Part X - The Influence of Additive Elements on the Activity Coefficient of Sulfur in Liquid Lead at 600°C

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 1635 KB
- Publication Date:
- Jan 1, 1967
Abstract
The influence which Au, Ag, Sb, Bi, Sn, and Cu have, both individually and collectively, on the activity coefficient of sulfur in liquid lead at 600"C zuas studied by circulating a H2S-Hz gas wlixture over a specific lead alloy until equilibrium was attained. Subsequently, the H2S concentration in the equilibrium gas mixture and sulfur concentration in the condensed phase were deterruined. The elements gold, silver, and antinzony (above 8 at. pct) increased the activity coefficient of sulfur. Bismuth had no apparent effect. Tin (above 3 at. pct) and copper decreased the coefficient. The influence of an individual element, i, on sulfur is best reported as the interaction parameter, riS, which is defined as The values o these first-order interaction zus are: ESzu = —55.0. These interaction parameters are used to predict the activity coefficient of sulfur in six fouv-component alloys and one seven-component alloy. Comparisons are made with direct experimental determinations. INTERACTIONS in dilute solution have been studied by many investigators. Most of the experimental work has been confined to solute-solvent interactions in simple binary systems and solute-solute interactions in ternary systems. Dealy and pehlke"~ have summarized the available literature on activity coefficients at infinite dilution in nonferrous binary alloys and have calculated from published data the values for interaction parameters in dilute nonferrous alloys. Interaction parameters are a convenient means of summarizing the effect of one solute species on another in a given solvent. Only a few investigators have studied interactions of the nonmetallic element sulfur in a metallic solvent. They are as follows: Rosenqvist,~ sulfur in silver; Rosenqvist and Cox,4 sulfur in steel; chipman, sulfur in alloy steels; Alcock and Richardson,% ulfur in copper alloys; Cheng and Alcock,' sulfur in iron, cobalt, and nickel; Cheng and ~lcock,' sulfur in lead and tin. The only reported work on the Pb-S system in the dilute-solution region is that of Cheng and Alcock.' Their investigation involved a study of the solubility of sulfur in liquid lead over the temperature range 500" to 680°C. The results may be summarized by the following relationship: S (dissolved in lead) + Pb(1) = PbS(s) log at. %S = -3388/T + 3.511 Experimentally, it was found that Henry's law was valid up to the solubility limit of sulfur in lead, i.e., at 600°C up to 0.43 pct. Their investigation did not include the study of sulfur in lead alloys. More accurate calculations could be made in smelting and refining systems if activity coefficients of solute species could be accurately predicted in complex solutions. One of the objectives of this study was to compare the experimental data with the values calculated from the equations derived from models for dilute solutions proposed by wagner9 and Alcock and Richardson. A temperature of 600°C was chosen as the experimental temperature to attain reasonable reaction rates and to minimize volatilization of the condensed phase. EXPERIMENTAL Materials. The Pb, Au, Ag, Sb, Bi, Sn, and Cu used for preparation of the alloys were American Smelting and Refining Co. research-grade materials. All were 99.999+ pct purity except the antimony and tin which were 99.99+ pct. The initial alloys prepared for this study consisted of twenty-one binary alloys, eleven ternary alloys, and one six-component alloy. The constituent elements were mixed for each desired alloy and were placed in a crucible machined from spectrographically pure graphite. The crucible was placed in a vycor tube which was evacuated with a vacuum pump and gettered by titanium sponge at 800°C for 8 to 12 hr. After the gettering was completed, the chamber containing the titanium was sealed and removed. The remaining sample chamber was placed in a tube furnace at 800°C for 2 hr and quenched in cold water. The final operation consisted of homogenization of the alloy for 1 to 2 weeks at a temperature just below the solidus for the individual system. The resulting master alloys were sectioned into small pieces and a random choice made for individual equilibrations. Cobalt sulfide (Cogs8) used to control the gas atmosphere in the circulation system was prepared by passing dried HzS for 24 hr over a Co-S mixture heated to 700°C in a tube furnace. This material was then mixed with cobalt metal to give a two-phase mixture which, when heated in hydrogen to a particular temperature, produced a desired H2S/H2 gas atmosphere in the circulation system. A Cu2S-Cu mixture also used in this study was prepared in a comparable manner. Apparatus for Equilibrium Measurements. The experimental technique of this study required apparatus
Citation
APA:
(1967) Part X - The Influence of Additive Elements on the Activity Coefficient of Sulfur in Liquid Lead at 600°CMLA: Part X - The Influence of Additive Elements on the Activity Coefficient of Sulfur in Liquid Lead at 600°C. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.