Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Minerals Beneficiation - Ionic Size in Flotation Collection of Alkali HalidesBy M. C. Fuerstenau, D. W. Fuerstenau
Studies of the collection of alkali and ammonium halides utilizing vacuum flotation techniques and contact angle measurements show that ionic size controls the flotation of techniquesthese halides with amine salts measurementsas collector. Contact angles of air bubbles on sylvite in saturated brines were withaminemeasured salts asascollector.a function of such variables as collector addition, length of collector chain, and pH of the brine. No contact occurs between halite and an air bubble in brines containing dodecylammonium acetate as collector. LONG-CHAINED aliphatic amine salts have been used for the separation of sylvite (KCl) from halite (NaCl) by flotation.1,2 It is puzzling how these two minerals, which are so similar chemically and crystallographically, can be separated by this method. Gaudin" has postulated that the difference in floatability of halite and sylvite with salts of primary amines depends on ionic size: In the case of amine flotation, the cation would attach itself to the chloride. I have a speculation there, which I cannot prove, that the ammonium group, that is the —NH3 group in the amine, floats potassium chloride because the dimensions of this grour, as it has been measured in other compounds is almost identically the dimensions of the potassium ion, quite different from the sodium ion, and so it fits where potassium had been, in place of it and not attached to it. Apparently, because an aminium ion (RNH3+) is much larger than a sodium ion, it cannot fit into the lattice of halite. Taggart also has speculated that ionic size may control the floatability of sylvite.4 The object of this experimental investigation has been to test this hypothesis and to study what controls the adsorption of cationic collectors at the surface of sylvite. Since collection is to be approached from the viewpoint of ionic size, the ionic radii that are of interest in this work are presented in Table I. The values of the ionic radii of the ions listed in Table I, except NH4+, are those given by Pauling." Several different values for the radius of the ammonium ion have been given, but that of Goldschmidt6 seems to be preferred. The radius of the charged head of a dodecylammonium ion is assumed to be the same as that for the ammonium ion. Little experimental work has been reported in the technical literature concerning the separation of sylvite from halite by flotation. Guyer and Perren studied the separation by flotation of 50 pct binary mixtures of NaCl, KC1, NH,Cl, NaNO3, KNO3, K2SO4, and Na,SO, using either oleic acid or a sodium sul-fonate as collector.' It is possible to measure floatability under actual flotation conditions where all three phases, air- water-mineral, are present by vacuum flotation tests and contact angle measurements.9 Both of these techniques were used in the experimental approach in this paper. Experimental Method and Materials The vacuum flotation tests were run with glass-stoppered pyrex graduated cylinders. Twenty-five ml graduates were used to test the floatability of all salts studied except rubidium and cesium salts. For each test distilled water containing the desired collector concentration was saturated with the salt to be floated. Sufficient salt (—48 mesh) was added to leave about 2 ml of solids in the bottom of the graduate. After the graduate had been agitated several minutes to saturate the solution with air, a vacuum was applied. If the salt were floatable in the collector solution, the gas bubbles attached themselves to the particles, and the particles floated to the surface. In determining the floatability of the expensive Rb and Cs halides, the experiments were run in 10 ml graduates with about 11/2 ml of collector solution initially. Contact angles were measured in the usual manner except that the solutions had to be previously saturated with the mineral to avoid dissolution of the crystal. Solutions for studying contact angles were made by adding the desired amount of collector to a saturated brine, giving the collector concentration in molarity. The mixture was agitated until dissolution of the collector was complete, with the exception of those concentrations greater than about millimolar. At these high concentrations complete dissolution of the collector was impossible. The face of the mineral to be tested was a freshly cleaved crystal of halite or sylvite. The mineral was placed in the brine and conditioned with collector for at least 15 min, which was found to be long enough to obtain a maximum value for the contact angle. The temperature remained constant during each experiment. The experiments were run at 24°C ±2°C. For contact angle measurements, a crystal of halite from Carlsbad, N. M., was used. Several samples of sylvite were used in this work: a crystal of sylvite from Stassfurt, Germany; a crystal from Carlsbad, N. M.; and a crystal of chemically pure potassium chloride. Saturated brines were made from reagent grade chemicals and distilled water.
Jan 1, 1957
-
Institute of Metals Division - The Active Slip Systems in the Simple Axial Extension of Single Crystalline Alpha BrassBy R. Maddin, C. H. Mathewson, W. R. Hibbard
Recent publicationsl.2 establishing the presence of cross-slip in strained metallic single crystals oriented wholly within the area of single slip as predicted from the generalizations of Taylor and Elam3 described these markings as they appeared during the initial stages of the deformation process. At that time, the plane having a common glide direction with the primary slipping plane was reported as the cross-slip plane although the specific direction was not confirmed. Consequently, in continuation of the research, it seemed advisable to investigate the micro-graphic appearance of cross-slip together with the Laue back-reflection X ray analysis and stress-strain data during the later stages of the deformation process. Accordingly, a single crystal of brass (72.75 pct Cu, 0.01 pct Fe, 0.01 pct Pb, 27.23 pct Zn) was polished mechanically and repolished electrolytically after the manner described in the earlier paper.' Three pairs of flat surfaces, parallel to the specimen axis, and (1) perpendicular to the plane containing the pole of the primary glide plane and the specimen axis, (2) perpendicular to the plane containing the pole of the cross-slip plane and the specimen axis, and (3) perpendicular to the plane containing the slip direction and the specimen axis, were polished mechanically and repolished electrolytically, resulting in a final minimum gauge diameter of 0.4864 in. in a gauge length of 3.36 in. The specimen was elongated in tension and load-extension readings were taken following the method described in the initial investigation.' Observed reorientations were obtained from a series of Laue back-reflection photograms at the center and ends of the gauge length and at various positions around the circumference of the specimen. These were interpreted after the manner of A. B. Greninger.4 Cross-slip (Fig 1 and 2) was found with the first appearance of the primary slip clusters and usually joined members of these clusters. In addition, a third set of entirely different markings (Fig 3) could be noted. The displacement of this third set by the primary slip lines was measured as 8300 at. diam (3.04 microns). Since the specimen was carefully observed at high magnifications before any deformation and no markings of any type could be noted, it would appear that this third set was formed during the deformation process prior to the initiation of classical primary slip. Additional extensions produced no unusual change in the appearance of either cross-slip or the third set of markings. The number of lines increased with increasing elongation and appeared, generally, in areas where earlier markings were present. The continuity of the clusters of cross-slip lines in Fig 4, 5 and 6 illustrates that they are neither noticeably displaced by nor do they displace the primary lines at this stage. In Fig 7, cross-slip appears in a long narrow localized band approximately 45 degrees from the stress axis. This somewhat resembles a twin band except for the lack of a sharp boundary. After a shear of 0.257, suffcient additional glide occurred on the cross-slip plane to displace the primary slip lines (Fig 8). Generally, where a large number of cross-slip lines could be observed in an area on one flat surface, few cross-slip lines appeared on the diametrically opposite position on the parallel flat (Fig 9). These, of course, were not matched observations on the same glide ellipses. It was extremely difficult to make such comparisons. The third set of markings (Fig 10) was extensively displaced by glide on the primary slip planes. A plot of the width of primary slip clusters versus their displacement of the third set of lines is shown in Fig 11. The slope and the linearity of the plot suggest that each primary glide plane slips to a constant maximum value of shear before further slip is transferred to another plane. A shear value of 0.28 was determined in this case. Heidenreich5 has presented a similar schematic representation of glide for aluminum. After the specimen had attained an elongation of 51.8 pct, corresponding to a shear of 0.973, cross-slip appeared very prominently in certain areas as shown in Fig 12, yet at diametrically opposite positions very little cross-slip could be noted, Fig 13. Classical conjugate slip was found at this advanced stage in the deformation, Fig 14, which corresponds to the axial location shown at 12 in Fig 15. It should be noted that cross-slip occurs within the conjugate slip clusters and on the same plane as the cross-slip associated with the closely spaced primary lines which constitute a background in less distinct focus. The third set of markings noted at all stages in the deformation of the
Jan 1, 1950
-
Part X – October 1968 - Papers - Effects of Hydrostatic Pressure on the Mechanical Behavior of Polycrytalline BerylliumBy H. Conrad, V. Damiano, J. Hanafee, N. Inoue
