Part II – February 1968 - Papers - Influence of Work-Hardening Exponent on the Fracture Toughness of High-Strength Materials

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 498 KB
- Publication Date:
- Jan 1, 1969
Abstract
The influence of work-hardening exponent on the variation of fracture toughness with material thickness was studied for high-strength steel, aluminum, and titanium alloys. The results indicate that, when materials are compared at similar fracture toughness to yield strength ratios, the material with the lower work-hardening exponent undergoes the transition from flat to slant fracture at a larger thickness than material with a high work-hardening exponent. In the thickness range where complete slant fracture is obtained the reverse is true and a lower work-hardening exponent results in a lower fracture toughness. The influence of work-hardening exponent on fracture toughness is, therefore, dependent on the particular fracture mode. In the transition region a low work-hardening exponent is beneficial for fracture toughness while in the 100 pct slant region it is detrimental. THROUGH the use of fracture mechanics analyses, the influence of geometric variables on the crack propagation resistance of structures can be interpreted with reasonable consistency. However, in order to gain a more complete understanding of the fracture process, the influence of material parameters on crack propagation must be defined and coupled to the macroscopic fracture mechanics approach. The work-hardening exponent, which characterizes specific material behavior, may serve as an effective parameter to allow some degree of coupling to be accomplished. In the extension of a crack in a specimen of suitable dimensions the propagation process occurs in a stable manner when the crack extension force is balanced by the resistance to crack extension, which exists in the material at the crack tip. As the applied stress, and therefore the crack extension force, on the specimen increases, the resistance also increases primarily because the effective plastic zone at the crack tip, which is the main energy absorption process, becomes larger. Since the work-hardening rate of a material influences the stress-strain relationship, it will also influence the energy absorption process in the plastic enclave at the crack tip and hence should have an effect on crack propagation. A number of studies have been made correlating the strain-hardening exponent or the strain to tensile instability with the ability of a material to resist fracture. Gensamer1 concluded that a low-strain-hardening exponent would result in a steep strain gradient at the base of a notch. He reasoned that a large work-hardening coefficient would result in high-energy ab- sorption due to the increased area under the stress-strain curve. Larson and Nunes2 experimentally observed in Charpy tests on steels heat-treated to below 200,000 psi yield strength that the energy to failure in the fibrous mode, i.e., above the brittle-to-ductile transition temperature, was logarithmically related to the strain-hardening exponent. In order to avoid the complicating effects present in studying materials which undergo a brittle-to-ductile transition, Ripling evaluated the notch sensitivity of a variety of fcc metals with varying work-hardening exponents.3 The results indicated that the relative notch sensitivity, as determined from tests on specimens with a sharp notch, decreased with increasing values of strain hardening. Although the energy required for ductile or fibrous fracture increases with increasing work hardening, high-strength steels often exhibit improved crack propagation resistance when heat-treated to obtain low values of strain hardening.4,5 An analysis of whether low strain hardening is beneficial or detrimental to crack propagation resistance must depend on the particular fracture criterion involved. At temperatures where the material is relatively ductile and the development of a critical strain is required for fracture, high strain hardening increases the energy required to produce failure. In the transition region and below, however, a critical stress law appears to be valid6 and a low rate of work hardening may produce superior resistance to semibrittle crack propagation. The experimental program is aimed at studying these possibilities and determining the specific influence of strain hardening on the crack propagation resistance of several high-strength materials. MATERIALS AND PROCEDURE The alloys, chosen as representative of various classes of high-strength materials, are summarized in Table I. The heat treatments evaluated along with the smooth tensile properties are presented in Table 11. Pin-loaded sheet tensile specimens were employed to determine the smooth tensile properties. A strain gage extensometer (measuring range 0.200 in.) was used at a strain rate of 0.02 in. per in. per min. The work-hardening exponents were determined from the stress-strain curves generated in the smooth tensile tests and the assumption that the portion of the stress-strain curve beyond the yield point can be described by the power relationship: where a is the true stress, P is the true plastic strain,
Citation
APA:
(1969) Part II – February 1968 - Papers - Influence of Work-Hardening Exponent on the Fracture Toughness of High-Strength MaterialsMLA: Part II – February 1968 - Papers - Influence of Work-Hardening Exponent on the Fracture Toughness of High-Strength Materials. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.