Institute of Metals Division - The Influence of Point Defects upon the Compressive Strength of Ni-Al

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1568 KB
- Publication Date:
- Jan 1, 1965
Abstract
Compression tests were run in the temperature range of 700° to 900°C ox 0' phase NiAl intermetal-lic alloys of several grain sizes. At these temperatures the minimum strengths were observed at the stoichiometric composition. While significant increases in strength occurved in both the low-nickel (vacancy) and high-nickel (substitutional) regions, the highest strengths were found in the high-nickel region. During deformation serrated flow was sometimes observed in the low-nickel alloys. After deformation transgranular cvacking and deformation striations were observed in all compositions tested. AS part of a general investigation of the properties of NiAl inter metallic compounds, a preliminary study of the role of point defects upon plasticity was made by high-temperature compression tests on ß' NiAl specimens of several grain sizes and compositions. ß' NiAl is an intermetallic compound having a CsCl structure and a rather wide range of composition from A1-45 at. pct to 60 at. pct Ni.1 According to Bradley and Taylor2 and to cooper,' it possesses a defect lattice in which departures from stoichiometry in the direction of decreased nickel content lead to the presence of vacant nickel sites (although Cooper's work indicates that a small amount of substitution also occurs) whereas departures on the high-nickel side lead to substitution of nickel on aluminum sites. NiAl forms congru-ently from the melt at approximately 1650°C,1 and thus has a higher melting point than either of its component elements. Up to this time, although this and other high-melting intermetallic compounds have been suggested for elevated-temperature usage,4 only the hardness4 and a few tensile-strength measurements5 have been reported for NiAl at high temperatures. In the present investigation the effects of composition upon the compressive-strength properties in a range of 700° to 900°C have been measured for NiAl of several grain sizes. EXPERIMENTAL PROCEDURES The alloys were made as described elsewhere6 from an A1-46.8 at. pct Ni master alloy furnished by the International Nickel Co. with additions of high-purity nickel and aluminum. The charges were vacuum-induction-melted in A12O3 crucibles with small amounts of helium added to the atmosphere to suppress vaporization. They were cooled slowly from the melting temperature to achieve uniform grain size. In order to refine the as-grown grain size a special rolling technique was developed. Alloys were packed into 0.10-in. wall-type 302 stainless-steel tubes which were partially filled with magnesium oxide to prevent bonding between the alloy and the steel jacket. The ends of the tubes were closed by hot forging, and the packets were then hot-rolled. The alloys with greater than 50 at. pct Ni were rolled at 1100°C, but it was found necessary to increase the temperature to 1350° C before alloys with less than 50 at. pct Ni would roll without cracking. With these temperatures, reductions as high as 48 pct were achieved in a single pass. The rolled alloys will hereafter be referred to as "fine grained" whereas the as-grown material will be designated "coarse-grained''. The compression specimens were made by cutting square cross-sectional pieces, approximately 3/16 by 3/16 by 1/2 in., with a water-cooled diamond cut-off wheel from the as-grown or the rolled alloys. Specimens were ground to their final dimensions by polishing through 3/0 grit silicon carbide papers. The final shape was a rectangular parallelepiped of square cross section having a height-to-width ratio of 3:1. Compression testing was carried out in a compression rig of our own design mounted on an In-stron Floor Model. The specimen chamber could be heated to 1000°C and was controlled within ±2°C. The compression rig was enclosed within a bell jar and was maintained at a 50 µ of mercury vacuum throughout the duration of the test. The test cham -ber was heated from room to test temperature within 15 min. Specimens were then held at the test temperature 30 min prior to testing. Previous experiments indicated that no grain growth would occur within this time. An Instron Variable Crosshead speed unit was used to adjust for small variations in specimen lengths in order to have a constant initial strain rate, €, for all specimens of a group. For the fine-grained specimens the strain rate was changed rapidly at constant temperature by a factor of 10 with the speed lever on the Instron. For a given € the compression data was analyzed in terms of true plastic strain (E) and true compressive stress (0).
Citation
APA:
(1965) Institute of Metals Division - The Influence of Point Defects upon the Compressive Strength of Ni-AlMLA: Institute of Metals Division - The Influence of Point Defects upon the Compressive Strength of Ni-Al. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.