The effects of hydrostatic pressure up to 400 ksi at 25" to 300°C on the mechanical properties of three forms of commercial beryllium (hot-pressed block, extruded rod and cross-rolled sheet) were investigated. Three effects of pressure were studied: mechanical beharior under pressure, the effect of pressure-cycling, and the effect of tensile prestraining under hydrostatic pressure on the subsequent tensile properties at atmospheric pressure. For all three materials the ductility increased with pressure whereas the flow stress did not appear to be significantly influenced by pressure. An increase in the subsequent atmospheric pressure yield strength generally occurred as a result of pressure-cycling or prestraining under pressure, whereas either no change or a decrease in ductility occurred. The only exception to this was sheet material, which exhibited some improvement in ductility following a pressure-cycle treatment of 304 ksi pressure. The effects of pressure-cycling and prestraining were relatively independent of the temperature at which they were conducted. Stabilized cracks of the (0001) type were found in hot-pressed specimens and {1120) type in extruded and sheet specimens following straining under pressure. Also, pyramidal slip with a vector out of the basal plane, presumably c + a, was identified by electron transmission microscopy for extruded rod and for sheet strained under pressure. Small loops similar to those previously reported were found after straining at pressures of the order of 300 ksi. THE use of beryllium in structures is limited because of its poor ductility under certain conditions. Therefore, one objective of the present research was to determine if the ductility of beryllium at atmospheric pressure could be improved by prior pressure-cycling or prestraining under hydrostatic pressure. Another objective was to study the mechanisms associated with the plastic flow and fracture of the polycrystalline form of this metal with pressure as an additional variable. Since the early work of Bridgman,1 it has been recognized that many materials which are brittle at atmospheric pressure exhibit appreciable ductility when strained under high hydrostatic pressure. This effect has been reported for beryllium by Stack and Bob-rowsky2 and by Carpentier et al.3 and has been attributed to the operation of pyramidal slip systems with slip vectors inclined to the basal plane while cleavage or fracture is suppressed.4 That such slip may occur simply by the application of pressure alone without external straining (pressure-cycling) is suggested by the results on polycrystalline zinc5 and polycrystalline beryllium,6 where nonbasal dislocations with a vector (1123) were reported. A significant improvement in the ductility of the bee metal chromium by pressure-cycling has been reported.7 On the other hand, limited studies on the pressure-cycling of the hcp metals zinc67819 and beryllium6 indicated no improvement in ductility; there only occurred an increase in the yield and ultimate strengths. The study on beryllium was limited to hot-pressed material. Consequently, additional studies on the effects of pressure-cycling on other forms of beryllium seemed desirable, especially since for chromium some authors10 have been unable to detect any improvement in ductility while others find a large improvement.7 That the ductility of polycrystalline beryllium at atmospheric pressure might be improved by prior straining under hydrostatic pressure was suggested by the known beneficial effects of cold work on the ductile-to-brittle transition temperature in the bee metals. It was reasoned that, by straining under hydrostatic pressure, fracture would be suppressed, and during the propagation of slip from one grain to its neighbor dislocations with a vector inclined to the basal plane"-'4 would operate. Upon subsequent straining at atmospheric pressure, these dislocations with a nonbasal vector would continue to operate and thereby reduce the tendency for fracture to occur, by assisting in the propagation of slip across grain boundaries and by interacting with any cracks that may develop. It was recognized that maximum improvement in ductility would probably occur at some optimum amount of prestrain under hydrostatic pressure. If the pre-strain was too small, an insufficient number of dislocations with a nonbasal vector would be activated; if it was too large, internal stresses (work hardening) might increase the flow stress more than the fracture stress, or incipient cracks or other damage could develop. EXPERIMENTAL PROCEDURE 1) Materials and Specimen Preparation. The materials employed in this investigation consisted of hot-pressed block (General Astrometals, CR grade), extruded rod (General Astrometals, GB-2 grade with a reduction ratio of 8:1), and cross-rolled sheet (Brush S200, 0.065 in. thick). The analyses of these materials and mechanical properties at room temperature and atmospheric pressure are given in Table I. The grain size of the hot-pressed block was 15 to 16 µ, that of the extruded rod 10 to 11 µ, and that of the sheet 7 to 10 µ in the rolling plane and 5 to 6 µ in the thickness, all determined by the linear intercept method. Al-
Jan 1, 1969
-
PART IV - Equilibrium Hydrogen-Water Vapor Ratios over Iron-Chromium Alloy, Chromium Oxide, and Iron Chromite from 900° to 1200°CBy R. P. Abendroth
The hydrogen-water vapor ratio at which Fe-Cr alloy, chromium oxide, andiron chromite coexist in equilibrium was determined between 900" and 1200°C. A thermogravimetric method was used to determine equilibrium conditions. The results fit a straight-line relationship in the temperature region studied, and are given by Reduction experiments were also performed to confirm the results of the equilibrium investigation. ThE oxygen pressures at which Fe-Cr alloy, chromium oxide, and iron chromite coexist in equilibrium have been previously determined by Boericke and angert,' Morozov and Novokharski,' and Katsura and uan. Only one determination (at 1300°C) was made by Katsura and Muan, but it agrees with the results of orozov and Novokharski. The results of Boericke and Bangert, however, differ appreciably from the results of these investigators. Previous studies have assumed that the equilibrium metallic phase is pure iron, but Dahl and Van vlack have shown that the iron contains from about 1 wt pct Cr at 1000°C to over 2 wt pct above 1300°C. The chromium oxide also contains a small amount of iron in solid solution. In the present study, hydrogen-water vapor mixtures were equilibrated with the condensed phases, using a therrnogravimetric method to determine equilibrium conditions. The reaction can be written EXPERIMENTAL General Procedure. The starting material was a sintered pellet of Fe2O3-Cr2O3 solid solution with a hole in the center, and was placed on a fused silica hook. This assembly was raised into the preheated hot zone of the furnace in a helium atmosphere, hooked onto a fused silica hangdown suspended from one arm of an Ainsworth Model RV-AU-1 recording balance, and the starting weight determined. A flowing hydrogen-water vapor atmosphere was then exchanged for the helium by evacuation, and the sample reduced until the weight loss indicated the sample composition to be in the alloy-Cr2O3-chromite field. The tem- perature was adjusted incrementally until constant sample weight was achieved for several hours, to within 0.02 mg. A hydrogen-water vapor atmosphere of different composition was then admitted, and the same procedure carried out. At the end of a series of determinations, the sample was examined by X-ray diffraction to verify the presence of the desired phases. Microscopic examination of the silica hook showed no interaction with the sample, nor did it lose any weight. Several criteria were used to insure equilibrium besides constancy of weight. For a given hydrogen-water vapor composition, equilibrium was approached from both oxidizing and reducing sides by varying the furnace temperature slightly. The resulting slow weight loss or gain was observed for several hours. Constant weight could be re-established by returning to the original furnace temperature. The last criterion used was varying the relative amounts of the phases by further reduction or oxidation, and observing any changes in temperature required for constant weight for a given hydrogen-water vapor atmosphere. None were observed. This procedure was essentially the same as approaching the equilibrium from oxidizing and reducing sides, but larger weight excursions were carried out. Sample Preparation. Reagent-grade Fe2O3 and Cr83 powders were mixed in the desired proportions and heated in air at 1250°C for 2 hr. The mixture was re-ground and heated in air overnight at 1250°C. X-ray diffraction showed complete solid-solution formation as a result of this procedure. The solid solution was then pressed into l/2-in.-diam pellets using Carbowax 4000 as a binder. The hole was drilled in the center, and the pellets were sintered 24 hr at 1250°C in air on a bed of Fe2O3-Cr2O3 of the same composition, contained in an alundum boat. After cooling, the pellet surfaces were abraded with 310 paper to remove any surface compositional differences, such as loss of Cr2O3. Chemical analysis of the sintered pellets was 67.16 wt pct CrP3 and 33.02 wt pct Fe203. Atmosphere Generation and Control. The hydrogen-water vapor atmospheres were generated by passing Matheson ultrahigh-purity hydrogen, with no further purification, through two water bubblers contained in a constant-temperature water bath. Since the water-vapor dew points required in this study were below room temperature, the bath was insulated, and was cooled by thermoelectric-immersion devices. The bath temperature was controlled to 0.0l0C. Since rather high flow rates of about 900 ml per min were used through the furnace tube, an independent check of the dew point was made to insure saturation of the hydrogen by the water vapor. Although the dew point could only be determined to within 1/2"C, the determined dew points agreed with the water-bath temper-
Jan 1, 1967
-
Part III – March 1969 - Papers- Vapor-Phase Growth of Epitaxial Ga As1-x Sbx Alloys Using Arsine and StibineBy J. J. Tietien, R. O. Clough
A technique previously used to prepare alloys of InAs1-xPx and GaAsl-x Px, miry: the gaseous hydrides arsine and phosphine, has been extended to grow single -crystalline GaAs 1-x Sb x by replacing the phos-phine with stibine. Procedures were developed for handling and storing stibine which now make this chemical useful for vapor phase growth. This represents the first time that this series of alloys has been grown from the vapor phase. Layers of P -type GaSb and GaSb-rich alloys have been grown with the carrier concentrations comparable to the lowest ever reported. In addition, a p-type alloy containing 4 pct GaSb exhibited a mobility of 400 sq cm per v-sec which is equivalent to the highest reported for GaAs. RECENTLY, interest has been shown in the preparation and properties of GaAs1-xSbx alloys, since it was predicted1 that for compositions in the range of 0.1 < x < 0.5, they might provide improved Gunn devices. However, preparation of these alloys presents fundamental difficulties. In the case of liquid phase growth, the large concentration difference between the liquidus and solidus in the phase diagram, at any given temperature, introduces constitutional supercooling problems. It is likely that, for this reason, virtually no description of the preparation of GaAs1-xSbx by this technique has been reported. In the case of vapor phase growth, problems are presented by the low vapor pressure of antimony, and the low melting point of GaSb and many of these alloys. In previous attempts1 at the vapor phase growth of these materials, using antimony pentachloride as the source of antimony vapor, alloy compositions were limited to those containing less than about 2 pct GaSb. This was in part due to the difficulty of avoiding condensation of antimony on introducing it to the growth zone. A growth technique has recently been described2 for the preparation of III-V compounds in which the hydrides of arsenic and phosphorous (AsH3 and pH3) are used as the source of the group V element. With this method, GaAs1-xPx and InAs1-xPx have been prepared2'3 across both alloy series with very good electrical properties. Since the use of stibine (SbH3) affords the potential for effective introduction of antimony to the growth apparatus, in analogy with the other group V hydrides, this growth method has been explored for the preparation of GaAs1-xSbx alloys. In addition to GaSb, these alloys have now been prepared with values of x as high as 0.8. In the case of GaSb, undoped p-type layers were grown with carrier concentrations equivalent to the lowest reported in the literature. Thus it has been demonstrated that, with this growth technique, all of the alloys in this series can be prepared. EXPERIMENTAL PROCEDURE A) Growth Technique. The growth apparatus, shown schematically in Fig. 1, and procedure are virtually identical to that described2 for the growth of GaAs1-xPx alloys, with the exception that phosphine is replaced by stibine.