Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Part X - The Influence of Additive Elements on the Activity Coefficient of Sulfur in Liquid Lead at 600°CBy A. H. Larson, L. G. Twidwell
The influence which Au, Ag, Sb, Bi, Sn, and Cu have, both individually and collectively, on the activity coefficient of sulfur in liquid lead at 600"C zuas studied by circulating a H2S-Hz gas wlixture over a specific lead alloy until equilibrium was attained. Subsequently, the H2S concentration in the equilibrium gas mixture and sulfur concentration in the condensed phase were deterruined. The elements gold, silver, and antinzony (above 8 at. pct) increased the activity coefficient of sulfur. Bismuth had no apparent effect. Tin (above 3 at. pct) and copper decreased the coefficient. The influence of an individual element, i, on sulfur is best reported as the interaction parameter, riS, which is defined as The values o these first-order interaction zus are: ESzu = —55.0. These interaction parameters are used to predict the activity coefficient of sulfur in six fouv-component alloys and one seven-component alloy. Comparisons are made with direct experimental determinations. INTERACTIONS in dilute solution have been studied by many investigators. Most of the experimental work has been confined to solute-solvent interactions in simple binary systems and solute-solute interactions in ternary systems. Dealy and pehlke"~ have summarized the available literature on activity coefficients at infinite dilution in nonferrous binary alloys and have calculated from published data the values for interaction parameters in dilute nonferrous alloys. Interaction parameters are a convenient means of summarizing the effect of one solute species on another in a given solvent. Only a few investigators have studied interactions of the nonmetallic element sulfur in a metallic solvent. They are as follows: Rosenqvist,~ sulfur in silver; Rosenqvist and Cox,4 sulfur in steel; chipman, sulfur in alloy steels; Alcock and Richardson,% ulfur in copper alloys; Cheng and Alcock,' sulfur in iron, cobalt, and nickel; Cheng and ~lcock,' sulfur in lead and tin. The only reported work on the Pb-S system in the dilute-solution region is that of Cheng and Alcock.' Their investigation involved a study of the solubility of sulfur in liquid lead over the temperature range 500" to 680°C. The results may be summarized by the following relationship: S (dissolved in lead) + Pb(1) = PbS(s) log at. %S = -3388/T + 3.511 Experimentally, it was found that Henry's law was valid up to the solubility limit of sulfur in lead, i.e., at 600°C up to 0.43 pct. Their investigation did not include the study of sulfur in lead alloys. More accurate calculations could be made in smelting and refining systems if activity coefficients of solute species could be accurately predicted in complex solutions. One of the objectives of this study was to compare the experimental data with the values calculated from the equations derived from models for dilute solutions proposed by wagner9 and Alcock and Richardson. A temperature of 600°C was chosen as the experimental temperature to attain reasonable reaction rates and to minimize volatilization of the condensed phase. EXPERIMENTAL Materials. The Pb, Au, Ag, Sb, Bi, Sn, and Cu used for preparation of the alloys were American Smelting and Refining Co. research-grade materials. All were 99.999+ pct purity except the antimony and tin which were 99.99+ pct. The initial alloys prepared for this study consisted of twenty-one binary alloys, eleven ternary alloys, and one six-component alloy. The constituent elements were mixed for each desired alloy and were placed in a crucible machined from spectrographically pure graphite. The crucible was placed in a vycor tube which was evacuated with a vacuum pump and gettered by titanium sponge at 800°C for 8 to 12 hr. After the gettering was completed, the chamber containing the titanium was sealed and removed. The remaining sample chamber was placed in a tube furnace at 800°C for 2 hr and quenched in cold water. The final operation consisted of homogenization of the alloy for 1 to 2 weeks at a temperature just below the solidus for the individual system. The resulting master alloys were sectioned into small pieces and a random choice made for individual equilibrations. Cobalt sulfide (Cogs8) used to control the gas atmosphere in the circulation system was prepared by passing dried HzS for 24 hr over a Co-S mixture heated to 700°C in a tube furnace. This material was then mixed with cobalt metal to give a two-phase mixture which, when heated in hydrogen to a particular temperature, produced a desired H2S/H2 gas atmosphere in the circulation system. A Cu2S-Cu mixture also used in this study was prepared in a comparable manner. Apparatus for Equilibrium Measurements. The experimental technique of this study required apparatus
Jan 1, 1967
-
PART IV - Communications - Miscibility Gap in the System Iron Oxide-CaO-P2O5 in Air at 1625°CBy E. T. Turkdogan, Klaus Schwerdtfeger
OelSEN and Maetz1 detected some 20 years ago the existence of a miscibility gap in iron oxide-CaO-P2O5 slags melted in iron crucibles at about 1400°C. Because of the importance of this system for the dephos-phorization of steel in the basic Bessemer process, equilibria between liquid iron and selected iron oxide-CaO-P2Q slags have been measured since by numerous investigators.2-5 When in equilibrium with metallic iron, the iron oxide of the slag is present mainly as FeO. In connection with oxygen-blowing steelmaking processes, it is useful to know the phase relations in the slag system at higher oxygen pressure, when major parts of the iron oxide are present as Fe2O3. This problem was investigated by Turkdogan and Bills7 by equilibrating the oxide mixtures contained in platinum crucibles with CO2-CO mixtures at 1550°C. It was found that increasing the Fe2O3 content decreases the composition range of the miscibility gap strongly so that the miscibility gap has almost disappeared at pco2/pco = 75. This result was refuted by the careful work of Olette et a1.,''' who equilibrated their slags with controlled Ha-H2-Ar gas mixtures. Their equilibrium measurements, at 1600°C and at oxygen pressures of 5 x 10"* and 10"5 atm, showed that the oxidation state of the iron has almost no influence on the formation of the miscibility gap. The present experiments were undertaken to check the previous results of Turkdogan and Bills. The experiments were performed at 1625°C in the strongly oxidizing atmosphere of air (PO2 = 0.20 atm) for which no experimental data are available. About 10 g of slag were melted in platinum crucibles and held at constant temperature for 1 hr. After equilibration, the crucible was rapidly pulled out of the furnace and cooled in air. The platinum crucible was removed from the sample. The two slag layers were carefully separated with a small diamond disc, and the surface of the top layer, which may have changed its oxidation state during cooling, was removed. The slags were crushed and analyzed chemically for CaO, P2O5, Fe2+, and Fetotal. The starting mixtures were prepared by sintering the desired amounts of reagent-grade 2CaO . P2O5 - H2O, CaCO3, and Fe2O3. Sintering and subsequent crushing were done three times to ensure homogenization. Molybdenum wire resistance heating was used. The furnace was provided with a recrystallized alumina reaction tube which was left open to air at the top. The temperature was controlled electronically. The reported temperature was measured with a Pt/Pt-10 pct Rh thermocouple and is estimated to be accurate within +5°C. The composition of the equilibrated melts is given in Table I. For the graphical illustration of these quaternary slags the type of projection suggested by Trömel and Fritze10 was used. In this representation, Fig. 1, the composition point of a mixture within the tetrahedron Fe2O3-CaO-P2O5-FeO is projected into the Fe2O3-CaO-P2O5, triangle (triangle I) so that the direction of projection is parallel to the side FeO-Fe2O3, and into the triangle Fe2O3-P2O,-Fe0 (triangle 11) so that the direction of projection is parallel to the side CaO-P2O5, of the tetrahedron. The projected point has the coordinates wt pct CaO, wt pct P205, and wt pct (FeO + Fe2O3) in triangle I and wt pct FeO, wt pct Fe2O3, and wt pct (CaO + PzO5) in triangle 11. Both triangles are turned into the same plane around the Fe203-P20, side of the tetrahedron. An illustration of the projection of a quaternary point in the present system is shown in Fig. 1. The advantage of this type of projection is that all four components for an equilibrium curve can be read directly from the diagram. The present results are shown graphically in Fig. 2. The curves depicting the miscibility gap are dashed in parts where no experimental points were obtained. The composition range covered by the miscibility gap
Jan 1, 1968
-
Producing-Equipment, Methods and Materials - Emulsion Control Using Electrical Stability PotentialBy J. U. Messenger
A technique is described whereby the resistance of an emudian to breaking can be quantitatively determined. Produced ailfield emulsions are usually the water-in-oil type and, accordingly, do not conduct an electrical current. However, there is a threshold of A-C voltage pressure above which an emulsion will break and current will flow. The more stable an emulsion, the higher the required voltage. A Fann Emulsion Tester, modified so that low voltages (0 to 10 v) can be accurately measured, is suitable. This technique has application in evaluating the effect of a demuksifier on the stability of an emulsion. Emulsions can, in essence, be titrated with demulsifiers by adding a quuntity of demulsifier, stirring, and measuring the voltage required to cause current to flow. Any synergistic effect of two or more materials added simultaneously can be followed accurately. A demulsifier that significantly lowers the threshold voltage (from 100 to 400 v to 0 to 10 v for the emulsions in this study) is effective and can cause the enlulsion to break. A demulsifier that will bring about this drop in the threshold voltage at low concentration ir very desirable. The technique is also well adapted for rapidly screening demulsifiers. INTRODUCTION Stable emulsions in produced reservoir fluids resulting from certain well stimulation and completion procedures are common problems. The use of suitable demulsifiers can often mitigate these difficulties. At the present time, a rapid and efficient method for selecting satisfactory demulsifiers is not available. It is badly needed. Reliance is now placed primarily on trial-and-error procedures. A new test method has been developed which permits a more rapid and precise selection of demulsifiers. It involves measuring the electrical stability potential of an emulsion before and after a demulsifier has been added. This paper describes this method and shows where it should have application in field emulsion problems. NATURE OF OILFIELD EMULSIONS Two immiscible components must be present for an emuhion to form; we are concerned here with crude oil and water. An emulsifier must be present for tin emulsion to be stable. J Emulsifiers can be substances which are soluble in oil and /or mter and which lower interfacial tension. They can be colloidal solids such as bentonite, carbon, graphite, or asphalt which collect at the interface and are preferentially wet by one of these phases. Unrefined crude oils can contain both types of emulsifiers, A popular theory is that, of the two phases in an emulsion, the dispersed phase will be the one contributing most to the interfacial tension.' Usually this phase contains the least amount of emulsifier. The stability of a water-in-oil emulsion is affected by the fol1owing: l) viscosity; (2) particle or droplet size; (3) interfacial tension between the phases; (4) phase-volume ratios; and (5) the difference in density between the phases. A stable emulsion is usually characterized by high-viscosity, small droplets, low interfacial tensions, small differences in density between its phases, and slow separatian of the phases. It also has low conductivity (high electrical stability potential). Water-in-oil and oil-in-water emulsions"' are both common; however, oil field emulsions are predominantly water-in-oil emulsions. The emulsions which commonly occur during oompletion and stimulation operations contain a combination of several of the following: acids, fracturing fluids (oil, water, acid), and formation water and oil. Produced emulsions usually contain formation water and oil. Emulsions form in oil wells because oil and water are mixed together at a high rate of shear in the presence of a naturally occurring or unavoidably produced emulsifier. During the completion and stimulation of productive zones, and while formation fluids are being produced, oil and water are very often commingled. These mixtures are formed into emulsions by agitation which occurs when the fluids are pumped from the surface into the matrix of the formation or produced through the formation to the surface. Restrictions to flow (such as perforations, pumps, and chokes)".'" increase the level of agitation; tight emulsions are more likely to form under these conditions. Often an emulsified droplet is an emulsion itself.'" Therefore, emulsion-breaking problems can be quite complex. The complexity can be even greater if a third phase (gas) is included. Demulsifiers operate by tending to reverse the form of the emulsion. During this process, droplets of water become bigger, viscosity is lowered, color becomes darker, separation of the phases faster and electrical stability potential approaches zero. Any of these effects could be followed as a means of determining emulsion stability. However, electrical stability potential is the most reproducible and most easily measured parameter for following the stability of a water-in-oil emulsion.
