Part VII - Structural Characteristics of the Fe-FeS Eutectic

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1557 KB
- Publication Date:
- Jan 1, 1967
Abstract
High-purity materials have been used in producing as-cast, controlled, colony, and degenerate solidification structures in the Fe-FeS eutectic. Experiments disclosed that this eutectic can be classified as normal and has a natural morphology composed of rodlike iron particles dispersed in a matrix of iron sulfide. The metallography of the various structures was studied, and a preferred crystallography was revealed in the controlled specimens produced by unidirectional solidification. The orientation effects found in these latter specimens are an [001] fiber texture in the -mowth direction of the bcc iron bhase and a texture corresponding to bicrystalline behavior in the hexagonal iron sulfide, with the growth direction near to (2111) poles. The observed texture of the iron phase is considered as indirect evidence that the alloy un-dercooled by at least 75°C before solidification. The unidirectional solidification of binary eutectic alloys has produced materials which exhibit a structure and properties markedly dependent upon the solidification process. In many cases a controlled microstructure with pronounced metallographic and crystallographic anisotropy can be experimentally achieved by proper regulation and balance of the growth rate of the alloy, the chemical purity of the starting materials, and the thermal gradient in the liquid at the liquid-solid interface. The purposes of this investigation were to produce various micro-structures in the Fe-FeS eutectic for subsequent study of their magnetic properties and to correlate the different structures with the solidification conditions in order to obtain a better understanding of the structure of eutectics. The Fe-S equilibrium diagram exhibits a eutectic composed of nearly pure iron and stoichiometric iron sulfide (FeS1.00), with the eutectic reaction occurring at 988°C and 31.0 wt pct S.1 Calculations indicate that this eutectic should solidify with about 9.5 vol pct Fe and 90.5 vol pct FeS, which in turn suggests2 that the micros tructure will consist of a rodlike iron constituent dispersed in a matrix of FeS. This characteristic has in fact been revealed some years ago.3 Thus, controlled solidification of this alloy might yield a material whose micromorphology would consist of very small ferromagnetic iron particles, rod-like in shape and aligned parallel to one another, supported in a matrix of antiferromagnetic FeS. Such specimens, because of the magnetic characteristics of the two phases, would be interesting subjects of study as magnetic materials. Hence the magnetic properties were considered in detail and are reported elsewhere.4 EXPERIMENTAL PROCEDURE The specimens of Fe-FeS eutectic were prepared from ultrapure iron (99.99+ pct) and high-purity sulfur (99.999+ pct). The iron was estimated to contain 60 ppm impurities (99.994 pct Fe) after zone purification.5 The ingots of iron were cut into chips, and the lumps of sulfur were ground into powder. In order to redice any nometallic impurities which might have accumulated during handling, the iron chips were annealed for 5 hr at 750° ± 10°C in a dry hydrogen atmosphere. Immediately after this treatment the chips were blended with the sulfur powder in eutectic proportions; the mixture was tamped into transparent fused quartz tubing and then vacuum-encapsulated under a pressure of 40 to 60µ of Hg. Because FeS expands upon solidification it was necessary to re-encapsulate the initial capsules so that oxidation reactions would be avoided when the inner tube cracked during solidification. For purposes of homogenizing the blended mixtures before solidification, the double capsules were heated to 750° ± 20°C and held for 20 hr; after this treatment the reacted product was weakly agglomerated. Each sample was then loaded into an apparatus for very rapid melting and freezing; this was accomplished by passing a molten zone through the specimen, using induction heating and a traverse mechanism. The resulting specimens solidified in the shape of the quartz tubing. Two sizes of specimens were used in this work, 18 mm diam by 100 mm long and 5 mm diam by 30 mm long. Metallographic examination of several ingots of both sizes after the above consolidation indicated no lack of compositional homogeneity and a random "as-cast" structure, because the travel rate was so rapid that unidirectional solidification was not achieved. Unidirectionally solidified specimens were resolidified in the apparatus shown schematically in Fig. 1, This equipment consisted of a kanthal resistance furnace mounted on the carriage of a zone-melting unit so that the heating element could traverse the length of the sample at a selected rate of speed. Large specimens were solidified with the mechanism tilted at ap-
Citation
APA:
(1967) Part VII - Structural Characteristics of the Fe-FeS EutecticMLA: Part VII - Structural Characteristics of the Fe-FeS Eutectic. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.