* HCl is introduced over the gallium boat to *Purchased from Matheson Co., E. Rutherford,N+J. transport the gallium predominantly via its subchlo-ride to the reaction zone, where it reacts with arsenic and antimony on the substrate surface to form an alloy layer. The fundamental limiting factors to the growth of GaAs1-xSbx alloys from the vapor phase, especially GaSb-rich alloys, are the low melting point of GaSb (712°C) and the low vapor pressure of antimony at this temperature (<l mm). Thus, relatively low antimony pressures must be employed, which, however, imply low growth rates. To provide low antimony pressures, very dilute concentrations of arsine and stibine in a hydrogen carrier gas were used. Typical flow rates (referred to stp) were about 4 cm3 per min of HC1 (0.06 mole pct)+ from 0.1 to 1 cm3 per min of ASH, (0.002 to 0.02 mole pct), and from 1 to 10 cn13 per min of SbH3 (0.02 to 0.2 mole pct), with a total hydrogen carrier gas flow rate of about 6000 cm3 per min. Although no precise data on decomposition. kinetics exist, it is known4 that stibine decomposes extremely rapidly at elevated temperatures. However, the high linear velocities attendent with the high total flow rate (about 2000 cm per sec) delays cracking of the stibine until it reaches the reaction zone and prevents condensation of antimony in the system. To improve the growth rates of the GaSb-rich alloys, growth temperatures just below the alloy solidus are main-
Jan 1, 1970
-
Part VI – June 1969 - Papers - Generalization and Equivalence of the Minimum Work (Taylor) and Maximum Work (Bishop-Hill) Principles for Crystal PlasticityBy W. L. Mamme, G. Y. Chin
The problem of selection of the active slip systems for a crystal undergoing an arbitrary strain was analyzed by Taylor and by Bishop and Hill in terms of a minimum (internal) and a maximum (external) work criterion, respectively. These two criteria have now been generalized to include crystallographic slip on several sets of slip systems, twinning mixed with slip, and slip by (noncrystallographic) pencil glide. The generalized treatment also takes into account the possibility of a Bauschinger effect and of unequal hardening among the shear systems, which were considered in the Bishop and Hill work. Optimization techniques of linear and nonlinear programming are shown to be applicable for the numerical calculation of the minimum or maximum work. In the case of crystallographic shear, the constraint functions are linear and hence the optimal work is obtained as the saddle value of the lagrangian function Wi(y) e minimum and W,(u) + (a) for the maximum, where Wi is the (internal) work, We is the (external) work, Y is the crystallographic shear strain, u is the applied stress, and and are constraints. It is shown that the Lagrangians are functionally the same and the saddle value of one problem is identical to the saddle value of the other, proving that the two analyses are completely equivalent. In the case of pencil glide, although the constraint functions are nonlinear and neither convex nor concave, the equivalence of the optimal values to the saddle value of the Lagrangian (which is again identical for both problems) is still valid. WHEN a crystal deforms plastically by crystallographic shear, five independent shears are generally required to accommodate five independent strain components specifying the deformation. Assuming slip as the only shear mechanism, Taylor1 in 1938 analyzed the deformation in terms of a minimum work criterion. He hypothesized that of all combinations of five slip systems which are capable of accommodating the deformation, the active combination is that one for which the internal work C is a minimum, where 1 TI is the critical resolved shear stress for slip on the 1-th slip system and is the corresponding simple shear. By further assuming equal 72 for all equivalent slip systems and no Bauschinger effect, Taylor re- duced the minimum work problem to one of minimum and applied the analysis to the case of axisym- Metric flow by {111}(110) slip in fcc crystals. However, he did not consider the question of whether the resolved shear stress has in fact attained the critical value for slip on the newly found active systems without exceeding it on the inactive systems. In 1951 Bishop and ill' put forth the maximum work analysis in which slip is again assumed as the only deformation mechanism. In this analysis, the work o1 done in a given strain ij by a stress ujj not violating the yield condition is maximized. In addition, the analysis takes into account the possibility that the critical resolved shear stress for slip may not be equal among the slip systems and that the slip behavior may exhibit the Bauschinger effect. As with Taylor, a single set of slip systems—{111)(110) — was analyzed numerically. It thus appears that the Bishop and Hill treatment is on a more sound physical basis than the Taylor treatment. However, Bishop and Hill showed that where there is equal hardening among all slip systems and when there is no Bauschinger effect, Eq. [11 ] of Ref. 2, as assumed by Taylor, the results of their maximum work analysis are the same as those of Taylor's minimum work analysis. Hence at least under those conditions there is an implication that the Taylor analysis does lead to a critical resolved shear stress for slip on the predicted active systems without violating the yield condition on the inactive systems. Recently, the Taylor analysis was applied for numerical solutions of the axisymmetric flow problem, for slip on {110}(111), {112}(111). {123)(111) systems as well as a mixture of all three sets of svstems."1 Computational techniques based on the optimization theories of linear and nonlinear programming4 were employed in these solutions. The same techniques were employed in the solutions of an axisymmetric flow problem of deformation by slip on (111) (110) systems and twinning on (111)(112) systems5 which had been considered theoretically from a modified Taylor approach. The utilization of these techniques has led to the realization that the solutions of Taylor's minimum work problem imply the solutions of Bishop and Hill's maximum work problem. The two problems turn out to be dual problems in the well known sense of mathematical programming. It is thus the purpose of this paper to first generalize the minimum and maximum work analyses to include crystallographic slip on several sets of slip systems, twinning mixed with slip, and slip by (non-crystallographic) pencil glide, as well as the possibility of a Bauschinger effect and of unequal hardening
Jan 1, 1970
-
Institute of Metals Division - Effect of Ferrite Grain Structure Upon Impact Properties of 0.80 Pct Carbon SpheroiditeBy E. S. Bumps, M. Baeyert, W. F. Craig
SOME time ago during a study of impact properties of tempered martensite,1 it was postulated that the consistently good ductility of tempered martensite might be caused by its relatively small and peculiarly shaped ferrite grains. The fer-rite grains of tempered martensite have approximately the same size and shape as the martensite "needles." Thus they form an interlocking mass of needle-shaped grains quite different from equiaxed or lamellar ferrite grain structures. When the common mechanical test methods are applied to steel, variations are often observed in the ductility of specimens that have closely similar hardness and tensile strength values. The ductility so measured appears to be structure dependent. When steel from the same heat has been heat treated to produce different structures with the same hardness, the elongation and reduction of area values from the tensile test and the transition temperature determined by the notched-bar impact test vary according to whether pearlite, tempered martensite, or other structural constituents were produced by the heat treatment. It has been widely recognized that tempered martensite gives a consistently good performance, when tempered to the same hardness as many other structures with which it has been compared. In recent years the isothermal transformation of austenite to specific structural products and the quantitative evaluation of the character of these products with respect to their nature and response to deformation has received considerable attention. The objective of the present study was to pursue somewhat further the dependence of ductility upon structure; specifically, it was desired to ascertain whether ferrite grain structure, including both shape and size of the grains, can account for the consistently good performance of tempered martensite in the notched-bar impact test. It was thought that a simple experiment would indicate whether the ferrite grain structure plays any part in the good ductility exhibited by tempered martensite in contrast to other steel structures with different types of ferrite grains. By determining the impact transition temperature, it was proposed to compare spheroidites having similar carbide particle size and spacing but obtained in such a manner that their ferrite grain structures would be very different. Spheroidite obtained by tempering martensite, with its small, needle-shaped grains, was to be compared with spheroidite from pearlite. If the latter is produced by sub-critical annealing, the ferrite grains correspond to the pearlite colonies. Thus, if the pearlite was not too coarse, the ferrite grains of spheroidite from pearlite are equiaxed in contrast to the needle-shaped grains of spheroidite from martensite. It was thought that the ferrite grain structure of spheroidite from martensite might depend to some extent upon the grain size of the prior austenite. The austenite grain boundaries limit the maximum attainable size of the martensite needles and thus of the ferrite grains in the derived spheroidite. In order to evaluate any possible influence of prior austehite grain size, spheroidites were to be prepared from martensites that had been formed from fine-grain austenite and also from coarsened austenite. As the carbide particle size and distribution were to be essentially alike in the various spheroidites, the difference would be in the ferrite grain size and shape. Thus any marked difference in transition temperature could be attributable to the character of the ferrite grain structure. There are certain considerations in assuming that these spheroidites would be equivalent in all respects except ferrite grain structure, and an attempt was made to take them into account. One of the considerations was the choice of the carbon content of the steel. An approximately eutectoid steel was selected for two reasons. First, the pearlitic structure would contain no proeutectoid ferrite which might complicate the picture by producing a non-uniform ferrite grain structure in the resulting spheroidite. Then, too, the high-carbon content would inhibit ferrite grain growth during the sub-critical treatment. Another factor to be taken into account was the choice of an alloying element to assure a martensitic structure throughout on quenching the impact specimens. Nickel was chosen, because it is a common alloying element and resides in the ferrite both upon its formation from austenite and throughout tempering. The formation of alloy carbides, or even a large solubility of the alloying element in cementite, would have complicated the interpretation by changing the composition of the ferrite .during spheroid-ization. The possibility of temper brittleness was minimized insofar as possible by using a tempering temperature as high as consistent with the 1 pct of nickel in the steel, namely, 1150°F. While it certainly is not claimed that no difference other than ferrite grain structure could exist between the spheroidites, nevertheless, reasonable precaution has been exercised within the limits of steel metallurgy. It is believed that any large difference in transition temperatures would reflect the difference in ferrite grain structure and that relatively good ductility in the spheroidites from mar-