Jan 1, 1966
-
PART VI - The Heat Effects Accompanying the Solution in Liquid Bismuth of Tellurium with Cadmium, Indium, Tin, or LeadBy P. M. Robinson, J. S. LI. Leach
The heats of solution oj' indiurrr, tin, lend, nrzd tellurium have been calculated from the measured heat effects when mechanical mixtres of indium and telLuium tin and tellurium, and lead and tellurium were added to liquid bismuth. The results are in good agreement xith publislzed values.s for the separate sollction of each eleltzent in bismuth. The heats oj solution of cadmium and tellurium calculated from the rneasuved heat effects on adding trechanical mixtures of these elements do not ugree zc,itl the published values jbv the separate solution of each element. It is shown that at 623°K Ile interaction between cadmium and tellurium dissolved in liquid bismuth is strong enough to led lo preciPitation of solid CdTc. The heats oj- jor-mation of CdTe at 273" nd 623°K (1)-c crilculated fi-or the measured heat ejlfecls. The calcnlaled az'erage deviation from the Kopp-l\'ez?,zunrz rule fov solid CdTe is less than 0.06 cat per g-atom- C over this lertzperalure range. Tlze importance 0.f these oDserl.ations to the determination of heals of formation hy metal solution calorimetry is considered. LIQUID metal solution calorimetry is a convenient method for determining the heats of formation of solid compounds. In this technique the heat of formation is the difference between the measured heat effects on dissolution of the compounds and of mechanical mixtures of the components in the liquid metal.' The heat of solution of the mechanical mixture may be calculated from the measured heat effect. At infinite dilution of the solutes, this heat of solution is equal to the sum of the heats of solution of the separate components. If the heat of solution of one of the components is known, the value for the other can be derived; if both are known, they may be used to check the accuracy of the calorimetric technique. The heats of formation of the tellurides of cadmium, indium, tin, and lead have recently been measured by metal solution alorimetr. The heats of solution of indium, tin, lead, and tellurium at infinite dilution in liquid bismuth at 623"K, calculated from the measured heat effects on solution of the mechanical mixtures, are in good agreement with the published values. The heats of solution of cadmium and of tellurium calculated from the measured heat effect on solution in bismuth at 623'K of mechanical mixtures of cadmium and tellurium, however, do not agree with values estimated from the literature. 1) EXPERIMENTAL PROCEDURE AND RESULTS The Heats of Solution of Indium, Tin, Lead, and Tellurium in Bismuth. The heat effects were measured when mechanical mixtures corresponding to the compounds In,Te, InTe, In2Te3, In2Te5, SnTe, and PbTe were dissolved in bismuth. The calorimetric procedure and the method of calculation have been described elsewhere.' The heats of solution of the mechanical mixtures were obtained by subtracting the change in heat content per gram-atom of the sample between the addition temperature (273°K) and the bath temperature (623"K), (H623°K - H273°K)S, from the measured heat effects. The calorimeter was calibrated with pure bismuth. The reported values of the measured heat effects are based on (HGoK - ^273oK)Bi = 4.96 kcal per g-atom.3 The measured heat effects are found to be linear functions of the solute concentrations of the bath in the dilute solution range. The values, extrapolated to infinite dilution, are listed in Table I, together with the heats of solution of the mechanical mixtures calculated using the published values of (H 623°K - H273°k)s for indium, tin, lead,3 and tellrium. All the error limits quoted in this work represent the spread of values obtained. The heats of solution in liquid bismuth at 623°K of mechanical mixtures of indium and tellurium in four different proportions were determined. Values of the heats of solution of the two components were then calculated from the resulting four simultaneous equations: The heats of solution at infinite dilution of tin and lead in liquid bismuth at 623°K were calculated from the heats of solution of the mechanical mixtures of tin and tellurium and of lead and tellurium using the heat of solution of tellurium calculated above. These values of the heats of solution are listed in Table I1 together with some published values for comparison.
Jan 1, 1967
-
Part VII - Tensile Deformation of Single-Crystal MgAgBy V. B. Kurfman
The temperature, strain rate, and orientation deDendence of defbrnzation of single-crystal MgAg has been examined. The crystals exhibit a tendency to single glide and little or no hardening at 25°C for many orientations. A much higher hardening rate is observed when multiple glide occurs, such as can be initiated by surface defects. The tendency for easy glide becomes less dependent on surface preparation and orientation as T — 100°C and bars so tested often fail after one-dimensional necking-. At T > 200°C (transition temperature for single-crystal notch sensitivity and poly crystalline ductility) single glide diminishes and two-dirnensionul necking begins. The crystals do not strictly obey a critical resolved shear stress law, but show the influence of {loo) cracks in determining the slip mode. The results are correlated with the difficulty of sciperdzslocation intersection and semibrittle behavior of this compound in single-crystal and poly crystalline form. Comparisons are made with the slip selection mode observed in tungsten, with the reported observations of easy glide in bee metals. and with the mechanical behavior of poly crystalline MgAg. PREVIOUS work on tensile deformation of polycrys-talline MgAgl and bending deformation of single-crystal MgAg2 has shown that the compound is semi-brittle (i.e., notch and grain boundary brittle). If this semibrittleness is supposed to result from the difficulty of multiple glide (associated with the problems of superdislocation intersection) one might expect single crystals deformed in tension to show pronounced single glide and strong orientation dependence of hardening rate. These experiments were done to examine this supposition and to study the tensile deformation of a highly ordered system which may be considered bcc if the difference between the two kinds of atoms is ignored (actual structure: CsC1). EXPERIMENTAL Single-crystal ingots were grown by directional freezing as previously described.' These ingots were sliced into a by a by 2 in, rectangular bars by electric discharge machining, then round tensile bars were conventionally machined to 1/8-in.-diam by 1-in.-long reduced section. The bars were typically tested without an anneal because of the problem of magnesium vapor loss and they were typically tested as mechanically polished. The analyses are within the same limits as those reported earlier; i.e., the average composition for each specimen is within 0.5 at. pct of stoichiometry, while the total range from end to end in a given specimen varies from 0.7 to 1.4 at, pct. There has been no indication in the results of any variation in slip or fracture mode attributable to the composition fluctuations. The slip systems were determined by two-surface analysis of the bars after testing to failure at room temperature. Single glide was so dominant that there was little difficulty in identification of the dominant slip system even though the tensile elongation to failure often approached 7 to 8 pct in room-tempera- ture tests. Elevated-temperature testing was done in a silicone oil bath and low-temperature testing was done in liquid Np or a dry-ice bath. All stress measurements are reported as engineering stress unless otherwise specified, and crosshead travel is used as the strain measurement. RESULTS The tendency toward single glide is best seen in the pictures, Figs. 1, 2, and 3, which depict deformation at fracture as a function of test temperature. While it is possible to find regions of secondary slip by careful microscopy, such regions are very small. The development of a ribbon-shaped configuration from an initially round section bar pulled at 100°C is typical, occurred by single glide, and illustrates the degree to which such glide continues. At temperatures =100°C the bars typically show elongation of 20 to 50 pct by predominently single glide. Despite the large elongation, fracture even at 150°C occurs in a brittle mode, Fig. 2, in the sense that it is an abrupt failure which shows no discernible necking in the second dimension of the bar's cross section (i.e., there is no appreciable action of any slip modes which would decrease the broad dimension of the cross section). Near 200°C the fracture mode changes slightly. Although most of the sample extension is by single glide, after the bar develops the characteristic ribbon shape it begins to neck in the second (i.e., broad) cross-sectional dimension. The bar becomes very thin in the "necked down" region, Fig. 3, and the reduction in area approaches 100 pct. Often there oc-
Jan 1, 1967
-
Part VII – July 1969 – Papers - Self-Diffusion in Iron During the Alpha-Gamma TransformationBy F. Claisse, R. Angers
Self-diffusion in iron has been measured during rapid a-r transformations using a variant of the Kryukou and Zhukhovitskii diffusion method. The study was performed by thermally cycling iron foils (1 to 6 cpm) through the transformation (=910°C). Some foils have been subjected to over 1000 cycles and some have spent more than 15 pct of their total diffusion time in the process of transformation. The experimental results show that the a-r transformation has no measurable effect on self-diffusion in iron. The study is completed by a quantitative analysis of mechanisms which can affect the diffusion rate during the transformation. The analysis confirms the experimental results. SINCE diffusion is an important factor in many solid-state transformations, it is of interest to study how it is affected by the stresses generated during these transformations. Clinard and Sherby1'2 were the first to make a study along these lines. They measured diffusion coefficients in Fe-FeCoV couples subjected to slow thermal cycling (1.5 cph) through the a-r transformation range. They found an enhancement of diffusion by a factor of about two. The purpose of the present paper is to report measurements of the self-diffusion coefficient of iron during much more rapid thermal cyclings (1 to 6 cpm) through the a-r transformation (-910°C). These more rapid cyclings produce higher strain rates during the transformation and should emphasize any possible influence of transformation upon diffusion. EXPERIMENTAL Iron foils, 25 to 35 µ thick, were cold-rolled from 99.92 pct pure iron and annealed in pure helium for 2 hr at 870°C; the resulting grain diameter was about 150 µ. Specimens 0.5 by 8 cm were cut from the foils and I7e55 was vapor deposited on one of their surfaces. A 38 gage alumel-chrome1 thermocouple was spot welded in the middle of one of the specimen long edges, Fig. 1. Two 38 gage chrome1 wires were also spot welded along the same edge on each side of the thermocouple; they were placed 2.5 cm apart and used for electrical resistance measurements. In order to prevent twisting and crumpling, the specimens were pinched between two quartz plates 0.1 by 1 by 7 cm and the assembly was close fitted into a 1 cm ID quartz tube. Four holes were drilled through the tube to let the 38 gage wires out: these were connected to the recording equipment by means of extension wires. 