Research on Phase Relationships - Multiple Condensed Phases in the N-Pentane-Tetralin-Bitumen System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. S. Billheimer B. H. Sage W. N. Lacey
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
518 KB
Publication Date:
Jan 1, 1949

Abstract

A restricted ternary system made up of n-pentane, tetralin, and a purified bitumen was investigated at 70, 160, and 220 °F. Most of the experimental observations were at atmospheric pressure or at 200 psi." However, some experimental measurements were carried out at a pressure of approximately 8000 psi. It was found that the purified bitumen was precipitated from its solution or dispersion in tetralin by the addition of n-pentane and that the separation occurred at lower weight fractions of n-pentane at the lower temperatures. The bitumen-tetralin solutions show some colloidal characteristics at temperatures below 160 °F when near compositions at which the bitumen separates as a solid phase. At states remote from the phase boundaries and at temperatures above 160 °F these characteristics become less evident. Under these latter circumstances the mixtures tend to follow the behavior of true solutions, particularly in regard to the approach to heterogeneous equilibrium. An increase in pressure appears to increase the solubility of bitumen in tet-ralin-n-pentane solutions. This effect is more pronounced at temperatures above 160 °F than at lower temperatures. INTRODUCTION Asphaltic phases of plastic or solid nature have appeared in numerous instances during the recovery of petroleum from underground reservoirs. Such depositions occurring underground appear to have caused adverse production histories for particular wells or zones. Because of this field experience, it is desirable to understand the factors which influence the formation or separation of the asphaltic phases from petroleum. The problem is unusually complex because the number of true components involved is very large and the details of the phase behavior encountered are difficult to ascertain experimentally. The literature relating to asphalts, asphaltines, and bitumen is voluminous and widespread.' Only those references which are directly pertinent to the work at hand are cited. The separation of an asphaltic phase, hereinafter called bitumen? from naturally occurring hydrocarbon mixtures has been the subject of several investigations.2'3'4'5'6 It has been found that as many as four phases4 may be produced from a crude oil by the solution of a natural gas and propane at a pressure of 1500 psi and a temperature of 70 °F. The separation of bitumen from such naturally occurring mixtures results in at least one liquid phase which is substantially free of high molecular weight components.³ The influence of the solution of lighter hydrocarbons on the separation of bitumen from a Santa Fe Springs crude oil has been investigated. The results indicate that in the case of the methane-crude oil system, the quantity of plastic or solid phase separated reaches a maximum between 0.14 and 0.19 weight fraction methane and then decreases until negligible at higher weight fractions of methane. Similiar behavior was encountered in the case of mixtures of ethane and crude oil. The decrease in the quantity of the solid phase with an increase in the weight fraction of the lighter component appears to result from the formation of an additional liquid phase6 in which the bitumen is relatively soluble. The formation of this additional phase probably occurs at a weight fraction of methane close to that at which the quantity of separated solid reaches a maximum. A comparison of the deposition of bitumen in the field with the separation of asphalts from lubrication oil has been made' and apparently the phenomena are similar. The phase behavior of bitumen also appears to be comparable to that of coal tar."' The chemical and physical characteristics of asphalts and bitumen have been the subject of extended investigations which have been reviewed in some detail by Katz.¹º The conclusion was reached that the dispersion of bitumen in a number of organic liquids was not entirely colloidal since it was impossible to isolate individual dispersed particles even with the electron microscope. However, the evidence appeared to indicate that at states close to phase boundaries the extent of the dispersion of the phases influenced the equilibrium to a greater extent than is encountered in many simpler systems. From earlier study of field samples it became apparent that the phase behavior of bitumen-hydrocarbon systems was unusually complex. It was difficult to characterize in detail the phase behavior involved in naturally occurring hydrocarbon systems, even after a relatively extended investigation. For this reason, the study of a somewhat simpler system which still behaved in a similar manner became desirable. Three major constituents were necessary as-follows: a bituminous solid, a liquid constituent which was a reasonably good solvent, and a constituent in which bitumen was largely insoluble. A sam-
Citation

APA: J. S. Billheimer B. H. Sage W. N. Lacey  (1949)  Research on Phase Relationships - Multiple Condensed Phases in the N-Pentane-Tetralin-Bitumen System

MLA: J. S. Billheimer B. H. Sage W. N. Lacey Research on Phase Relationships - Multiple Condensed Phases in the N-Pentane-Tetralin-Bitumen System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account