Jan 1, 1951
-
Reservoir Engineering – Laboratory Research - Wet and Partially Quenched CombustionBy J. Weijdema, D. N. Dietz
In the conventional underground combustion process (dry combustion) much heat is left behind in the swept formation and goes to rva.rte. Econonmy can be improved by heat recuperation through water injection. This is most advantageous if done at the earliest opportunity before much heat is dissiputed to cap and base rock. Water injected simultaneously with the air will flash to superheated steam, which passes through the combustion front together with the nitrogen from the air. A condensation front traveling up to three times as fast as the combustion front drives out the oil. In this type of wet combustion, the water evaporates before it reaches the combustion zone. The evaporation front travels more slowly than the combustion zone. If so much water is injected that the evaporation front overrun the combustion front, combustion in that spot will be quenched and some unburned fuel will be left behind. Air reacts with the oil farther down-stream where steam temperatures occur; at steam temperature, the air reacts rapidly with the oil. Velocity of the combustion front is increased thereby and is governed essentially by the water-injection rate. In the extreme case of high water-injection rate, a short heat wave of constant length is driven through the formation by water injection. Once this wave has been established, no more heat need be generated than that required to make up the heat losses from the short heat wave; a relatively low rate of air injection will suffice. The feasibility of partially quenched combustion has been confirmed in tube experiments. A heat wave at steam temperature is observed. Chemical analyses of flue gas indicate preferential burning of hydrogen while a carbonaceous residue is left in the formation. Introduction A disadvantage of so-called dry in situ combustion is that air-compression costs are rather high. An air consumption of about 400 std cu m/cu m (400 scf/cu ft) of formation swept is an accepted figure. This high consumption is mostly wasted since much heat is left behind in the depleted oil sand. Methods were investigated for recuperating as much as possible of the heat left behind. This paper deals only with basic principles and is confined mainly to one-dimen- sional flow without lateral heat losses; experiments were conducted in relatively narrow, well insulated tubes. If some water is injected with the air, it will turn to superheated steam in an evaporation front, which should travel behind the combustion front. The steam having passed the combustion front causes a steam drive by a condensation front that can travel faster than the combustion front. The latter needs to travel only part of the distance covered by the oil-displacing condensation front, and thus consumes less air. The water-air ratio would seem limited to that at which cold water overruns the combustion. This limitation was deliberately exceeded considerably in theory and experiments. It was found that combustion is then indeed quenched, but only locally. Farther downstream, the oxygen finds residual oil at steam temperature, which is suficiently high to ensure rapid oxidation. Thus, the combustion front uses only part of the available fuel because it is chased through the formation faster than its normal velocity. No heat is left behind. This new process is called "partially quenched combustion". At the upper limit of the water-air ratio, a small heat slug is moved through the formation by the flow of water and steam. Only a small flow of air is needed since it has only to generate sufficient heat to make up for the lateral heat losses of the short heat slug. Theory Although many factors complicate underground combustion, the processes will be presented in their simplest form. For this reason, one-dimensional flow without lateral heat losses is assumed. Heat conduction in the direction of flow also is disregarded. Under these conditions, dry combustion causes very high temperatures. The heat-carrying capacity of the gas stream is small. Heat generated by oxidation of a residual oil saturation is retained in the sand. The available fuel determines the air requirement and the temperature obtained. Accepting the often-mentioned air consumption of 400 std cu m/cu m (400 scf/cu ft) formation, we calculate a temperature of the swept sand of 1,200C (2,192F) (Fig, I). If water is injected at a modest rate with the air, it will flash to superheated steam upon contact with the heated sand. One cu m (35.31 cu ft) of hot formation will evaporate about 0.5 cu m (17.66 cu ft) of water, and thereafter will accommodate (at an estimated 0.80 saturation and an assumed 0.40 porosity) another 0.3 cu m (10.59 cu ft) of water in cold condition. As long as less than 0.5 + 0.3 = 0.8 cu m (28.25 cu ft) of water is injected for every 400 std cu m (14,125 scf) of air (water-
Jan 1, 1969
-
Minerals Beneficiation - Pebble Milling Practice at the South African Gold Mines of Union Corp. LtdBy O. A. E. Jackson
Pebble milling has been practiced in the reduction works of South Africa gold mines for well over 50 years. Originally flint pebbles were imported from Denmark to grind stamp-mill amalgamation-process tailing, which contained a good deal of extractable gold, but local operators soon found that large pieces of ore could be used for the same purpose. The ore is a hard, tough conglomerate in which quartz pebbles are cemented together by a matrix of redeposited silica interspersed with pyrite crystals. The gold, rarely visible, occurs as fine particles mostly segregated at the interface of the pebble and matrix, although a small fraction occurs within the pyrite crystals. There is seldom any gold in the pebbles themselves. Following the usual South African practice in pebble milling, Union Corp. grinds the ore wet in two or three milling stages incorporating classification. The sized broken ore used as grinding media is separated from the main ore stream in the crushing section that prepares the ore for milling. Where the ore channel, or reef, is narrow there is a shortage of large pebbles. In this case primary grinding may be done in ball mills or, more recently, in rod mills, which cost less per ton to operate. The trend, however, is to prepare finer feed for the milling section. This makes it possible to use smaller primary pebbles and eliminates the need for steel. REDUCTION WORKS OF UNION CORP. LTD. Union Corp. Ltd. exercises financial and technical control over a group of seven gold mines in the Transvaal and Orange Free State. In the Transvaal, with one exception. the mines lie 20 to 40 miles east of Johannesburg, in flat or gently rolling countryside. Winkelhaak, the first of several new mines that will be developed by Union Corp., is located in similar terrain in an entirely new gold mining district about 80 miles east of Johannesburg. Table I gives details of milling units for six of the Union Corp. mines, together with the tonnage milled in 1957. Winkelhaak Mines Ltd. is not included, as it did not begin milling until 1958. This reduction plant has no crushing section; ore is ground directly from the mine (autogenously) in 12x16-ft mills. Because these operations are still in development, they are not described in this article. It will be noted that certain reduction works have mills of more than one size in the same milling stage. This came about when plant extensions in- corporated larger units. In the case of Geduld Propty. Mines Ltd., which began milling operations 50 years ago, the primary stage is stamp milling. The reduction works follow a uniform pattern and are usually joined to the main ore shaft. Ore from other shafts is brought by standard-gage railway and dumped into a common transfer bin. The trend is to increase surface storage capacity to enable the crushing and milling sections to operate at a steady rate, independent of fluctuating ore deliveries from mine. Milling and cyanide extraction divisions of new mines are always designed to allow for extensions as mine production increases. The conveying, washing, and screening system of the crushing section is usually laid out in final form, with additional space for more crushing equipment. The crushing sections operate on one shift during early years of mine production; a second shift is introduced when the mining rate warrants it. Ample surge capacity is provided. Crushing and milling is done only on weekdays, as the law does not allow these operations to take place on Sunday in any plants constructed since 1911. The cyanide extraction sections, however, operate continuously seven days a week, drawing on mill pulp gradually built up in the thickeners during the week. Construction and equipment of milling plants follow standard practice. Dilution water is drawn from a large, high-level tank to obtain constant pressure, but gland service water for the pulp pumps is reticulated from high-pressure, two-stage pumps. The mills are equipped with the most up-to-date machinery and are designed to save labor. They compare favorably with milling plants in countries where native labor does not exist, and automatic controls are being installed wherever feasible. Hydrocyclone classifiers have replaced mechanical classifiers in modern milling plants, chiefly because of the saving in capital outlay, maintenance, and building space. The hydroclones are fed from steady head boxes rather than directly from pumps, and dilution water is introduced into these boxes. Tests have shown that in steadiness of operation and separating efficiency cyclones are comparable to mechanical classifiers. but protective stationarv screens are needed to keep the spigots clear. Rubber-lined pumps are used for pulp of about 3 mesh or finer and metal-lined pumps for coarser material. None of the Union Corp. milling plants practices gravity concentration of coarse gold by amalgamation or the use of corduroy blankets. Studies have proved that no economic case can be made for these methods, which complicate the milling process and demand extra precautions against theft.