20-gage nickel wires fixed at both ends of the specimens were used to thermally cycle the foils by Joule heating. The above described device was placed in a 2.7 cm ID quartz tube which in turn was placed in a tubular furnace. Either a pure helium atmosphere or circulating hydrogen was used during the experiments. Specimens were subjected to thermal cycles between a minimum temperature To and a maximum temperature Tm at rates ranging from 1 to 6 cpm. This was obtained by maintaining the furnace at a constant temperature near the minimum temperature To and periodically passing an electric current through the specimen. Cooling was achieved by heat losses to the surroundings. The forms and periods of cycles were varied from one specimen to another; however, each specimen was subjected to one type of cycle only. The temperature and electrical resistance variations of the specimens were recorded as a function of time. The temperature curves were used for diffusion calculations while the electrical resistance curves were used to monitor the transformation and to determine its starting point and its approximate duration. Diffusion was measured by the method developed by Kryukov and zhukhovitskii3 and modified by Angers and Claisse.4,5 In this method a metallic foil is coated on one side with a radioactive isotope and the activity is measured periodically on both sides during the diffusion anneal. The following equation then holds: where: I1 Activity on the surface on which the deposit is made. I, Activity on the opposite surface. t Diffusion time. B Constant. D Diffusion coefficient. d Foil thickness including the deposit. G(t) A function of time; it is a second order correction term which is given graphically in Refs. 4 and 5. The diffusion coefficient D is found by plotting ln[(Il - I2)/(I1 + I,)] -G(t) against t; the resulting slope m leads to an accurate calculation of D through Eq. [2]. The effect of the a-r transformation on diffusion is expressed by the ratio DT/DU where:
Jan 1, 1970
-
Research on Phase Relationships - Multiple Condensed Phases in the N-Pentane-Tetralin-Bitumen SystemBy J. S. Billheimer, B. H. Sage, W. N. Lacey
A restricted ternary system made up of n-pentane, tetralin, and a purified bitumen was investigated at 70, 160, and 220 °F. Most of the experimental observations were at atmospheric pressure or at 200 psi." However, some experimental measurements were carried out at a pressure of approximately 8000 psi. It was found that the purified bitumen was precipitated from its solution or dispersion in tetralin by the addition of n-pentane and that the separation occurred at lower weight fractions of n-pentane at the lower temperatures. The bitumen-tetralin solutions show some colloidal characteristics at temperatures below 160 °F when near compositions at which the bitumen separates as a solid phase. At states remote from the phase boundaries and at temperatures above 160 °F these characteristics become less evident. Under these latter circumstances the mixtures tend to follow the behavior of true solutions, particularly in regard to the approach to heterogeneous equilibrium. An increase in pressure appears to increase the solubility of bitumen in tet-ralin-n-pentane solutions. This effect is more pronounced at temperatures above 160 °F than at lower temperatures. INTRODUCTION Asphaltic phases of plastic or solid nature have appeared in numerous instances during the recovery of petroleum from underground reservoirs. Such depositions occurring underground appear to have caused adverse production histories for particular wells or zones. Because of this field experience, it is desirable to understand the factors which influence the formation or separation of the asphaltic phases from petroleum. The problem is unusually complex because the number of true components involved is very large and the details of the phase behavior encountered are difficult to ascertain experimentally. The literature relating to asphalts, asphaltines, and bitumen is voluminous and widespread.' Only those references which are directly pertinent to the work at hand are cited. The separation of an asphaltic phase, hereinafter called bitumen? from naturally occurring hydrocarbon mixtures has been the subject of several investigations.2'3'4'5'6 It has been found that as many as four phases4 may be produced from a crude oil by the solution of a natural gas and propane at a pressure of 1500 psi and a temperature of 70 °F. The separation of bitumen from such naturally occurring mixtures results in at least one liquid phase which is substantially free of high molecular weight components.³ The influence of the solution of lighter hydrocarbons on the separation of bitumen from a Santa Fe Springs crude oil has been investigated. The results indicate that in the case of the methane-crude oil system, the quantity of plastic or solid phase separated reaches a maximum between 0.14 and 0.19 weight fraction methane and then decreases until negligible at higher weight fractions of methane. Similiar behavior was encountered in the case of mixtures of ethane and crude oil. The decrease in the quantity of the solid phase with an increase in the weight fraction of the lighter component appears to result from the formation of an additional liquid phase6 in which the bitumen is relatively soluble. The formation of this additional phase probably occurs at a weight fraction of methane close to that at which the quantity of separated solid reaches a maximum. A comparison of the deposition of bitumen in the field with the separation of asphalts from lubrication oil has been made' and apparently the phenomena are similar. The phase behavior of bitumen also appears to be comparable to that of coal tar."' The chemical and physical characteristics of asphalts and bitumen have been the subject of extended investigations which have been reviewed in some detail by Katz.¹º The conclusion was reached that the dispersion of bitumen in a number of organic liquids was not entirely colloidal since it was impossible to isolate individual dispersed particles even with the electron microscope. However, the evidence appeared to indicate that at states close to phase boundaries the extent of the dispersion of the phases influenced the equilibrium to a greater extent than is encountered in many simpler systems. From earlier study of field samples it became apparent that the phase behavior of bitumen-hydrocarbon systems was unusually complex. It was difficult to characterize in detail the phase behavior involved in naturally occurring hydrocarbon systems, even after a relatively extended investigation. For this reason, the study of a somewhat simpler system which still behaved in a similar manner became desirable. Three major constituents were necessary as-follows: a bituminous solid, a liquid constituent which was a reasonably good solvent, and a constituent in which bitumen was largely insoluble. A sam-
Jan 1, 1949
-
Part IX – September 1968 - Papers - Some Observations on the Ductile Fracture of PoIycrystaIIine Copper Containing InclusionsBy Colin Baker, G. C. Smith
Investigation of the initiation and propagation of ductile failure in OFHC copper was undertaken to determine the role of nonmetallic inclusions. The effect of inclusion initiated voids on the formation of the internal cavity and the final shear separation was studied by metallographic eranzination of strained test pieces. A strain anneal technique was used to enlarge the voids under uniaxial stress conditions to elinzinate triaxial stress effects. Measurements of void size us stress and strain were made to show the point at which void im'tiation begins and becomes an important factor in the deformation process. The work of separation of copper-cuprous oxide was determined to attempt to correlate the breakdown of the matrix inclusion interface with void initiation and propagation. The zloid shape and position relative to the tensile axis suggested an interface breakdown mechanisnz of initiation. Evidence is presented that shows a basic similarity between the central cavity propagation and the 45-deg shear portions of the failure. DUCTILE fracture has been studied by a number of workers1-lo and attention drawn to the importance of hard second phase particles in the initiation of the failure. Holes formed at the matrix-particle interface can elongate by plastic deformation and then subsequently expand sideways to link up and produce a major crack. This is usually observed first in the center of the macroscopically necked region of a test-piece where the hydrostatic stresses are at a maximum. As the crack spreads sideways towards the free surface of the specimen, well defined shear zones develop from the crack tip and the final separation is along a direction at approximately 45 deg to the stress axis. This shear failure may also be associated with voids formed adjacent to second phase particles. In this way a cup and cone type fracture is produced. The stage at which separation takes place between particles and the surrounding matrix has not been clearly identified. In addition, although researchers have dealt with anisotropy of tensile behavior" as a result of material fabrication variables, not much is known about the microstructural features of aniso-tropic behavior. In the present work evidence on these points is presented in relation to the behavior of copper containing second phase particles of cuprous oxide. I. MATERIALS AND PROCEDURES EMPLOYED The material used was +-in. diam or 2-in. sq cold-drawn OFHC copper bar which contained 0.6 pct by volume of cuprous oxide inclusions. These ranged in COLIN BAKER, Junior Member AIME, formerly at -mnF of Metallurgy, University of Cambridge, Cambridge, England, is presently Research Scientist Reynolds Metals Co., Richrnand, Va. G. C. SMITH, Member AIME, is Senior Lecturer, Department of Metallurgy, University of Cambridge. Manuscript submitted June 20, 1967. IMD size from approximately 1 to 6 p in length and 1 to 4 p in width. The shape was generally slightly ovoid. Tensile tests were made on specimens having a gage length of 2.5 cm and diameter of 0.643 cm. Metallographic examination was carried out by sectioning deformed and fractured specimens; in addition fracture surfaces were examined optically and with a scanning electron microscope. Some measurements of the work of separation between copper and cuprous oxide were made, using a sessile drop technique which was a modification of that used by Kingery and umenick." The best metallographic results were obtained by using a vibratory polisher, which minimized smearing of the surface. 11. RESULTS A) Initial Experiments. Specimens from the +-in. diam rod were annealed for 2 hr at 650°C in uacuo, at which temperature complete recrystallization occurred without any change in the form of the inclusion. They were then fractured at temperatures from -190" to 600°C. Cup and cone fractures were obtained at all temperatures from -196" to 400°C. With increase in temperature there was, however, a continuous increase in the extent of the central transverse area and a corresponding decrease in the shear portion of the fracture. Above 400°C, the fractures became intergranular. Sections of specimens tested below 400°C revealed extensive small voids which were always associated with inclusions. However, the voids only reached dimensions greater than the inclusion size in the region of the macroscopic neck, where they were many times longer. Lateral expansion was found only near the fracture surface of the test pieces. As observed by Puttick, the voids were either (a) triangular holes initiated in the direction of the tensile axis and elon-
Jan 1, 1969
-
Research on Phase Relationships - Multiple Condensed Phases in the N-Pentane-Tetralin-Bitumen SystemBy W. N. Lacey, B. H. Sage, J. S. Billheimer
