made hermetic by heating and cooling the package to devitrify the glass. In the case of the packages under investigation, the hermetic sealing had been accomplished with dry air as internal atmosphere. The apparent effect of contaminations as observed by microscopic examination was the formation of surface oxides having variations in color encompassing the whole spectrum of visible light. The contamination appeared to be related to one of the more notorious examples of these colorations, the so called purple plague.' In addition to purple plague, Fig. 1 shows the tarnish in the luster of the aluminized surface in the bond area which had been observed in many of the integrated circuits. To identify the contaminant in the bond area electron-probe microanalysis techniques were used.3 Fig. 2 shows the result of this analysis. The contaminants identified were gold, aluminum, zinc, lead, silicon, and cobalt. Fig. 2(a) is a back-scatter display of the area under study. The back-scattered electrons provide a general indication of the distribution of elements in the specimen surface. Elements with higher atomic number scatter more electrons back from the surface and are seen as light areas in the picture. The sample current, Fig. 2(b), is the amount of current conducted by the specimen as a result of electron-beam striking it and is an indication of element distribution. The Sample current is the reverse of back-scatter and complements it. Other pictures in Fig. 2 are produced by characteristic X-rays generated by the elements, allowing the isolation of the element of interest. The isolated element appears white and all other elements are dark. In this manner a comparative study provides a correlation between different surface areas and the elements which are in these areas. The area covered by the gold film, Fig. 2(c), shows that the boundary between the gold film and the kovar is not sharp as expected and that some sort of diffusion has taken place. Fig. 2(c) shows that some gold particles have been carried to the bond area and are in the proximity of the bonded wire in spite of the presence of a physical barrier in the form of the un-
Jan 1, 1967
-
Institute of Metals Division - Diffusion in Bcc MetalsBy R. A. Wolfe, H. W. Paxton
Self-diffilsion coefficients for cr51 and Fe55 in 12 pct Cr-Fe and 17 pct Cr-Fe for Fe55 in chromium, and for Cr51 in vanadium have been measured. The results are compared with other values for the Fe-Cr system, and with the various theories of diffusion in hcc metals. Some empirical correlations are discussed between Do and Q in hcc systems, or, expressed differently, the constancy of ?G*/T solidus for seveval bcc metals and alloys is noted. It appears very probable that a vacancy mechanism is operative in bcc metals, hut this cannot he stated with certainty. THE great bulk of work on diffusion in metals, both experimental and theoretical, was for many years concentrated on those with close-packed and, in particular, fcc lattices.1,2 There appears to be little doubt that the mechanism of diffusion in these solids is vacancy migration, leading to mass transfer and in substitutional solid solutions to a Kirken-dall effect.3,4 For bcc metals, the picture is much less clear. The Kirkendall effect certainly occurs in several alloys.5-10 However, attempts to understand the factors contributing to the pre-exponential in the usual expression for the diffusion coefficient D =D, exp {-Q/RT) by extension of ideas useful in close-packed lattices have not always been successful. Zener,11 Leclaire,12 and Pound, Paxton, and Bitlerl3 have suggested that various forms of ring diffusion may be important in some bcc metals. For close-packed metals, Do is usually about 1 sq cm per sec and Q - 35Tm kcal per mole (Tm = melting temperature in OK). The theory of Pound et al. suggests for ring diffusion that Do may be about 10-4 and Q, although difficult to calculate with any precision, would be significantly less than 35 T,. The experimental results on self and solute diffusion in ? uranium14,15 and ß zirconium,10 and for solutes in 0 titanium,17 and possibly for self-diffu- sion in chromium below about 0.75 T,," gave some credence to this theory. However, not all bcc materials display low values of DO and Q, and the exceptions were not predicted by any theory. Furthermore, it has recently become apparent that, in bcc materials, log D is not always linear with T-l if a sufficiently wide range of temperature is studied.16,18 This variation may be such that Q may increase18,19 or decrease20 with increasing temperature. The present work was undertaken in an attempt to provide further diffusion data on bcc metals, and to try to understand the factors which contribute to differences in behavior between the various elements. For part of this work, the Fe-Cr system was chosen since it is of considerable technological importance, and data on 12 pct Cr and 17 pct Cr alloys appeared well worthwhile to supplement that existing for the remainder of the stern.18,22 The diffusion of Fe55 in chromium was studied as an example of a more or less "normal" tracer element in a possibly abnormal host lattice. Finally, no data were available for vanadium, the neighbor of chromium in the periodic table, because of lack of a suitable isotope so cr55 was used