Rock Mechanics - Drilling and Blasting at Smallwood Mine

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. Bauer N. H. Carr P. Calder G. R. Harris
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
1782 KB
Publication Date:
Jan 1, 1967

Abstract

Since both rotary and jet piercing drills are used by the Iron Ore Co. at Smallwood, it is often desirable in planning to know in which regions of the orebody or new orebodies a particular drill will be the most economic. This makes it necessary to establish a correlation between drillability and pierceability and some physical rock properties. For rotary drills a good correlation was found with penetration rate and grinding factor index. The jet piercers were found to have a reciprocal relationship in the sense that the best rotary ground was the worst jet ground and vice versa. It is also indicated how an economic comparison could be made using these penetration rate versus grinding factor index curves, the hole size distribution curves for single pass and chambered holes and the mine distribution curve for grinding factor index. A discussion is presented on the fuel oxygen ratios to be used in jet piercing and on the site gas sampling and analysis which has been used to set up the drills. The fuel has been cut back so that stoichio-metric conditions exist, carbon monoxide is drastically reduced and pop-up or exploding holes eliminated. No decrease in penetration rate has been observed contrary to the published results of previous workers. The blasting procedure and results at Smallwood are discussed and the operation of Iron Ore Co.'s slurry pump-mix truck is also described briefly. Smallwood mine is part of the Iron Ore Co.'s Carol Lake operation and is situated in Labrador, 240 miles north of Sept-Iles, Quebec. Last year 15 million tons of crude ore were crushed to yield 6.3 million tons of concentrate and pellets. This year the figures will be 17 million tons of crude and 7% million tons of concentrate and pellets which is the full plant capacity. Carol Lake ores consist primarily of specularite and magnetite mixed with quartz. For convenience the ore has been split-into the following classifications depending on the percentage of magnetics in the sample, shown in brackets: specularite (0 to 10%), specularite-magnetite (10 to 20%), magnetite- specularite (20 to 30%), magnetite (>30%). The order of classification also represents the order of increasing grinding difficulty - the specularite generally being the easiest and the magnetite the hardest. The orebody also contains a small percentage of waste materials consisting of limonite carbonate, quartz carbonate and quartz magnetite. The first two materials are among the softest in the mine, generally softer than the specularite, and the quartz magnetite is amongst the hardest. The bulk of the material in the mine is of the specularite-magnetite and magnetite-specularite classifications. As a result of test drilling at Smallwood in 1960 with rotary, jet and percussion drills, the Iron Ore Co. purchased four JPM-4 jet piercers for the bulk of production drilling and set up an oxygen plant to supply 20 tons of oxygen per day. This oxygen is sufficient for two machines operating full time and one part time. In addition, there are two 50-R, one 60-R and one 40-R machines in use. The benches are 45 ft high and 50 ft holes are generally drilled. JET DRILLING At the onset of jet drilling in the late fall of 1962, two major problems were encountered: 1) freezing due to winter operations; experience and the use of heat at more places, such as the rotary head, has eliminated this,'" and 2) exploding or "popping" drilled holes; this happened frequently (several holes "popping" each day) and was the cause of two lost time accidents. In one instance a hole was being measured with a tape which fell down the hole causing it to "pop." Safety glasses though pulverized saved the wearer's eyesight. Various methods were then employed to detonate the holes before measuring or loading (dropping lighted rags of fusees down, or sparking across a spark gap). These methods were time consuming and far from completely successful. Consideration was given to the fuel oxygen ratio on the machines and what this would produce in the way of product gases. A fuel oxygen weight ratio of 0.35 which was quite oxygen negative was being used. Theoretically appreciable carbon monoxide would be produced at this fuel oxygen ratio. On the close down procedure of the jet which calls for low oxygen after flame out, oxygen would be left in the hole along with this carbon monoxide. This is an explosive mixture. The fuel oxygen ratio was cut back to stoichiometric
Citation

APA: A. Bauer N. H. Carr P. Calder G. R. Harris  (1967)  Rock Mechanics - Drilling and Blasting at Smallwood Mine

MLA: A. Bauer N. H. Carr P. Calder G. R. Harris Rock Mechanics - Drilling and Blasting at Smallwood Mine. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account