A restricted ternary system made up of n-pentane, tetralin, and a purified bitumen was investigated at 70, 160, and 220 °F. Most of the experimental observations were at atmospheric pressure or at 200 psi." However, some experimental measurements were carried out at a pressure of approximately 8000 psi. It was found that the purified bitumen was precipitated from its solution or dispersion in tetralin by the addition of n-pentane and that the separation occurred at lower weight fractions of n-pentane at the lower temperatures. The bitumen-tetralin solutions show some colloidal characteristics at temperatures below 160 °F when near compositions at which the bitumen separates as a solid phase. At states remote from the phase boundaries and at temperatures above 160 °F these characteristics become less evident. Under these latter circumstances the mixtures tend to follow the behavior of true solutions, particularly in regard to the approach to heterogeneous equilibrium. An increase in pressure appears to increase the solubility of bitumen in tet-ralin-n-pentane solutions. This effect is more pronounced at temperatures above 160 °F than at lower temperatures. INTRODUCTION Asphaltic phases of plastic or solid nature have appeared in numerous instances during the recovery of petroleum from underground reservoirs. Such depositions occurring underground appear to have caused adverse production histories for particular wells or zones. Because of this field experience, it is desirable to understand the factors which influence the formation or separation of the asphaltic phases from petroleum. The problem is unusually complex because the number of true components involved is very large and the details of the phase behavior encountered are difficult to ascertain experimentally. The literature relating to asphalts, asphaltines, and bitumen is voluminous and widespread.' Only those references which are directly pertinent to the work at hand are cited. The separation of an asphaltic phase, hereinafter called bitumen? from naturally occurring hydrocarbon mixtures has been the subject of several investigations.2'3'4'5'6 It has been found that as many as four phases4 may be produced from a crude oil by the solution of a natural gas and propane at a pressure of 1500 psi and a temperature of 70 °F. The separation of bitumen from such naturally occurring mixtures results in at least one liquid phase which is substantially free of high molecular weight components.³ The influence of the solution of lighter hydrocarbons on the separation of bitumen from a Santa Fe Springs crude oil has been investigated. The results indicate that in the case of the methane-crude oil system, the quantity of plastic or solid phase separated reaches a maximum between 0.14 and 0.19 weight fraction methane and then decreases until negligible at higher weight fractions of methane. Similiar behavior was encountered in the case of mixtures of ethane and crude oil. The decrease in the quantity of the solid phase with an increase in the weight fraction of the lighter component appears to result from the formation of an additional liquid phase6 in which the bitumen is relatively soluble. The formation of this additional phase probably occurs at a weight fraction of methane close to that at which the quantity of separated solid reaches a maximum. A comparison of the deposition of bitumen in the field with the separation of asphalts from lubrication oil has been made' and apparently the phenomena are similar. The phase behavior of bitumen also appears to be comparable to that of coal tar."' The chemical and physical characteristics of asphalts and bitumen have been the subject of extended investigations which have been reviewed in some detail by Katz.¹º The conclusion was reached that the dispersion of bitumen in a number of organic liquids was not entirely colloidal since it was impossible to isolate individual dispersed particles even with the electron microscope. However, the evidence appeared to indicate that at states close to phase boundaries the extent of the dispersion of the phases influenced the equilibrium to a greater extent than is encountered in many simpler systems. From earlier study of field samples it became apparent that the phase behavior of bitumen-hydrocarbon systems was unusually complex. It was difficult to characterize in detail the phase behavior involved in naturally occurring hydrocarbon systems, even after a relatively extended investigation. For this reason, the study of a somewhat simpler system which still behaved in a similar manner became desirable. Three major constituents were necessary as-follows: a bituminous solid, a liquid constituent which was a reasonably good solvent, and a constituent in which bitumen was largely insoluble. A sam-
Jan 1, 1949
-
Technical Papers and Notes - Institute of Metals Division - Effect of Hydrogen on the Fatigue Properties of Titanium and Ti-8 Pct Mn AlloyBy W. S. Hyler, L. W. Berger, R. I. Jaffee
Hydrogen additions of 390 ppm to A-55 titanium and 368 ppm to Ti-8 pet Mn have no deleterious Hydrogenadditionseffect on the unnotched and notched rotating-beam fatigue properties of these materials. 'These amounts of hydrogen, however, are sufficient to cause severe notch-impact thesematerials.embrittlement in A-55 titanium and pronounced loss of tensile ductility in Ti-8 pet Mn. The lack of embrittling effect in fatigue in the latter alloy is consistent with the postulated strain-aging mechanism of hydrogen embrittlement in a-ß alloys. There is a significant strain-agingincrease in the unnotched endurance limit of A-55 titanium with the addition of hydrogen. This increase may be explained as the result of internal heating effects which would dissolve the hydride and cause solid-solution strengthening. TITANIUM and its alloys may be seriously embrittled by relatively small amounts of hydrogen. The form which this embrittlement takes has been shown to vary with alloy type. The a alloys, for example, suffer most strongly from loss of notch-bend impact toughness' when sufficient hydrogen is added, and this effect has generally been associated with the presence of hydride phase in the micro-structure. In a-ß alloys, on the other hand, hydrogen is most detrimental to tensile ductility in slow-speed tests,2-1 and the embrittlement may be detected in a most convincing manner by means of rupture tests at room temperature. This particular kind of embrittlement has not been associated with a change in microstructure, but has been classified rather generally as associated with a strain-aging type of mechanism.' In the present paper, the effect of an embrittling amount of hydrogen on the rotating-beam fatigue properties of both an a and an a-ß titanium alloy is covered. For this study, annealed commercially pure (A-55) titanium was chosen as an a alloy, and equilibrated and stabilized Ti-8 pet Mn as representative of a typical a-ß alloy. Nominal hydrogen levels of 20 and 400 ppm were evaluated, the latter amount having been shown previously to be severely detrimental to the impact toughness of commercially pure titanium and to cause pronounced strain-aging embrittlement in the Ti-8 pet Mn alloy. The only report of the effect of hydrogen on the fatigue properties of titanium is given by Anderson et al.,° in which a push-pull type of fatigue test was conducted on as-received commercial-purity titanium sheet. Much scatter was found in the results, but generally the presence of hydrides slightly decreased the fatigue strength of unnotched specimens in the longitudinal direction. The results of notched tests were masked too greatly by scatter to be significant. Experimental Procedure Preparation of Materials—Analyses of the A-55 titanium and the Ti-8 pet Mn alloy used in this investigation are given in Table I, which indicates the 8 pet Mn alloy to be more nearly a 6 pet Mn alloy. This alloy will be referred to as Ti-8 pet Mn, however, since this is the commercially designated composition. Both alloys were received in the form of5/8-in. diam rod and, after suitable surface preparation, 5-in. lengths were vacuum annealed at 820°C. Half of the rods for each material were then hydrogenated at 820°C to a nominal hydrogen content of 400 ppm. The hydrogenated and vacuum-annealed A-55 rods were hot swaged at 700°C from 5/8-in. diam to 1/4-in. diam, and then annealed 1 hr at 800°C and air cooled prior to preparation into test specimens. Fabrication of the Ti-8 pet Mn alloy was by hot swaging to 3/8-in. diam at 760" and then 1/4-in. diam at 704°C. This material was then annealed 1 hr at 704", followed by furnace cooling to 593"C, and finally air cooling to room temperature. Evaluation—In order to examine more completely the effects of hydrogen on the particular materials studied, slow-speed tensile and notch-bend impact properties were determined in addition to fatigue data. Tensile specimens were of the standard ASTM type with a reduced section of 1/8-in. diam and a gage length of 1/2 in. A subsize cylindrical Izod specimen was used for impact tests. These specimens had a 45" notch with a 0.005-in. radius and a 0.150-in. root diam, and the stress concentration factor of this notch in bending was Kr = 3. Both the ten-
Jan 1, 1959
-
PART III - CryoelectronicBy Hollis L. Caswell
The present status of integrated circuits utilizing. superconductive switching. elements is reviewed with special attention given to fabrication techniques, methods for interconnecting completed circuits, and refrigeration requirements. Cryoelectronics has been largely an "inte- grated-circuit" technology since its conception because the switching speed of superconductive devices is attractive only when these devices are fabricated with thin-film techniques. It is true that cryotron circuits can be constructed from wires of appropriate materials (as indeed was done by Dudley Buck 1 in his early investigations) but these circuits will switch in times characteristic of milliseconds whereas similar circuits fabricated by thin-film methods have potential switching times of nanoseconds. Furthermore, cryo-electronic devices such as the cryotron lend themselves readily to fabrication by thin-film techniques since these components may be made from polycrys-talline thin films and are relatively insensitive to the presence of impurities (as measured by semiconductor standards). Therefore, during the past decade considerable effort has been devoted to developing techniques for batch fabricating circuit arrays containing superconductive switching elements. Technology had developed to the point several years ago that fabrication of cryoelectronic arrays containing up to one hundred devices was rather straightforward. However, larger arrays containing between lo4 and 106 components which are required for commercial development of cryoelectronics still pose very severe yield problems. Thus in a sense cryoelectronics found itself in 1962 at the point semiconductor technology finds itself today; namely, individual devices and small groups of integrated devices could be fabricated with acceptable yield and the outlook for building larger integrated-circuit arrays was bright. Unfortunately, problems associated largely with yield have made fabrication of these larger arrays difficult. Unlike semiconductor technology, cryoelectronics had to solve the problems of large-scale integration before it could become economically attractive. This has proven to be a sizable burden to bear. Since several reviews exist on superconductivity,2 superconductive devices,3 and cryoelectronic technology, no attempt will be made in this paper to summarize these areas. Instead a few specific topics will be dealt with in more detail. First, a brief description is given of selected superconducting switching and storage devices with special attention to several metallurgical techniques which