Jan 1, 1960
-
Institute of Metals Division - High-Temperature Creep of TantalumBy W. V. Green
Creep of tantalum was measured at temperatures from 0.6 to 0.89 of the absolute melting temperature. The creep curves include first, second, and third stages. Steady-state creep rate depends on the fourth power of stress. The activation energy for creep throughout this temperature range is approximately 114 kcal per mole, measured by the aT technique. Subgrain formation occurs as a result of creep strain, and pile-up dislocation arrays are observed in etch-pit patterns. BECAUSE of its high melting point-which is exceeded only by those of rhenium and tungsten—and its high room-temperature ductility compared to most of the other high-melting-point metals, tantalum will undoubtedly be utilized in an increasing number of high-temperature applications. Alloying studies directed toward increased high-temperature strength must use data on tantalum itself as a base line in order to evaluate the effectiveness of the alloying additions. However, to date, no systematic study of creep of tantalum at temperatures above one-half of its melting point has been reported in the literature. Conway, Salyards, McCullough, and Flagella1 have measured linear creep rate of tantalum sheet as a function of stress, but at only one temperature, 2600°C. This paper describes a relatively thorough study of the high-temperature creep of tantalum. METHOD Material Tested. The commercially supplied, l/2-innch-diameter tantalum rod used for this work was electron-beam-melted, cold-forged, rolled, swaged, cleaned chemically, and vacuum-annealed for 1 hr at 1000°C, all by its manufacturer. The vendor's analysis included 60 to 170 ppm C, 3.4 to 4.2 ppm H, 60 to 80 ppm 0, 15 ppm N, and a hardness ranging from 66 to 81 Bhn and averaging 76 Bhn. Creep eimens Used. Two creep-tested specimens are shown in Fig. 1. The 1/4 in.-diameter gage section was 3/4 to 1 in. long, and terminated either at shoulders 5 mils high or at 20-mil-diameter tantalum wires spot-welded to the circumference of the gage section. Both kinds of shoulders served equally well as fiducial marks for optical strain measurements. The spot welding did not alter the creep behavior in any detectable way; the 5-mil- high sharp shoulders did not result in any detectable localized effect on the strain. Before testing, each tensile bar was first mechanically polished -id then electrochemically polished according to the method referred to by Forgeng2 as the "Thompson Ramo Woolridge" method, which was suitable for tantalum after small adjustments of technique were made. Two tensile bars tested at low stresses had 1/8-in.-diameter gage sections and utilized only the weight of the bottom grip for the applied load. Although these diameters were smaller than were desired for other reasons, applied loads were known with high precision in the tests in which they were used. Testing Procedure. Two different constant-load creep-testing machines were employed, one of which has been described by Smith, Olson, and Brown.3 In both, the tensile bar is held vertically on the axis of a cylindrical tungsten tube or screen heater by threaded tungsten grips. The tensile bars and associated grips are heated by radiation from the incandescent heaters, which are heated by their own electrical resistance. Both testing machines use pins to hold the bottom grips in place. The load is applied to a tensile bar through hanging weights, a constant force-multiplication lever, a pull rod sealed to the chamber lid, and a top grip threaded to the pull rod at one end and to the tensile bar at the other. In one machine, the vacuum seal is a bellows with a low spring constant; in the other, the seal involves a rotating "0 ring". With the latter, rotation is converted to translation with a crank shaft, so that elongation of the tensile bar is accommodated with no change of tensile load. The incandescent tensile bar is viewed by an external optical system through slots in the radiation shields and heater, and an enlarged image is projected on a ground-glass screen. Gage-length measurements are made on this image with cathetometers on traveling microscopes. With regard to creep-test results, the two machines were identical. Thorium oxide coatings were applied to the threaded ends of the tensile bars, to prevent diffusion welding of the tensile bars to the grips during testing. Specimen temperatures were measured with an L. & N. optical pyrometer which had been calibrated against a standard carbon arc, and were corrected fir window absorption by calculation from the measured spectral transmittance of the quartz observation windows. Longitudinal temperature gradients in the tensile-bar gage length and temperature drifts during testing were detectable but small, and were estimated to be 10°C or less. Accuracy of temperature measurement was confirmed by comparing the temperature measured on the surface of a special
Jan 1, 1965
-
Part VIII - Papers - Equilibria in the System Fe-Mn-O Involving “(Fe,Mn)O” and (Fe,Mn)3O4 Solid SolutionsBy Arnulf Muan, Klaus Schwerdtfeger
Equilibrium ratios C02/C0 of a gas phase coexisting with selected phase assemblages of the system Fe-Mn-0 have been determined in the temperature range 1000" to 1300°C. The oxygen pressure for the "hfnO" +hfn30, equilibrium and for the "(Fe,hTn)O" + (Fe,Mnh 0* equilibrium at high manganese contents has been determined by electromotive force measurements using stabilized zirconia as a solid electrolyte. The notstoichometry 01' "hTnO" and of "(Fe, iM1z)O" solid solutions has been determined by ther-mog-/avi?netry and by wet-chemical analysis. The data obtained are used to derive activity-composition relations in "(Fe,hfn)O" and (Fe,Mn),O4 solid solutions. WUSTITE "FeO" and manganosite "MnO" form a continuous series of solid solution at high temperatures,' and so do magnetite Fe304 and the high-temperature, cubic modification of Mn304 (Ref. 2) (high hausmannite, -1170). The oxides "FeO" and "MnO" are cation-deficient phases.495 The nonstoi-chiometry of "(Fe,Mn)O" solid solutions has been studied by Engell and ~ohl' at two selected C02/C0 ratios at 1250°C. The two oxide end members of the spinel solid solution, FesO4 and Mn,04, however, are known to be close to stoichiometric under the experimental conditions used in the present investigation.''' The oxygen pressures of "(Fe,Mn)07' solid solutions in equilibrium with iron have been determined by Schenck and coworkers,8 by Foster and welch," and by ~n~e1l.l' The two former groups equilibrated the condensed phases in C02-CO atmospheres of lmown compositions, whereas Engell" used a galvanic cell with stabilized zirconia as a solid electrolyte. The results of these investigators are not in good agreement. Activities of FeO in manganowiistite as calculated from the results of Foster and Welch show ideal behavior, those of Engell yield a pronounced positive deviation, and those of Schenck et 01. show a moderate positive deviation from ideality. In the present work oxygen pressures for the iron + manganowiistite and manganowustite + spinel equilibria and the nonstoichiometry of manganowiistites have been measured. The data were used to calculate activities in the manganowiistite and spinel solid solutions. EXPERIMENTAL METHODS The COz/CO ratios at which manganowustite and iron are in equilibrium were determined by thermo-gravimetric and quenching methods. Experimental details are described in a previous publication.'2 In the thermogravimetric technique, incipient reduction of manganowiistite pellets to metallic iron was observed as a break in the weight vs log COZ/CO curve. In the quenching technique, manganowiistite samples were partially reduced to metallic iron, or the metallic iron of manganowustite + metallic iron mixtures was partially oxidized to manganowustite, in atmospheres of constant C02/CO ratios. After quenching the composition of the oxide phase was determined by X-ray lattice parameter measurements and comparison with a standard curve obtained from oxide solid solutions of known compositions. The nonstoichiometry of "MnO" and "(Fe,Mn)07' solid solutions was determined by chemical analysis of samples equilibrated in C02-CO atmospheres and quenched to room temperature, as well as thermo-gravimetrically by reducing (Fe,Mn),04 or Mn304 to manganowiistite or manganosite. The equilibrium between manganowiistite and (Fe,Mn),04 was measured thermogravimetrically by reducing (Fe,Mn),04 solid solutions having composition in the range of %„ l(NFe +NM) from 0 to 0.63. No experiments could be performed with this technique at higher manganese contents, because the equilibrium C02/C0 ratios are too large for accurate control. An additional difficulty arises at the higher manganese contents due to the strong increase in oxygen content of the manganowustite phase with increasing log Py near the manganowiistite-spinel boundary. Consequently a sharp break in the weight loss vs log C02/CO curve cannot be observed at the phase boundary. At high manganese contents of the manganowiistite, e.g., (NMn/(NF~ + NMn) > 0.9, electromotive force measurements with stabilized zirconia as a solid electrolyte were made to determine the equilibrium oxygen partial pressure. Experimental details are described in a previous paper.* Mixtures of "(Fe,Mn)O" and (Fe,Mn),04 were pressed to pellets, and the oxygen pressure of the equilibrated samples was compared to that of Ni + NiO mixtures in the cell The composition of the manganowiistite in the equilibrated two-phase mixture was determined by lattice parameter measurements and comparison with known standards. The oxygen pressure for the Ni + NiO equilibrium was taken from available data.l3~l4 No reliable results were obtained with the electromotive force technique on iron-rich oxides. The electromotive force drifted strongly with time in this composition range. An additional difficulty arises from the partial de-
Jan 1, 1968
-
Institute of Metals Division - Strain Aging in Silver-Base Al AlloysBy M. E. Fine, A. A. Henderson