as a tracer in a few preliminary experiments. For convenience, we shall refer to elements whose Do and Q are low compared to those predicted by Zener's theory as "anomalous". PROCEDURE This investigation determined self-diffusion rates by means of radioactive tracers and the integral-activity method first utilized by Gruzin.23 In this method a thin layer of radioisotope of the diffusing element is plated or coated onto a planar surface of the diffusion sample, which is then given an isothermal-diffusion annealing treatment. The determination of an activity-penetration curve involves measuring the residual activity of the specimen after each successive layer or section has been removed parallel to the original planar surface. The method used here is essentially the same as that used by Gondolf18 and Kunitake.21 Two radioactive tracers, cr51 and Fe55, were used in this investigation. Diffusion coefficients were determined for the diffusion of one or both of these tracers in four different materials, viz., Fe-12 wt pct Cr alloy, Fe-17 wt pct Cr alloy, chromium, and vanadium. The diffusion samples had nominal dimensions of 1.5 cm diameter and 0.5 cm thickness. The grain size was several millimeters for the Fe-Cr alloys and at least 1 mm for the chromium and vanadium samples. Accurately planar surfaces
Jan 1, 1964
-
Institute of Metals Division - Hardenability of Titanium AlloysBy L. D. Jaffe, F. W. Cotter, E. Cordon
The hardenability of titanium-base alloys was studied by metallographic examination and hardness survey of Jominy specimens end-quenched from the B range. Analyses of the data led to the equation log J = -0.57 + 0.25 @ct Fe + pct Mn + pct Mo) + 0.19 @ct Cr) +0.16 @ct V) + 0.03 @ct Zr). Here J is the distance, in sixteenths of an inch, from the quenched end of a Jominy hardenability specimen in the position of peak hardness, for material quenched from the B range. This equation fitted the experimental data with a standard deviation of approximately 0.29. The effects of the elements Al, Sn, W, Cu, Ni, B, C, N, 0, and H, and of pain size, were not statistically significant or not practically significant. A check against hardenability measurements in the literature showed agreement within the stated standard deviation. The equation should be useful in estimating hardenability of new or modified titanium alloys. HARDENABILITY in a titanium-base alloy is the ability of the alloy to retain the B structure on quenching. An alloy with high hardenability will retain the /3 structure even when cooled relatively slowly from a temperature at which B or P plus a is stable. A low hardenability material will retain P only if quenched extremely rapidly from the range of p or 0-plus-a stability, or will not retain it at all, at room temperature. High hardenability is desirable in titanium alloys to be heat-treated to high-strength levels. Its value is by no means limited to large section sizes. With high hardenability, a material can be solution-treated and cooled at a variety of rates, either to give high strength directly or, more generally, to give a soft ductile condition from which high strength can be obtained by subsequent aging. With low hardenability, high strength can be obtained, if at all, only by very rapid quenching, and there will generally be little increase in hardness on subsequent aging; an alloy of this type is limited in its applicability. On the other hand, alloys of very low hardenability have some advantages in weldability; essentially, they are always in the annealed condition, after welding as well as before. For commercial alloys, hardenability data are usually available, in the form either of property data after cooling from the solution temperature at various rates, with or without subsequent aging, or of results of a standard hardenability test, such as that originally developed for steels by Jominy and Boegehold.' When modifications of an available alloy are considered, or preparation of new alloy compositions, it would be Very convenient to be able to estimate the hardenability of the new material without having to make and test it. A method of estimating hardenability of titanium alloys from their composition was suggested by one of the authors some time ago, on a preliminary basis, utilizing scattered data found in the literature.' It seemed worthwhile to carry out a systematic experimental study of the effect of composition upon hardenability. EXPERIMENTAL PROCEDURE Approximately fifty heats of various compositions, weighing 8 to 10 Ib apiece, were melted in a small inert-gas tungsten-arc furnace with water-cooled copper walls. The starting material was 110 Brine11 titanium sponge, with high-purity metals added for alloying. Each heat was bottom-poured under vacuum through a molybdenum burnout strip into a cold graphite mold, to form an ingot approximately 4-1/2 by 3-1/2 by 3 in.* From each ingot were cut *The material was melted and cast by Pitman-Dunn Laboratory, Frankford Arsenal, to whom the authors must express their thanks. two pieces 4-1/2 by 1-1/2 by 1-1/2 in. These were forged, at temperatures adjusted to the composition, into 1-1/4-in. rounds, from which standard 1-in.-diam hardenability specimens3 were machined. A number of small samples were also prepared from forged materials of each heat, annealed, quenched from various temperatures, and examined metallographically. The P-transus temperature was determined by observation of the degree of resolution of primary a in these pieces. samples for chemical analyses were also taken from the forgings. One hardenability specimen of each heat was solution-treated for 1 hr approximately 50°F above the measured transus temperature, and the other for 1 hr approximately 250°F above the transus. (An additional hour was allowed for the specimens to reach furnace temperature.) These are not necessarily the temperatures that would be selected for