improve the performance of these devices. Second, techniques used to fabricate cryoelectronic devices are described with emphasis on problems affecting yield. Third, techniques for interconnecting a number of cryoelectronic planes are described. And last, refrigeration of cryoelectronic components is discussed briefly since the low operating temperature of superconductive devices is an important consideration in this technology. SUPERCONDUCTING STORAGE AND SWITCHING DEVICES The basic superconductive switching device is the thin-film cryotron. The geometry of this device is attractively simple, since it involves only the intersection of two lines that are electrically insulated from each other. The switching element (gate) and control element (control) of a crossed-film cryotron are arranged as illustrated in Fig. 1. The material for the gate is selected to permit the gate to be switched from the superconducting to the normal (resistive) state by the application of a control current. Tin, which has a critical temperature (T,) of 3.7°K, is commonly used for the gate and the cryotron is operated at a temperature just below T, (for example, 3.5°K). The control material (normally lead, with T, = 7.2°K) is chosen so that the control is never driven normal during circuit operation. To improve cryotron operation, a ground plane, also of lead, is placed under all of the circuitry to act as a diamagnetic shield and improve the current-density uniformity across the width of various thin-film elements. Normally, line widths vary from 0.005 to ^ 0.020 in. and film thicknesses from 300 to 10,000A, although new fabrication techniques make narrower lines feasible. In fabricating cryotrons it is important that the edges of the gate elements be geometrically sharp to avoid undesirable switching characteristics associated with a thinner edge region, Fig. 2. One technique which has been used extensively to form patterns consists of placing a physical mask containing the film pattern between the evaporation source and the substrate and depositing through the mask. Film strips formed in this manner possess a penumbra at the film edges due to shadowing of the evapor-ant under the mask. Several techniques have been proposed for minimizing effects due to this penumbra. One of the more promising metallurgical techniques
Jan 1, 1967
-
Iron and Steel Division - Thermal Conductivity Method for Analysis of Hydrogen in Steel (Discussion page 1551)By J. Chipman, N. J. Grant, B. M. Shields
The vacuum tin-fusion method of analysis for hydrogen, developed by Carney, Chipman, and Grant, has been modified to permit the analysis of the evolved gases for hydrogen by means of a thermal conductivity cell. A properly prepared sample can be analyzed in 10 min with a probable error of ±0.12 ppm. A study of various methods for storage of hydrogen samples shows that samples can be safely held in a dry ice-acetone bath as long as six days. Storage in liquid nitrogen is necessary for samples to be held one week or more. HE vacuum tin-fusion method, as developed by I- Carney, Chipman and Grant,' is the only analytical procedure which has shown promise of being fast enough for use in the control of hydrogen during steelmaking. It was felt that further simplification and faster speed of operation could be effected by the use of thermal conductivity measurements for analysis of the gases evolved in the tin-fusion method. The application of conductivity measurements to the tin-fusion method is possible because: 1—the evolved gas is essentially a mixture of hydrogen, nitrogen and carbon monoxide with a hydrogen content usually over 50 pct, 2—the evolved gas is collected at a relatively low pressure, and 3— the thermal conductivities of CO and N2 are practically identical while that of hydrogen is very much greater. The major part of this research program was devoted to the construction and calibration of a vacuum tin-fusion apparatus which analyzes the evolved gases for hydrogen by means of a thermal conductivity cell. The second phase of the problem was associated with the development of a procedure for storage of samples prior to analysis. With the rapid quenching method for hydrogen sampling,' which seems to be the most practical for steel mill use, it is necessary that the samples be stored safely during the interval between sampling and analysis if the hydrogen content of the molten metal is to be maintained in the supersaturated solid samples. The thermal conductivity bridge has been used for a number of years in the analysis of certain gas mixtures. An elementary discussion of the theory and practice of gas analysis by thermal conductivity measurements is given by Minter.3 A more comprehensive discussion of the theory and of the various measuring circuits is presented by Daynes.' A complete knowledge of the theory and properties of the thermal conductivity of gases and gaseous mixtures can be gained by a study of the standard textbooks on the kinetic theory of gases."' The existing data on the thermal conductivity of single gases are reviewed by Hawkins: that for a number of binary gas mixtures by Daynes' and Lindsay." The thermal conductivity method may be applied to the determination of the composition of a binary mixture if: 1—the thermal conductivity of the mixture varies monotonically with composition, and 2— the two gases have measurably different thermal conductivities. The greater the difference between the two gases, the greater the sensitivity of the method.10 he method is applicable to the analysis of multicomponent mixtures when all of the gases in the mixture except one have nearly the same thermal conductivity. Fortunately, the mixture of hydrogen, nitrogen, and carbon monoxide evolved by the tin-fusion analysis' falls in this latter classification. The thermal conductivities of nitrogen and carbon monoxide are practically equal; and the thermal conductivity of hydrogen is approximately seven times that of the other two. Therefore, the thermal conductivity of a gaseous mixture of hydrogen, nitrogen, and carbon monoxide at known temperature and pressure can be related directly to the percentage of hydrogen in the mixture by suitable calibration. Usually the thermal conductivity of a mixture of gases is measured at atmospheric pressure where the thermal conductivity is independent of pressure over a wide pressure range. At very low pressures (below 1 mm Hg), the thermal conductivity of gases varies with the pressure. This phenomenon has been utilized in the Pirani vacuum gage for the measurement of pressures in the range of 10" to 10-0 mm of mercury.= Very little has been published concerning the variation of thermal conductivity with pressure at intermediate pressures between 1 mm Hg and 1 atm. However, preliminary measurements indicated that the thermal conductivities did vary with pressure over the range of pressures (up to 10 mm Hg) at which gases are delivered from the vacuum pump. Therefore, the calibration of the thermal conductivity cell had to be planned to include the effects of both gas composition and pressure. Such a calibration chart is shown in Fig. 4. Most industrial applications of the thermal conductivity method of gas analysis have used a compensated Wheatstone bridge circuit containing two
Jan 1, 1954
-
Minerals Beneficiation - Manganese Upgrading at Three Kids Mine, NevadaBy S. J. McCarroll
Fig. 1—The belt shown at right carries filter cake to mixing station over calciner. Crude ore conveyors appear in right background. THE Three Kids mine, some six miles east of Henderson, Nev., is in a typical southwest desert area, with high dry summer heat and cool to cold winter seasons. The manganese deposit was located during World War I.' During this period 15,000 to 20,000 tons of ore assaying up to 41 pct manganese were shipped. Interest in the deposit was not revived until the middle thirties, when experiments on the ore were initiated. Test work indicated possible recovery of only 70 pct by flotation, but in 1941 additional work was done at the Boulder City pilot plant of the U. S. Bureau of Mines and also by M. A. Hanna Co. As a result, the Manganese Ore Co. was formed and a plant utilizing the SO2 process was constructed. Numerous operation difficulties ensued, and the plant. was closed when the manganese situation in the country eased. In 1949 Hewitt S. West initiated negotiations to acquire the plant. In 1951 Manganese, Inc., was formed and contract entered into with the General Services Administration to supply 27 million units of metallurgical grade manganese in the form of nodules to the national stockpile. A second contract was made to upgrade 285,000 tons of stockpile ore. Test work was undertaken by the Southwestern Engineering Co. and likewise by the Boulder City pilot plant at the U. S. Bureau of Mines. Results obtained indicated the commercial feasibility of the flotation process. Construction of the plant, which is shown in Figs. 1 and 2, was started in June 1951, and operations on a break-in basis began in September 1952. Apart from the usual starting difficulties two major disasters caused serious setbacks, one a kiln failure in February 1953, and the other a fire that destroyed the flotation building in June of the same year. The nodulizing section of the plant resumed operation in November, and the flotation section in January 1954. The ore minerals are chiefly wad,* with minor amounts of psilomelane, and occur in sedimentary beds of volcanic tuff. The ore is overlain with beds of gypsum which outcrop or may be covered with surface gravel. Intermediate beds of red and white tuff occur frequently with lenses of red and green jasper and stringers of gypsum and calcite. Small amounts of iron are present; lead content averages about 1.0 pct and minute amounts of copper and zinc are found. Barite, celestite, and bentonite are present. Since these are made up of minute asicular crystals, moisture content is very high, averaging about 18 pct. Ore reserves have been estimated at 3 million tons averaging 18 pct Mn2 and up to 5 million tons after grade is dropped to 10 pct Mn. A good part of the orebody was stripped of overburden by the previous operating company . Approximately 50 pct of the ore, representing more than 60 pct of the manganese, can be mined by open-cut methods. A system for underground min- . ing has not yet been decided on. Open-cut mining with benches of 20 ft has proved satisfactory. Although the ore is soft and appears dry and dusty it has a certain resilience, probably due to the porosity and moisture which makes drilling and fragmentation difficult. Wagon drills have been abandoned in favor of the Joy 225-A rotary drill which will put down a 43/4 -in. hole at the rate of 2 ft per min. Holes are spaced in a pattern with 8 to 9-ft centers. Forty percent powder has been used, but better breaking to 2-ft size is obtained with low velocity bag powder of 30 pct strength. Loading is done with one 21/2-yd shovel, and cleanup follows with one D-7 bulldozer. The ore is hauled with Euclid trucks about 1000 ft from the pit to a blending pile, where the daily mine production is spread in layers by bulldozing until approximately one month's mill feed is accumulated. A new pile is then started and mill feed is drawn from the first pile by one 13/4-yd shovel and Euclid trucks, with a haul of approximately 500 ft. Mining is performed by an independent contractor with engineering and supervision by the company staff. Early test work indicated that the manganese could be floated with soap, a wetting agent, and fuel oil to give a recovery of better than 75 pct with a grade of 43 pct Mn. The concentrate when nodulized with coke would upgrade to 46 pct Mn or over, and the lead volatilized to 0.6 pct residual.