Investigation of the tensile properties of silver based aluminum alloy crystals was undertaken because it appeared attractive for studying strengthening effects due to Suzuki locking with minimum complication. Yield drops were observed in all alloy crystals (1, 2. 3. 4, and 6 at. pct Al) after strain aging at room temperature. No yield drops were found in similarly grown and tested silver crystals. The yield effects are attributed to Suzuki locking but the major portion of the solid solution strengthening to other mechanisms. INVESTIGATION of the tensile properties of single crystds of silver alloyed with aluminum was undertaken because it appeared to be a system in which segregation at stacking faults associated with partial dislocations1 would be the dominant factor in anchoring dislocations. First, silver and aluminum have closely similar atomic sizes and thus solute atom locking of a dislocation due to elastic interactions should be unimportant. Second, while both X-ray2 and thermodynamic3 investigations show short-range ordering in silver-based aluminum alloys, the degree of local order is quite small (X-ray measurements give v = EAB - 1/2(EAA + EBB) = - 0.025 ev and thermodynamic measurements give v r -0.007 ev) and should not be important in strengthening dilute alloys. Third, the stacking fault energy of silver is probably low (as indicated by the profusity of annealing twins) and is very likely diminished further and quite rapidly by aluminum additions since the A1-Ag phase diagram shows a stable hexagonal phase at only 25 at. pct Al. Also, a careful investigation in this laboratory4 has shown that the ratio of twin to normal grain boundaries in recrystallized alloys increases with aluminum content. Thus, with minimum complication from other factors, Ag-A1 alloys seem attractive for studying strengthening effects due to segregation at stacking faults of extended dislocations. EXPERIMENTAL METHOD Single crystals measuring 250 by 5 by 1.5 mm of pure Ag (99.99 pct) and Ag-A1 alloys (A1 of 99.999 pct purity) of nominal compositions* 1, 2, 3, 4, and 6 at. pct were grown in high-purity graphite molds from the melt under a dynamic vacuum (1 x l0-5 mm Hg). The technique consisted of moving a furnace having a hot zone (which melted about 0.5 cm of alloy) over a horizontal, evacuated quartz tube con- taining the mold and alloy at a rate of 3/8 in. per hr. Chemical analysis showed roughly the first inch of the crystal to be solute poor, the last inch solute rich; and the center section uniform in composition within the sensitivity of the analytical method (± 0.2 at. pct Al). The center section of the crystal was cut into five specimens. Gage lengths of reduced cross section, measuring from 1.5 to 2 cm in length, were mechanically introduced by means of jeweler's files and fine abrasive cloth with the crystal firmly held in polished steel guides. One-third of the cross section was then removed by etching and electro-polishing, the crystals were all subsequently annealed for several days at 850°C in a dynamic vacuum (<1 x 10-5 mm Hg) and furnace cooled to 200°C. The crystal orientations were determined using the usual back-reflection Laue technique. The Laue spots were sharp and of the same size as the incident beam. However, microscopic examination showed the crystals to contain substructures with subgrains of the order of a micron in diameter. The details of this substructure are presently under investigation. Tensile testing was done with a table model Instron using a cross-head speed of 0.002 in. per min. For testing at various temperatures the following media were used: 1) 415oK, hot ethylene glycol; 2) 296ºK, air, acetone, water; 3) 273ºK, ice water; 4) 258ºK, ethylene glycol "ice" in ethylene glycol; 5) 200°K, dry ice in acetone; 6) 77ºK, liquid nitrogen. EXPERIMENTAL RESULTS A) Yield Behavior—A portion of an interrupted stress-strain curve for a 6 at. pct A1 crystal of the indicated orientation tested at room temperature is shown in Fig. 1. Initially, at (a), there is a small, gradual yield drop of about 10 mg per sq mm2. However, on stopping the test, and aging for a few minutes at (b), a sharp yield drop is found. Aging for longer times at (c) and (dl results in larger yield drops (and larger AT'S). At, defined in Fig. 1, is usually larger than the yield drop by about 20 pct; however, this increase in the lower yield is transient since extrapolations of the flow stress curves join as may be seen from Fig. 1. (Both Laue and low-angle scattering photographs revealed no evidence of precipitation in a strain-aged 6 at. pct A1 crystal.)
Jan 1, 1962
-
Part IV – April 1969 - Papers - An Investigation of the Formation and Growth of G. P. Zones at Low Temperatures in Al-Zn Alloys and the Effects of the Third Elements Silver, Silicon,and MagnesiumBy M. Murakami, Y. Murakami, O. Kawano
The formation and growth of Guinier-Preston zones in Al-Zn alloys containing 4.4, 6.8, 9.7, and 12.4 at. pct zn have been studied by the X-ray small-angle scattering method. Particular attention was paid to the effects of small amounts of third elements silver, silicon, and magnesium on the formation and growth of G.P. zones. It was noticed that an appreciable number of G.P. zones were formed during the course of rapid cooling and that the size, volume fraction, and number of these G.P. zones were influenced by the existence of the third elements. During subsequent aging it was also found that the addition of both silver and silicon lowered the temperature for the growth of G.P. zones, whereas the addition of magnesium raised it. These results were explained in terms of the mutual interactions among zinc atoms, vacancies, and the third elements. A number of studies on the formation and growth of Guinier-Preston zones in Al-Zn alloys have been reported.1-4 Panseri and Federighii have found that the initial stages of zone growth take place at temperatures as low as around -100°C. For investigation of the mechanism of the initial stages of zone growth, growth studies must be carried out at low temperatures. In order to investigate the possibility of the formation of G.P. zones by the nucleation mechanism or the spinodal decomposition during quenching which was reported by Rundman and Hilliard,5 the examination of the as-quenched structure must be performed. In this paper the investigation of the early stages of the formation and growth were determined by means of the X-ray small-angle scattering method. With this technique, change of X-ray scattering intensities was measured while quenched specimens were heated slowly from liquid-nitrogen temperature to room temperature. At as-quenched state and after heated to room temperature, investigation of zone size, volume fraction, and zone number per unit volume was carried out. Measurements on these specimens yielded information on the early stages of zone formation and growth. Measurements were made also on specimens quenched to and aged at room temperature. From these measurements the previously reported model6 for the later stages of growth is confirmed; namely, the larger zones grow at the expense of smaller ones. Three elements, silver, silicon, and magnesium, were chosen as the third elements for the following reasons: Silver. In the binary A1-Ag alloy the spherical disordered 77' zones were observed immediately after quenching.7 Therefore, in the Al-Zn-Ag alloys, it is suggested that silver atoms might induce cluster formation during quenching. Also, since the migration energy of the zinc atoms was found to be raised by the addition of silver atoms,' silver atoms may have a great effect of the zinc diffusion, especially during low-temperature agings. Silicon. The effects of the addition of silicon atoms were found to be marked, especially at low-tempera-ture aging. In the binary Zn-Si system, no mutual solid solubilities between silicon and zinc9 and no in-termetallic compounds10 are reported to exist. Shashkov and Buynov11 investigated the behavior of silicon atoms in Al-Zn alloys and showed that silicon was not in the G.P. zones. The interaction between silicon atoms and vacancies is strong enough to increase the quenched-in vacancy concentration.* Magnesium. Magnesium atoms are reported to trap quenched-in vacancies and after much longer aging times these trapped vacancies will become free and act as diffusion carriers.13 Therefore at intermediate aging times, the diffusion of zinc atoms in Al-Zn-Mg alloys will be slower than in the binary Al-Zn alloys, whereas at longer times zinc diffusion will become faster. EXPERIMENTAL PROCEDURE The alloys used in this investigation had compositions of 4.4, 6.8, 9.7, and 12.4 at. pct Zn with or without 0.1 and 0.5 at. pct Ag, Si, or Mg. The alloys were prepared from high-purity aluminum, zinc, silver, silicon, and magnesium, with each metal having a purity better than 99.99 pct. The analyzed composition of the specimens is given in Table I. The measurements of the X-ray small-angle scattering were carried out with foils of 0.20 mm thick. The change of the scattering intensity was always measured at the fixed scattering angle of 20 = 2/3 deg. This angle exists nearly on the position of the intensity maximum. The value of the interparticle interference function14 which has large effect in this range of angles may not change abruptly in the case of the spherical shape of small zones. Therefore, from the above considerations, it is concluded that an increase of the intensity measured at this constant angle corresponds to an increase of the average radius and volume fraction of G.P. zones. The specimens were homogenized at 500°, 450°, and 300°C for 1 hr in an air furnace. For the study of the formation and growth at low temperatures, the foil
Jan 1, 1970
-
Part X - Thermal-Dilation Behavior of Titanium Alloys During Repeated Cycling Through the Alpha-Beta TransformationBy Jerome J. English, Gordon W. Powell
An experimental investigation and mathematical analysis of the thermal-dilation behavior of the titanium alloy Ti-7Al-3Cb have shown that the linear dimensional changes associated with the polymorphic transformation need not be isotropic. The absolute magnitude of the linear dimensional change, which may be either positiue or negative, associated with the cr-p transformation is dependent upon the relutzve volumes of different orientations of the transformation product. It is hypothesized that the dilation irregulati-ties that have been observed during the polymorphic transformation of pure, coarse-grained titanium and other titanium-base alloys can be explained in the same manner. When titanium is heated above about 165O°F, the hcp a structure transforms to bcc 0. Thermal-dilatioh measurements have shown that the transformation is accompanied by a decrease in length of 0.16 pct.' Such dilation behavior would be expected because the volume of the hcp unit cell is about 0.3 to 0.4 pct greater than that of the bcc unit cell. A recent investigation2 of the thermal-dilation behavior of an experimental a-p* titanium alloy, Ti- 7A1-3Cb, containing 0.06 wt pct 0 showed that its dilation behavior during the polymorphic transformation differed substantially from that reported for unalloyed titanium. The first time the alloy was cycled through the transformation, the dilation curve closely duplicated that of unalloyed titanium. However, upon repeated cycling through the transformation temperature range, both the magnitude and the sign of the dimensional change associated with the transformation were observed to vary with each cycle. This investigation was undertaken to obtain additional data on the dimensional changes associated with the polymorphic transformation in the Ti-7A1-3Cb alloy and to determine the cause of the dimensional