Jan 1, 1964
-
Institute of Metals Division - The Influence of Point Defects upon the Compressive Strength of Ni-AlBy J. O. Brittain, E. P. Lautenschlager, D. A. Kiewit
Compression tests were run in the temperature range of 700° to 900°C ox 0' phase NiAl intermetal-lic alloys of several grain sizes. At these temperatures the minimum strengths were observed at the stoichiometric composition. While significant increases in strength occurved in both the low-nickel (vacancy) and high-nickel (substitutional) regions, the highest strengths were found in the high-nickel region. During deformation serrated flow was sometimes observed in the low-nickel alloys. After deformation transgranular cvacking and deformation striations were observed in all compositions tested. AS part of a general investigation of the properties of NiAl inter metallic compounds, a preliminary study of the role of point defects upon plasticity was made by high-temperature compression tests on ß' NiAl specimens of several grain sizes and compositions. ß' NiAl is an intermetallic compound having a CsCl structure and a rather wide range of composition from A1-45 at. pct to 60 at. pct Ni.1 According to Bradley and Taylor2 and to cooper,' it possesses a defect lattice in which departures from stoichiometry in the direction of decreased nickel content lead to the presence of vacant nickel sites (although Cooper's work indicates that a small amount of substitution also occurs) whereas departures on the high-nickel side lead to substitution of nickel on aluminum sites. NiAl forms congru-ently from the melt at approximately 1650°C,1 and thus has a higher melting point than either of its component elements. Up to this time, although this and other high-melting intermetallic compounds have been suggested for elevated-temperature usage,4 only the hardness4 and a few tensile-strength measurements5 have been reported for NiAl at high temperatures. In the present investigation the effects of composition upon the compressive-strength properties in a range of 700° to 900°C have been measured for NiAl of several grain sizes. EXPERIMENTAL PROCEDURES The alloys were made as described elsewhere6 from an A1-46.8 at. pct Ni master alloy furnished by the International Nickel Co. with additions of high-purity nickel and aluminum. The charges were vacuum-induction-melted in A12O3 crucibles with small amounts of helium added to the atmosphere to suppress vaporization. They were cooled slowly from the melting temperature to achieve uniform grain size. In order to refine the as-grown grain size a special rolling technique was developed. Alloys were packed into 0.10-in. wall-type 302 stainless-steel tubes which were partially filled with magnesium oxide to prevent bonding between the alloy and the steel jacket. The ends of the tubes were closed by hot forging, and the packets were then hot-rolled. The alloys with greater than 50 at. pct Ni were rolled at 1100°C, but it was found necessary to increase the temperature to 1350° C before alloys with less than 50 at. pct Ni would roll without cracking. With these temperatures, reductions as high as 48 pct were achieved in a single pass. The rolled alloys will hereafter be referred to as "fine grained" whereas the as-grown material will be designated "coarse-grained''. The compression specimens were made by cutting square cross-sectional pieces, approximately 3/16 by 3/16 by 1/2 in., with a water-cooled diamond cut-off wheel from the as-grown or the rolled alloys. Specimens were ground to their final dimensions by polishing through 3/0 grit silicon carbide papers. The final shape was a rectangular parallelepiped of square cross section having a height-to-width ratio of 3:1. Compression testing was carried out in a compression rig of our own design mounted on an In-stron Floor Model. The specimen chamber could be heated to 1000°C and was controlled within ±2°C. The compression rig was enclosed within a bell jar and was maintained at a 50 µ of mercury vacuum throughout the duration of the test. The test cham -ber was heated from room to test temperature within 15 min. Specimens were then held at the test temperature 30 min prior to testing. Previous experiments indicated that no grain growth would occur within this time. An Instron Variable Crosshead speed unit was used to adjust for small variations in specimen lengths in order to have a constant initial strain rate, €, for all specimens of a group. For the fine-grained specimens the strain rate was changed rapidly at constant temperature by a factor of 10 with the speed lever on the Instron. For a given € the compression data was analyzed in terms of true plastic strain (E) and true compressive stress (0).
Jan 1, 1965