Jan 1, 1955
-
Institute of Metals Division - Densification and Kinetics of Grain Growth during the Sintering of Chromium CarbideBy W. G. Lidman, H. J. Hamjian
' I HE fabrication of many materials from powders involves a sintering process. A mass of powder will sinter because of the excess free energy over the same mass in the densified state caused by the higher total surface area of the powder. An understanding of the kinetics and mechanism of sintering should assist in improving the properties of such materials. The present investigation conducted at the NACA Lewis laboratory deals with the sintering of chromium carbide. Dry sintering (sintering at a temperature below the melting point) was divided into two stages by Shaler:' the first stage, during which the particles preserve much of their original shape and the voids are interconnected, and the second stage, during which densification occurs and the pores are isolated. The mechanism of forming interfaces between particles, or welding together of particles, has been investigated by Kuczynski2 and may be described by any one or a combination of the following mechanisms: viscous flow, evaporation and condensation, volume diffusion, or surface diffusion. The mechanism by which pores are closed or eliminated (densification) during sintering, is of interest. Grain growth observed during sintering may be attributed to the variation in the surface energies of individual grains, causing some grains to grow at the expense of others. Grain boundary migration occurs presumably by a diffusion process, therefore the rate of grain growth would be expected to increase exponentially with increasing time and temperature. Thus, for practical sintering times of less than 1 hr, a certain minimum temperature may exist at which major structural and property changes will occur. Densification and kinetics of grain growth during sintering under pressure of chromium carbide were investigated to provide additional information which will aid in describing more accurately the sintering process and the mechanisms involved. This material was selected for this study because of the current interest in high strength, oxidation resistant refractory materials, such as carbides, which are sintered to produce solid, dense materials from powders. Sintering under pressure is a process where the heat and pressure are applied to the compact simultaneously, specimens for this work were prepared by sintering under pressure at different temperatures and for various time periods. Experimental Procedure Preparation of Specimens: Chemical analysis of the commercial chromium carbide used in this investigation was as follows: Cr 86.19 pct, C 12.14 pct, and Fe 0.2 pct. X-ray diffraction powder patterns gave characteristic diffraction lines of Cr3C2 crystal structure. Powder particle size was determined microscopically and the average initial particle size was 6 microns with 85 pct between 2 and 10 microns. Specimens sintered under pressure were formed in graphite dies3 heated by induction. Sintering temperatures were measured with an optical pyrometer by sighting into a 3/8-in. hole drilled 1 in. deep at the midsection of the graphite die. A load of approximately 1 ton per sq in. was applied to the powder. The die assembly was heated in 20 min to the highest temperature (2500°F') at which no increase in grain size could be observed, and less than 2.5 min were required to heat from this temperature to the maximum temperature (3000°F). Sintering temperatures and times for the specimens of this investigation are indicated in Table I. Analysis of Specimens: Specimens polished with diamond abrasives were etched to reveal the grain boundaries with a 1:1 mixture of 20 pct potassium hydroxide and 20 pct potassium ferricyanide heated to 160°F. Representative areas of each sample were photographed at 1000 diameters. The largest diameters of all well-defined grains were measured, but only the measurements of 15 of the largest grains were averaged in order to determine an index of grain size on the assumption that they were among the first to begin growth. Densities were determined from differential weighing of the samples in air and water. The reported density values are considered correct within ±0.01 g per milliliter. Results and Discussion Metal compacts have exhibited grain growth when sintered at temperatures about two-thirds of the absolute temperature of their melting point.' Grain growth also occurs during the sintering of chromium carbide and is illustrated by the micrographs shown in Fig. 1. These micrographs were prepared from specimens sintered for 90 min at temperatures ranging from 1371°C (2500°F) to 1648°C (3000°F). Average grain size and density measurements of specimens investigated are presented in Table I. The relationship between grain size and sintering tem-
Jan 1, 1954
-
Part VIII – August 1969 – Papers - Influence of Ingot Structure and Processing on Mechanical Properties and Fracture of a High Strength Wrought Aluminum AlloyBy S. N. Singh, M. C. Flemings
Results are presented of a study on the combined influences of ingot dendrite am spacing and thermo-mechanical treatments on the fracture behavior and mechanical properties of high purity 7075 aluminum alloy. The most important single variable influencing mechanical properties was found to be undissolved alloy second Phase (microsegregation inherited from the original ingot). Ultimate and yield strengths were found to increase linearly with decreasing amount of alloy second phase while ductility increased markedly. At low amounts of second phase, transverse properties were approximately equal to longitudinal properties. In tensile testing, microcracks and holes were invariably found to originate in or around second phase particles. Fracture occurred both by propagation of cracks and coalescence of holes, depending on the distribution and amount of second phase. IN most commercial wrought alloys, second phase particles are present that are inherited from the original cast ingot. These include, for example, non-equilibrium alloy second phases such as CuAl2 and impurity second phases such as FeA13 and Cr2A1, in aluminum alloys. A previous paper1 has dealt with the morphology of these second phases in cast and wrought aluminum 7075 alloy, and with their behavior during various thermomechanical treatments. In this paper we discuss the influence of the particles on mechanical properties and fracture behavior of the alloy. Previous experimental work indicating a direct and major effect of second phase particles on mechanical properties (especially on ductility) includes the work of Edelson and Baldwin on pure copper.' Also relevant are the many studies demonstrating the important effect of nonmetallic inclusions on the fracture of. steel.3'4 Work on aluminum includes that of Antes, Lipson, and Rosenthal5 who showed that a dramatic improvement in ductility of wrought aluminum alloys of the 7000 series is achieved by eliminating second phases. It now seems well established that included second phases play a dominant role in controlling ductility (as measured, for example, by reduction in area in a tensile test) of a variety of materials. There is, therefore, considerable current interest in the mechanisms by which second phase particles affect ductile fracture. Experiments done by various workers have shown that second phase particles or discontinuities in the microstructure are potential sites for nuclea-tion of microcracks and of holes,6-l3 which then grow and cause premature fracture and the loss of ductility. Theoretical attempts have been made to explain the observed phenomena; most are able to explain observations qualitatively, but lack quantitative agreement. Much experimental work needs to be done to aid extension of theoretical models. A recent review article by Rosenfield summarizes work in this general area.14 PROCEDURE Material used in the previously described study on solution kinetics of cast and wrought 7075 alloy1 was also used in this study. Procedures for ingot casting, solution treating, and working were described in detail in that paper. Test bars were obtained for material of 76 initial dendrite arm spacing (11/2 in. from the ingot base) and 95 µ initial dendrite arm spacing (51/2 in. from the ingot base) for the following thermomechanical treatments (solution temperature 860°F; reduction by cold rolling). a) Solution treated 12 hr, reduced 2/1, 4/1, and 16/1. b) Solution treated 12 hr, reduced 16/1, solution treated approximately 5 hr after reduction. c) Same as a) except solution treated 24 hr prior to reduction. d) Same as b) except solution treated 24 hr prior to reduction. e) Same as d) except solution treated 20 hr after reduction. Test bars were taken both longitudinally and transverse to the rolling direction. Transverse properties are in the long transverse direction; since the final product was sheet (0.030 in. thick), properties in the short transverse direction could not be obtained. Test bars were flat specimens, of gage cross section1/-| in. by 0.030 in. and 1/2 in. gage length. After machining the test bars, they were given an additional 1/2 hr solution treatment of 860°F and aged 24 hr at 250°F. Three bars were tested for each location and thermomechanical treatment, after rejection of mechanically flawed bars. The average results of these three bars are reported. Elongation was measured using a $ in. extensometer and reduction in area was determined using a profilometer to measure the area after fracture. INFLUENCE OF THERMOMECHANICAL TREATMENTS AND SECOND PHASE ON MECHANICAL PROPERTIES Results of mechanical testing are presented in Figs. 1 to 4 and in tabular form in the Appendix. A general conclusion from results obtained is that details of the thermomechanical treatments studied were important only insofar as they influenced the amount of residual second phase. Figs. 1 and 4 show the longitudinal properties obtained (regardless of thermomechanical
Jan 1, 1970
-
Extractive Metallurgy Division - Fuming of Zinc from Lead Blast Furnace Slag. A Thermodynamic StudyBy G. H. Turner, R. C. Bell, E. Peters