irregularities. After testing, the specimens were examined metallo-graphically. In addition, Laue back-reflection patterns were obtained from selected sections taken perpendicular to the specimen axes to determine the a orientations present in these sections. White radiation from a tungsten target and a 0.1-mm-diam collimator were used to produce the diffraction patterns. RESULTS Dilation Curves. Three types of thermal-dilation curves were obtained when the a-8 titanium alloy was heated and cooled through the transformation temperature range. These three types of curves are illustrated in Fig. 1. The type I curve represents what is considered normal behavior, because the dilation change is what would be expected on the basis of the volumes of the unit cells of a and p. The Type I1 curve is the inverse of Type I. Normal behavior is characterized by an expansion on cooling through the transformation, whereas a contraction takes place in the Type 11 curve. With Type ni behavior, no clearly distinguishable length change occurs during the transformation. No other anomalies that might be indicative of other phase transformations were observed in the dilation curves at lower temperatures. Apparently, the cooling rate was low enough for equilibrium to be reached during the 0 to a transformation. Table I lists the types of dilation curves observed during the polymorphic transformation as a function of the direction of measurement and cycle number. The A1 value was determined by extrapolating the low-temperature (a + 5 pct p) and high-temperature (100 pct p) segments of the dilation curves to a common temperature and measuring the difference in the or-dinates at that temperature, see Fig. 1. The transformation occurs over a temperature range in this alloy, so the magnitude of A1 is not an absolute value but depends on the choice of temperature. A mean temperature, T,, within the transformation temperature range was selected for the measurement. T, on cooling occurred about 100°C lower than T, on heating. The first time each of the three dilation specimens was heated to above the temperature, that is, Cycle 2, normal Type I behavior was observed. In Cycle 3, two deviations from normal behavior occurred. First, during cooling of the longitudinal specimen, a substantially larger expansion, +0.21 pct, was measured as 0 transformed to a compared with +0.03 pct in Cycle 2. Second, the thickness specimen was observed to undergo a contraction instead of the anticipated expansion on cooling. Continued cycling of the three specimens from room temperature to 2500°F produced additional changes in the dilation behavior. These changes did not seem to be related to the fabrication direction of the alloy because the values of a1 for the longitudinal, transverse, and thickness specimens varied unpredictably in magnitude and sign. Furthermore, both the longitudinal and transverse specimens showed all three types of dilation curves at least once during the six cycles that they received. Fig. 2 is a sketch of the transverse specimen after
Jan 1, 1967
-
PART IV - Papers - Solute Interactions with Zinc in Dilute Solution with Molten Bismuth: II-Four-and Five-Component SolutionsBy R. D. Pehlke, J. V. Gluck
A study was made of' the effects of up to five additional solutes on the thermodynamic activity of zinc in dilute solution with molten bismuth in the range 450" to 650°C. The experimental measurements were made in a multielectrode galvanic cell apparatus employing fused LiCl-KCl as the electrolyte. The solute additions included indium, lead, tin, cadmium, copper, silver, antimony, or gold. A range of positice and negative interactiotls with zinc was covered. The experinzer~tal observations were cowlpared with the activity coefficients calculated usitlg either Wagner's first-order Taylor series rnodel or a proposed second-order solution itrteraction model. hi general, the truncated first-order Taylor series proposed by Wagner gaue good results for "dilute" solutions (XBi > 0.90) contaitzing up to six solutes. The second-order model, which includes a second-order cross-interaction term, produced a slight improvement in predictions for solutions with XZn = 0.015 and a significant improvement for solutions with XZn = 0.050 hear the limit of Henry's law region). Seveval of the quaternary solutions studied contained a total solute content of 0.215 mole fraction, and fairly good success was achieved in predicting the activity coefficient 01- zinc. ThE study of thermodynamic interactions between dilute solutes in liquid metallic solutions has occasioned much recent interest. It is useful to recall in this respect that Wagner's well-known expression for the activity coefficient' is a practical application of the problem of representing a given function, i .e., In ?, by means of a sequence of polynomials. No specific physical model of a solution is involved in its use. As suggested by Wagner, a Taylor Series is used to expand In ? about a point of infinite dilution with respect to all solutes. The partial differential coefficients of the series have been termed "interaction parameters". Various authors'-6 have proposed formalisms for parameters, the definitions being designed to meet some specific experimental or physical condition. A usual assumption is that terms above first-order in the Taylor Series may be neglected. In that case, the logarithm of the activity coefficient is expressed as a linear function of solute concentrations. The resulting expression is presumed valid for any number of additional solutes as long as the solution can be regarded as "dilute". This assumption can be termed "the hypothesis of additivity". However, experimental tests of that hypothesis for quaternary or higher-order solutions have been extremely limited. Primarily such tests have been confined to studies of effects of added metallic elements on either the activity of carbon or the solubility of gases in liquid iron.7-13 The only known previous study of an all-metal system is the limited work of Okajima and pehlke14 on the effects of multiple solute additions on the activity of cadmium in liquid lead. The present investigation is a portion of the work to determine the effects of various solute additions on the activity of zinc in dilute solution with molten bismuth in the range 450" to 650C It was shown for such ternary solutions that second-order Taylor Series terms could be evaluated at the same time as first-order terms, with no additional experimentation required. A second-order solution model was described which, under certain conditions, is a rigorous representation of solute activity in a ternary solution. (In the sense employed in this paper, the term "model", as distinguished from "equation", is taken to mean an empirical correlation or formalism, but not a hypothetical physical system per se.) Presumably such a model could be extended to produce a better representation of In ? in solutions of even higher order. The feasibility of a generalized Taylor Series approach to solution interactions and inclusion of second-order terms also has been discussed recently by Lupis and Elliott in independent work concurrent with the present investigation. In addition, they discussed empirical means of estimating certain second -order coefficients.17 The utility of such solution models rests on the ability of a truncated series to represent adequately the experimental facts in multicomponent solutions. Questions that arise include: Do the second-order terms really make a significant contribution? How far away from "dilute" solution may such models be applied? Are the types and varieties of the additional solutes important? among others. In order to provide some answers to these questions, an experimental study was made of the effects of two or more additional solutes on the activity of zinc in dilute solution with molten bismuth. Comparisons were then made with calculated activity coefficients obtained using the previously determined ternary interaction parameters. INTERACTION MODELS As an example of the approach to defining activities in multicomponent solutions, consider the Taylor Series expansion for a quaternary system, i.e., three dilute solutes. Writing terms through second order, the result is:''
Jan 1, 1968
-
Producing - Equipment, Methods and Materials - The Effect of Perforating on Well ProductivityBy M. H. Harris
A solution has been obtained to the problem of calculating flow into a cased and perforated well. Equations describing the idealized system were solved by numerical analysis techniques on a high-speed digital computer. Computer experimentation indicated that the results are within 3 per cent of the exact solution. Computed results are presented as an apparent skin effect, on a series of dimensionless working curves. Productivity ratios can be rapidly calculated from these data for the wide range of wellbore and reservoir properties actually encountered in field practice. Any reasonable vertical unisotropy ratio can be included in the computation. Productivities can be calculated for wells perforated in a regular pattern, a single horizontal plane or a vertical line on one side of the casing. Solutions for asymmetrical perforation patterns can he easily obtained from the working curves. Solutions for flow into sells completed with a horizontal notch are also provided. Results show that productivity can be increased by extending perforation penetration. This is especially true for shallow penetrations. The highest productivity is obtained when perforations are arranged in horizontal planes, as opposed to a vertical line on one side of the casing. Four or five perforations in one plane will approach the maximum productivity. The effect of perforation hole diameter is small, and is rioticeable only in shallow penetrations. INTRODUCTION The perforating method of well completion has been successfully and widely used in most producing areas. In the past, the desired perforation results were achieved by simply shooting numerous large holes in the casing. A perforating scheme for an area, or particular well, was established by evaluating two types of experimental data: the well flow index and the productivity ratio.' 