PART III - Cryoelectronic

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 1415 KB
- Publication Date:
- Jan 1, 1967
Abstract
The present status of integrated circuits utilizing. superconductive switching. elements is reviewed with special attention given to fabrication techniques, methods for interconnecting completed circuits, and refrigeration requirements. Cryoelectronics has been largely an "inte- grated-circuit" technology since its conception because the switching speed of superconductive devices is attractive only when these devices are fabricated with thin-film techniques. It is true that cryotron circuits can be constructed from wires of appropriate materials (as indeed was done by Dudley Buck 1 in his early investigations) but these circuits will switch in times characteristic of milliseconds whereas similar circuits fabricated by thin-film methods have potential switching times of nanoseconds. Furthermore, cryo-electronic devices such as the cryotron lend themselves readily to fabrication by thin-film techniques since these components may be made from polycrys-talline thin films and are relatively insensitive to the presence of impurities (as measured by semiconductor standards). Therefore, during the past decade considerable effort has been devoted to developing techniques for batch fabricating circuit arrays containing superconductive switching elements. Technology had developed to the point several years ago that fabrication of cryoelectronic arrays containing up to one hundred devices was rather straightforward. However, larger arrays containing between lo4 and 106 components which are required for commercial development of cryoelectronics still pose very severe yield problems. Thus in a sense cryoelectronics found itself in 1962 at the point semiconductor technology finds itself today; namely, individual devices and small groups of integrated devices could be fabricated with acceptable yield and the outlook for building larger integrated-circuit arrays was bright. Unfortunately, problems associated largely with yield have made fabrication of these larger arrays difficult. Unlike semiconductor technology, cryoelectronics had to solve the problems of large-scale integration before it could become economically attractive. This has proven to be a sizable burden to bear. Since several reviews exist on superconductivity,2 superconductive devices,3 and cryoelectronic technology, no attempt will be made in this paper to summarize these areas. Instead a few specific topics will be dealt with in more detail. First, a brief description is given of selected superconducting switching and storage devices with special attention to several metallurgical techniques which improve the performance of these devices. Second, techniques used to fabricate cryoelectronic devices are described with emphasis on problems affecting yield. Third, techniques for interconnecting a number of cryoelectronic planes are described. And last, refrigeration of cryoelectronic components is discussed briefly since the low operating temperature of superconductive devices is an important consideration in this technology. SUPERCONDUCTING STORAGE AND SWITCHING DEVICES The basic superconductive switching device is the thin-film cryotron. The geometry of this device is attractively simple, since it involves only the intersection of two lines that are electrically insulated from each other. The switching element (gate) and control element (control) of a crossed-film cryotron are arranged as illustrated in Fig. 1. The material for the gate is selected to permit the gate to be switched from the superconducting to the normal (resistive) state by the application of a control current. Tin, which has a critical temperature (T,) of 3.7°K, is commonly used for the gate and the cryotron is operated at a temperature just below T, (for example, 3.5°K). The control material (normally lead, with T, = 7.2°K) is chosen so that the control is never driven normal during circuit operation. To improve cryotron operation, a ground plane, also of lead, is placed under all of the circuitry to act as a diamagnetic shield and improve the current-density uniformity across the width of various thin-film elements. Normally, line widths vary from 0.005 to ^ 0.020 in. and film thicknesses from 300 to 10,000A, although new fabrication techniques make narrower lines feasible. In fabricating cryotrons it is important that the edges of the gate elements be geometrically sharp to avoid undesirable switching characteristics associated with a thinner edge region, Fig. 2. One technique which has been used extensively to form patterns consists of placing a physical mask containing the film pattern between the evaporation source and the substrate and depositing through the mask. Film strips formed in this manner possess a penumbra at the film edges due to shadowing of the evapor-ant under the mask. Several techniques have been proposed for minimizing effects due to this penumbra. One of the more promising metallurgical techniques
Citation
APA:
(1967) PART III - CryoelectronicMLA: PART III - Cryoelectronic. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.