Zinc oxide activities in a typical lead blast furnace slag have been calculated from plant operating data. These activities were used to assess the probable effect of fuel composition, oxygen enrichment, and air preheating on the efficiency and capacity of the slag-fuming operation. THE physical chemistry of zinc fuming has been examined with three objectives in mind: 1—to predict conditions favorable to increasing furnace capacity, 2—to predict the changes required to fume zinc more economically, and 3—to explain reported differences in the efficiencies of various slag-fuming plants. This study, made at ail in the plants and laboratories of The Consolidated Mining and Smelting Co. of Canada Ltd., developed from a program undertaken some three years ago on behalf of the AIME Extractive Metallurgy Div. subcommittee on slag fuming. Lead metallurgists first became interested in the recovery of zinc from lead blast furnace slags in 1905 and 1906. An excellent review of the early experimental work has been made by Courtney,' who described blast furnace, reverberatory furnace, and converter methods of fuming zinc from slag. Some of the investigators did not appreciate the importance of reducing the zinc oxide content of the slag to metal in order to fume it, since they tried compressed air blast without fuel in their earliest attempts. However, by 1908, the importance of reducing the zinc was established.' In 1925, the Waelz process for the recovery of zinc oxide from oxidized zinc ores was developed in Germany.' This process was not readily adaptable to lead blast furnace slags because of the difficulty in handling fusible charges in a kiln. What appears to have been the first slag-fuming operation as it is known was commenced by the Anaconda Copper Mining Co. at East Helena, Mont. in 1927." The first Trail furnace was completed in 1930, and this was followed by the construction of several other slag-fuming plants. During the period in which slag fuming has been extensively employed, little development of the chemistry of this process as a whole has taken place. Several good papers on the petrography of lead blast furnace slags have been published,""= but these studies could do little more than establish the forms in which lead and zinc occur in the initial charge and final products of the slag-fuming operation. In recent years, zinc-smelting problems have been ap- proached from a thermodynamic point of view. Maier has published an excellent thermodynamic treatment of zinc smelting." The important thermodynamic properties of zinc and its compounds have been determined and checked by other investigators.' However, to the best of the authors' knowledge, no thermodynamic treatment of the fuming of zinc from slag has been published. A thermodynamic study of any process requires that the essential chemistry of that process be known. In slag fuming there appear to be some differences of opinion as to whether the active reducing agent is elemental carbon or carbon monoxide. Furthermore, some observers have noted that high volatile coals appear to be more efficient than low volatile coals, indicating that hydrogen is also an important factor in the reducing efficiency of a fuel. That both hydrogen and carbon monoxide are effective reducing agents for the zinc oxide content of lead blast furnace slags can be demonstrated readily by introducing these gases into a slag bath held in a neutral vessel at 2100°F (1150°C). Elemental carbon also will reduce zinc oxide, but it is improbable that much free carbon is available for reduction of zinc, as the reaction between the finely powdered coal and air should be largely completed before the solid coal particles reach the slag. Some large-scale fuming experiments using gaseous hydrocarbons have been carried out by other investigators, but, as far as is known, these have not been developed yet into operating processes. The thermodynamic treatment in this paper is based on the following reactions: 1—to supply the thermal requirements C+V2O2- CO [1] C + 0,-CO, [2] H2+ ~z0,-H,O 131 and 2—to reduce ZnO ZnO + CO + Zn + CO, c41 ZnO + H, e Zn + H,O. [51 The furnace-gas composition also is controlled by the equilibrium constant of the familiar water-gas reaction H,O + CO + CO, + H2. C6l In order for the thermodynamic calculations to be quantitatively applicable, it is necessary that the chemical reactions to which they are being applied
Jan 1, 1956
-
Iron and Steel Division - Equilibrium Between Blast-Furnace Metal and Slag as Determined by RemeltingBy E. W. Filer, L. S. Darker
ONE of the primary purposes of this investigation was to determine how far blast-furnace metal and slag depart from equilibrium, particularly with respect to sulphur distribution. In studying the equilibrium between blast-furnace metal and slag, there are two approaches that can be used. One method is to use synthetic slags, as was done by Hatch and Chipman;' the other is to equilibrate the metal and slag from the blast furnace by remelting in the laboratory. In the set of experiments here reported, metal and slag tapped simultaneously from the same blast furnace were used for all the runs. The experiments were divided into two groups: 1—a time series at each of three different temperatures to determine the t.ime required for metal and slag to equilibrate in various respects under the experimental conditions of remelting, and 2—an addition series to determine the effect of additions to the slag on the equilibrium between the metal and slag. An atmosphere of carbon monoxide was used to simulate blastfurnace conditions. The furnace used for this investigation was a vertically mounted tubular Globar type with two concentric porcelain tubes inside the heating element. The control couple was located between the two porcelain tubes. The carbon monoxide atmosphere was introduced through a mercury seal at the bottom of the inner tube. On top, a glass head (with ground joint) provided access for samples and a long outlet tube prevented air from sucking back into the furnace. The charge used was iron 6 g, slag 5 g for the time series, or iron 9 g, slag 7 % g for the addition series. This slag-to-metal ratio of 0.83 approximates the average for blast-furnace practice, which commonly ranges from about 0.6 to 1.1. A crucible of AUC graphite containing the above charge was suspended by a molybdenum wire in the head and, after flush, was lowered to the center of the furnace as shown in Fig. 1. The cylindrical crucible was 2 in. long x % in. OD. The furnace was held within &3"C of the desired temperature for all the runs. The temperature was checked after the end of each run by flushing the inner tube with air and placing a platinum-platinum-10 pct rhodium thermocouple in the position previously occupied by the crucible; the temperature of the majority of the runs was much closer than the deviation specified above. The couple was checked against a standard couple which had been calibrated at the gold and palladium points, and against a Bureau of Standards couple. The carbon monoxide atmosphere was prepared by passing COz over granular graphite at about 1200°C. It was purified by bubbling through a 30 pct aqueous solution of potassium hydroxide and passing through ascarite and phosphorus pentoxide. The train and connections were all glass except for a few butt joints where rubber tubing was used for flexibility. The rate of gas flow was 25 to 40 cc per min. As atmospheric pressure prevailed in the furnace, the pressure of carbon monoxide was only slightly higher than the partial pressure thereof in the bosh and hearth zones of a blast furnace—by virtue of the elevated total pressure therein. Simultaneous samples of blast-furnace metal and slag were taken for these remelting experiments. The composition of each is given in the first line of Table I. There is considerable uncertainty as to the significant temperature in a blast furnace at which to compare experimental results. This uncertainty arises not only from lack of temperature measurements in the furnace, but also from lack of knowledge of the zone where the slag-metal reactions occur. (Do they occur principally at the slag-metal interface in the crucible, or as the metal is descending through the slag, or even higher as slag and metal are splashing over the coke?) The known temperatures are those of the metal at cast, which averages about 2600°F, and of the cast or flush slag, which is usually about 100°F hotter. To bridge this uncertainty, remelting temperatures were chosen as 1400°, 1500" (2732°F), and 1600°C. For the time series the duration of remelt was 1, 2, 4, 8, 17, or 66 hr; crucible and contents were quenched in brine. The addition series were quenched by rapidly transferring the crucible and contents from the furnace to a close-fitting copper "mold." Of incidental interest here is the fact that the slag wet the crucible
Jan 1, 1953
-
Part VII – July 1969 – Papers - Dynamic X-Ray Diffraction Study of the Deformation of Aluminum CrystalsBy Robert E. Green, Kenneth Reifsnider
Several experiments have been performed in order to illustrate the application of a recently developed X-ray image intensifier system to metallurgical investigations. In the present work the system has been used to study the instantaneous alterations in Laue transmission X-ray diffraction patterns during tensile deformation of aluminum single crystals. Expem'mental results are presented which demonstrate the capability of the system for crystal orientation, for following orientation changes due to lattice rotation during tensile deformation, and for showing changes in the homogeneity of the lattice planes along the specimen length as a function of strain rate. RECENTLY, a new X-ray system has been developed which incorporates a cascaded image intensifier and permits direct viewing and recording of X-ray diffraction patterns produced on a fluorescent screen.1"3 In the present work the results of several experiments are presented which demonstrate the usefulness of this system for metallurgical applications. EXPERIMENTAL PROCEDURE A schematic diagram of the experimental arrangement is shown in Fig. 1. In this system a Machlett AEG-50-S tungsten target X-ray tube, normally operated at 50 kv and 40 ma, serves as the X-ray source. The X-ray tube is placed in direct contact with a 10-in.-long collimator, which transforms the X-ray beam from one with a circular cross section to one with a rectangular cross section 3 in. high and 1/6in. wide. By blocking off all but a small portion of the rectangular slit, it is possible to work with the more conventional "pinhole" collimated X-ray beam commonly used for obtaining Laue diffraction patterns. In the present work the test specimens were 99.99+ pct aluminum single crystal wires & in. in diam and 3 in. long. For the deformation tests the wire crystals were mounted in a special set of grips in a table model Instron machine so that diffraction patterns could be recorded during specimen deformation. For the orientation tests the wire crystals were mounted in a rotating goniometer so that diffraction patterns could be recorded during specimen rotation. At a distance of 3 cm from the specimen axis, a 6 in. diam DuPont CB-2 fluorescent screen is positioned to transform the X-ray image to a visible one. A Super Farron f/0.87 72 mm coupling lens, corrected for 4 to 1 demagnification, transmits the visible image to the image tube. The image intensifier used is a three-stage magnetically focused RCA type C70021A with an S-20 input photocathode and a P-20 output phosphor. The tube has unity magnification and useful input and output screen diameters of 1.5 in. The image on the output phosphor is of sufficient intensity to be viewed directly, to be recorded cine-matographically, or to be displayed by vidicon pick-up on a television monitor. The recording device most commonly used is a 16 mm Bolex motion picture camera fitted with a Canon f/0.95, 50 mm lens. The overall gain of the system is 16,000 for direct viewing and 2240 for recording on 16 mm movie film. The resolution of the system is limited to 1 line pair per mm which is approximately that of the fluorescent screen. This system has been used for cine recording of transmission Laue X-ray diffraction patterns with exposure times as short as 1/220 sec and for vidicon television pick-up and display at a scan time of 1/30 sec. Quantitative information may be obtained from each frame of the movie film, by either stopping the vertical slit down to a point source in order to obtain a conventional Laue photograph or else by retaining the linear beam and introducing fiducial marks as described in a previous paper.4 In either case, each frame may be enlarged to appropriate size for analysis by either using a photographic enlarger and making prints of the desired frames, or, more conveniently, by using a microfilm reader. EXPERIMENTAL RESULTS The first series of photographs which are presented in Fig. 2 serves to demonstrate the usefulness of the system for crystallographic orientation determination. This series of prints, made from enlargements of a 16 mm movie film, shows the dynamic Laue transmission patterns produced by an aluminum single crystal wire which was rotating about the wire axis when the patterns were recorded. The movie films were taken at 16 frames per sec and the crystal was rotated at a rate of 15 rpm.
