PART V - Phase Relations in the System PbS-PbTe

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Marius S. Darrow William B. White Rustum Roy
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1641 KB
Publication Date:
Jan 1, 1967

Abstract

The PbS-PbTe systen has been studied by quench-ing and D.T.A. techniques f?om 400' to 1150°C. Runs were made in evacuated silica tubes so that all equilibria are at the vapor pressure of the system. Lattice parameters of the quenched salnples , measured by X-ray diffraction, show a complete crystalline-solution series existing over a narrow temperature range between approximately 805" and 871°C. An exsolution dome extends from a maximum of about 805"C (approximately 30 mole pct PbTe) to 1 and 96.5 pet PbTe at 400°C. A narrow melting region, deternined by D.T.A., extends form 918c (mp PbTe), The shapes of the liquides and solidus curves imply the existence of a minimum at 871°C at approximately 65 pct PbTe. THe exact composition of the minimum could not be established due to the very narrow two-phase region. At compositions containing less than 50 pet PbTe, liquidus temperatures begin to increase, while the solidus remains almost flat to about 15 mole pet PbTe before beginning to vise toward the mp of PbS (1075 C). LEAD sulfide and lead telluride are isostructural (NaC1 type) semiconductors whose electrical and optical properties have been extensively studied and used in recent years. If appreciable crystalline solution exists between these compounds, the variation of physical properties with composition could be of interest. The purpose of this investigation was to determine the extent, if any. of crystalline solution, and to obtain the phase diagram for the system. To the knowledge of the authors, only three studies of the system PbS-PbTe have been reported, and, in chronological order, each investigation found an increasing amount of crystalline solution. In 1956, Yamamoto reported finding no evidence of crystalline solution between the compounds. Sindeyeva and Godov-ikov,' in 1959, found very limited crystalline solution. but only under conditions of excess tellurium concentration. Finally Melevski s3 investigation in 1963 indicated that one solid phase exists in the region from PbS to 7 pct PbTe and from 82 pct PbTe to PbTe at 886'C, with an eutectic at 55 pct PbTe at that temperature. Detailed data on the solvus boundary were not given. EXPERIMENTAL EQUIPMENT AND MATERIALS Commercially produced PbTe and PbS powders were used as starting materials. Batches of specific mole percent composition were accurately weighed and mixed in a plastic bottle, in a shaker mill. An analy- sis of impurity content is given in Table I for pure PbS and PbTe and for two randomly selected batches after the powders were mixed. Individual samples, ranging in weight from 0.2 to 0.5 g, were sealed in evacuated silica tubes which had been thoroughly washed and rinsed with acetone and distilled water. Thus all data taken were at the pressure of the system. Subsolidus relations were studied down to 400°C by heating the samples in a vertical tube furnace for 24 hr. The sealed tubes were quenched in water with quench time from the hot zone not exceeding 1 sec. Temperatures were measured by a chromel-alumel thermocouple and controlled to 53°C for most runs. The number and composition of phases present were determined from powder X-ray diffraction patterns taken at room temperature on a Norelco diffractome-ter, using silicon as an external standard. Above 850°C quenching techniques were, in general, found to be unsatisfactory, and differential thermal analysis (D.T.A.) was used to determine melting relations. The evacuated tubes were recessed about 1 cm at one end to accommodate the differential thermocouple. Al203 was used as the reference material in a similar tube containing the other side of the differential couple. For temperature measurements, a separate thermocouple was placed in the recess of the tube containing the sample to be measured, thus providing an opportunity to obtain thermal, as well as differential, analysis. All thermocouples for these measurements were Pt-Pt 10 pct Rh. Temperature and differential curves were recorded separately on synchronized strip-chart recorders. Thermocouples and recording equipment were calibrated using NaCl and gold standards, using the melting points 801" and 1063 C, respectively, which span most of the temperature range of interest. Heating and cooling rates generally were from 4 to 7°C per min. It was found, in fact. that rates ranging from 1.5 to 25°C per min did not significantly change the data obtained.
Citation

APA: Marius S. Darrow William B. White Rustum Roy  (1967)  PART V - Phase Relations in the System PbS-PbTe

MLA: Marius S. Darrow William B. White Rustum Roy PART V - Phase Relations in the System PbS-PbTe. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account