Jan 1, 1970
-
Part VII – July 1968 - Papers - Factors Influencing The Dislocation Structures in Fatigued MetalsBy C. Laird, C. E. Feltner
May different kinds of dislocation structures have been observed in strain-cycled metals and alloys. In order to understand their pattern and causes, an experimental program has been carried out to determine the influence on the dislocation structures of the three variables: 1) slip character of the material, 2) test temperature, and 3) strain amplitude. The results show that at high strain amplitudes cell structures me formed when the slip character is wavy, and that these are progressively replaced by uniform distributions of dislocations as the stacking fault energy is decreased. At lower strains, dislocation debris is formed which consists primarily of dipoles in wavy slip mode materials and multipoles in planar slip mode materials. Temperature merely acts to change the scale of the structure, smaller cells, and clumps of dislocation debris being associated with lower temperatures. It is shown that the results for many metals fit this pattern, which Parallels that occurring in unidirectional deformation. DISLOCATION structures produced by cyclic strain (fatigue) have been examined in a number of metals by transmission electron microscopy. These studies have produced a variety of interesting and often seemingly conflicting results. For example, different investigators have reported such structural features as cells.le4 bands of tangled dislocations,4'5 dense patches or clusters of prismatic dislocation loops, planar arrays,4'10 and various combinations or mixtures of these different structures. Most of these observations have been made on materials which were initially annealed and cyclically strained at low amplitudes resulting in long lives. Recently we have reported observations of the dislocation structures produced in copper and Cu-7.5 pct Al cycled at large amplitudes, resulting in lives of less than 104 cycles.4 These results, examined in combination with those in the literature, have suggested that a common or consistent structural pattern exists. Variations in this pattern appear to be determined chiefly by the three variables, namely, the slip character of the material,4,11 test temperature. and the strain amplitude. To verify this interpretation, we have studied [he influence of the above three variables (in different combinations) on the resultant structures in cyclically strained metals. Copper, fatigued at room temperature, was chosen as a reference state to which all other observations can be compared. The effect of slip character has been investigated by employing fcc metals of different stacking fault energy. Thus aluminum which has a more wavy slip character than copper, and Cu-2.5 pct A1 having a more planar slip char- acter, have been examined. The aluminum samples were fatigued at 210°K thus making their homologous temperature equal to that of copper at room temperature. The influence of temperature has been evaluated by examining the structures in copper at room temperature and 78°K. Finally the effect of strain amplitude was studied by looking at the structures at amplitudes giving lives ranging from 104 to 107 cycles. All of the specimens were examined at the 50 pct life level at which stage the structures have reached a stable configuration.12 I) EXPERIMENTAL PROCEDURE Strip specimens, 0.006 in. in thickness, were prepared from base elements of 99.99 pct purity or greater. Specimens were fatigued by cementing the strips to a lucite substrate which was subjected to reverse plane bending. This method of testing has been described e1sewhere.7 After fatiguing, specimens were thinned and examined in a Philips EM 200 which was equipped with a goniometer stage capable of ±30-deg tilt and 330-deg rotation of the specimen. On the basis of separate calibrations,13 allowances were made for the relative rotation and inversions between the bright-field images and the diffraction patterns. II) RESULTS AND DISCUSSION The life behavior of the materials under different test conditions is shown in Fig. 1 in the form of plots of total strain range vs cycles to failure. Comparisons of structures produced in the different materials were made at amplitudes which produced equal numbers of cycles to failure. The influence of strain amplitude on the structures produced in the reference state material (copper tested at room temperature) is shown in Fig. 2. At the 104 life level the structure produced comprises cells similar to those previously observed.3,4 They are approximately 0.5 p in diam and the cell walls are generally more regular or sharper than those produced by unidirectional deformation.14 At the 10' life level the
Jan 1, 1969
-
Part II – February 1968 - Papers - Influence of Work-Hardening Exponent on the Fracture Toughness of High-Strength MaterialsBy E. A. Steigerwald, G. L. Hanna
The influence of work-hardening exponent on the variation of fracture toughness with material thickness was studied for high-strength steel, aluminum, and titanium alloys. The results indicate that, when materials are compared at similar fracture toughness to yield strength ratios, the material with the lower work-hardening exponent undergoes the transition from flat to slant fracture at a larger thickness than material with a high work-hardening exponent. In the thickness range where complete slant fracture is obtained the reverse is true and a lower work-hardening exponent results in a lower fracture toughness. The influence of work-hardening exponent on fracture toughness is, therefore, dependent on the particular fracture mode. In the transition region a low work-hardening exponent is beneficial for fracture toughness while in the 100 pct slant region it is detrimental. THROUGH the use of fracture mechanics analyses, the influence of geometric variables on the crack propagation resistance of structures can be interpreted with reasonable consistency. However, in order to gain a more complete understanding of the fracture process, the influence of material parameters on crack propagation must be defined and coupled to the macroscopic fracture mechanics approach. The work-hardening exponent, which characterizes specific material behavior, may serve as an effective parameter to allow some degree of coupling to be accomplished. In the extension of a crack in a specimen of suitable dimensions the propagation process occurs in a stable manner when the crack extension force is balanced by the resistance to crack extension, which exists in the material at the crack tip. As the applied stress, and therefore the crack extension force, on the specimen increases, the resistance also increases primarily because the effective plastic zone at the crack tip, which is the main energy absorption process, becomes larger. Since the work-hardening rate of a material influences the stress-strain relationship, it will also influence the energy absorption process in the plastic enclave at the crack tip and hence should have an effect on crack propagation. A number of studies have been made correlating the strain-hardening exponent or the strain to tensile instability with the ability of a material to resist fracture. Gensamer1 concluded that a low-strain-hardening exponent would result in a steep strain gradient at the base of a notch. He reasoned that a large work-hardening coefficient would result in high-energy ab- sorption due to the increased area under the stress-strain curve. Larson and Nunes2 experimentally observed in Charpy tests on steels heat-treated to below 200,000 psi yield strength that the energy to failure in the fibrous mode, i.e., above the brittle-to-ductile transition temperature, was logarithmically related to the strain-hardening exponent. In order to avoid the complicating effects present in studying materials which undergo a brittle-to-ductile transition, Ripling evaluated the notch sensitivity of a variety of fcc metals with varying work-hardening exponents.3 The results indicated that the relative notch sensitivity, as determined from tests on specimens with a sharp notch, decreased with increasing values of strain hardening. Although the energy required for ductile or fibrous fracture increases with increasing work hardening, high-strength steels often exhibit improved crack propagation resistance when heat-treated to obtain low values of strain hardening.4,5 An analysis of whether low strain hardening is beneficial or detrimental to crack propagation resistance must depend on the particular fracture criterion involved. At temperatures where the material is relatively ductile and the development of a critical strain is required for fracture, high strain hardening increases the energy required to produce failure. In the transition region and below, however, a critical stress law appears to be valid6 and a low rate of work hardening may produce superior resistance to semibrittle crack propagation. The experimental program is aimed at studying these possibilities and determining the specific influence of strain hardening on the crack propagation resistance of several high-strength materials. MATERIALS AND PROCEDURE The alloys, chosen as representative of various classes of high-strength materials, are summarized in Table I. The heat treatments evaluated along with the smooth tensile properties are presented in Table 11. Pin-loaded sheet tensile specimens were employed to determine the smooth tensile properties. A strain gage extensometer (measuring range 0.200 in.) was used at a strain rate of 0.02 in. per in. per min. The work-hardening exponents were determined from the stress-strain curves generated in the smooth tensile tests and the assumption that the portion of the stress-strain curve beyond the yield point can be described by the power relationship: where a is the true stress, P is the true plastic strain,
Jan 1, 1969