3 The well flow index test is a means of determining the relative flow capacity of perforations in a linear system. This test also gives information on the perforation size, shape and hole damage which can be expected under well-bore conditions. However, relative flow data from this test cannot be accurately tarnsformed into the radial wellbore system. Thus, no true indication of the productive capacity of a perforated well can be obtained from the well flow index test. A well productivity ratio is derived from electrolytic models built to simulate perforated wells. Available productivity ratio data 2,3 are limited in that all important variables are not extensively evaluated. For example, data are limited to well radii of 3 and 6 in., and to maximum perforation penetration of 1 ft. Practically no information is available on the pattern of flow into a perforation. The effect of various perforation patterns on well productivity has not yet been determined and the effect of perforation diameter has not been thoroughly studied. Also, it will be shown that this type of electrolytic model data is probably in error by as much as 10 per cent or more. Modern completion techniques such as limited-entry perforating, single-plane fracturing, steam and hot air injection and chemical consolidation of incompetent formations all rely on injection and/or production from a limited type of completion. These completions may consist of several high-capacity perforations or a horizontal notch which is equivalent to an infinite number of perforations in one plane. Proper design of these new completion techniques requires, in part, accurate estimates of a well's productive capacity. Data on perforated and notched well productivity have been determined in this investigation. Results are presented as a function of the pertinent variables. Equations describing the idealized system were solved by numerical analysis techniques on a high-speed digital computer. DESCRIPTION OF PROBLEM PRACTICAL APPLICATION The computed results can be applied to wells which meet several general specifications. An external drainage radius of the well must be known or assumed, but the well need not be drilled on a regular pattern. The well must be cased and cemented through the entire producing interval. And, the casing must be perforated with one or more horizontal planes of perforations. The perforation pattern itself must conform to three geometrical requirements. 1. The perforations in a plane must divide the plane into equal angular segments (Fig. 1). Four perforations per plane would be 90" apart. 2. Perforations in a plane must be directly above or beneath perforations in adjacent planes. For two shots per plane, perforations would lie in the BB' plane (Fig. 1). 3. Horizontal planes must have equal vertical spacing and be separated from the top and bottom of the formation by one half the spacing interval. Single planes of perforations should be in the middle of the formation. This is shown in Fig. 2 where h is the formation thickness in a single plane conlpletion or the spacnig interval in a multiple plane completion. The spacing interval at the top and bottom of the formation may vary somewhat without causing an appreciable error in the productivity calculation if the formation is reasonably thick and there are many horizontal planes of perforations. A special provision has been made to calculate the productivity ratios of wells with uneven spacing intervals, or for the case where a single plane of perfora-
Jan 1, 1967
-
Its Everyones BusinessMARCH 15-Industry is rapidly snapping back from another coal crisis, other business news is in general favorable and the outlook through the Spring is by most observers considered quite promising. Most industries report comfortable backlogs of unfilled orders, department store sales in recent weeks have equalled in dollars those of the corresponding period last year, retail sales of automobiles show again over the same period a year ago, and new orders for machine tools are at the highest figures since August 1946. Orders for railway freight cars have shown a very encouraging pickup, with a total of 9385 cars in January and the N. Y. Central alone ordering 4500 in February. Construction continues very active. In January new housing starts totaled 80,000 against 50,000 a year ago and the daily average contract awards, according to the Dodge reports, were 57 pct larger. In the first 22 days of February the increase in awards was 27 pct. Lumber orders since Jan. 1 have run 22 pct above last year. All of these favorable factors bolster the opinion that the upturn in industrial output and employment which began last summer has not yet spent itself and that the setback caused by the strikes will be made up when people get back to work. Only in a few lines are there indications that primary production may be outrunning the consumption of finished goods, although inventory build-up would seem to be rather modest as the National Association of Purchasing Agents reported in February that 78 pct of its members were buying for 60 days or less. Industrial prices as a whole show no significant trend despite the continued alarm over both the immediate and the long-term possibility of inflation caused primarily by the government's increasing expenditure and its inability to balance the budget. A recent advance of 1.9 pct in primary market prices is viewed by some people as the surface symptom of renewed inflation, but even so it is more than two years since the alltime high was reached by the daily index of sensitive commodities in November 1947. Over two years have passed since prices received by farmers hit their peak and about a year and a half since all wholesale prices and the consumer price index touched their highest points in August 1948. The decline in the wholesale price index has been almost continuous, interrupted only twice by slight advances in the monthly figures from February to March 1949, and, later in the year, from August to September. Of course, this continued decline in the last half of 1949 largely reflects a downward movement in farm and food prices. Wholesale prices for commodities other than farm and food leveled out after June and now stand only slightly under the June level. Farm products are down by 22 pct from January and by 18.6 pct from August 1948. Food prices are down only slightly less. Consequently, the farm price support program is in serious trouble and has imposed a heavy financial burden on the Treasury. In those commodities other than farm products only building materials, chemicals and textiles have come down as much as the average, while housefurnishings and metals and their products have fallen hardly at all. Glancing away from the domestic front, the results of the British general election indicated a highly inconvenient situation, that public opinion there is so exactly deadlocked as to divest the victors of much ability to make forceful decisions or create significant policy. It is generally considered that another election in the near future would give substantially the same result. The British people are equally divided and the politicians are not likely to precipitate another appeal to the country until there is manifest reason to believe that external and internal circumstances have changed sufficiently to permit one party or the other to obtain a decisive verdict. Because of the lack of a clear mandate steel nationalization will likely lag in Britain. In the meantime there is considerable discussion going on as to whether the European steel industries as a whole are at a disadvantage in world competition with the American industry. An article in the "Statistical Bulletin" for January of the British Iron and Steel Federation takes issue on this point with the authors of the Geneva report, observing that they wrote before devaluation, and this particular conclusion "has been overtaken by events." The "Bulletin" also contends that the statement was in any case incorrect so far as Britain was concerned, and that it was based on scanty and insufficient evidence. To support the rebuttal a detailed and extensive comparison is made of the home prices of certain steel products in Britain and in other countries of the world. The accompanying table gives a selection of the prices published. It sets out the changed position since devaluation and since the recent increases in American steel prices. These are home market prices; no doubt in competitive export business some of the price levels could be brought closer together at need.
Jan 4, 1950
-
Rhode Island And MassachusettsThe eastern part of the state of Rhode Island on both sides of Narragansett Bay, including the island of Rhode Island, is underlaid with carboniferous rocks which carry veins of anthracite. This formation extends into the neighboring portion of Massachusetts, including the area from the state line, the towns of Mansfield, Brockton and Bridgewater,: and extending probably ten miles east of the latter two towns, to Middlesboro, and to Fall River. In Massachusetts the coal formation extends over nearly the whole of Bristol, and parts of Plymouth and Norfolk Counties. In Rhode Island and Massachusetts the area covered is about 400 square miles. In both states the exact limits of the coal measures cannot be determined on account of a thick layer of drift which overlays it. Along parts of Narragansett Bay, the coal measures outcrop in the cliffs on the west side of Rhode Island, and the presence of coal here seems to have been noted as early as 1760, and in 1768 a patent was granted to parties who "were about to dig after pit, coal or sea coal" at the back of the town of Providence. In 1807-08 Benjamin Silliman, later a geologist, visited some openings,' and in 1808 a mine was opened near Portsmouth, in the northeast part of Rhode Island. Work was done here until about 1814 when the mine was abandoned. No anthracite had been used in New England at that time, all coal used came from Nova Scotia, Virginia or England, and was high volatile bituminous; neither experience nor the means of firing favored the use of the local fuel? This mine was again working in 1827, was again abandoned and operations were resumed in 1847. In 1837 a note in a magazine mentions, "the immense coal mine in Cumberland-about six miles from the city of Providence" as having a shaft 14 ft. in diameter and 80 ft. deep, that the horses then used for hoisting the coal were to be superseded by a steam engine and another shaft was to be sunk. With these improvements 30,000 to 50,000 tons were to be produced the following year at a cost of $1 per ton and a sales realization of $6.1 Hitchcock's report refers to a number of localities in both states where definite knowledge of coal existed. These are:
Jan 1, 1942
-
New York Paper - The Safety of Underground Electrical InstallationsBy C. M. Means
Considering the hazard involved in mining operations, statistics show that a very small percentage of accidents is chargeable to electricity. These accidents do represent quite a large percentage of those that are preventable and they are the direct result of the introduction, for purely economical reasons, of a dangerous element. The introduction of electricity in mines should decrease the hazard, and in no case should electricity be applied to the mechanical operation of equipment if by so doing the dangers incidental to mining are increased. The greater number of accidents are the result of persons coming in contact with exposed conductors at potentials varying from 258 to 508 volts direct current. The use of alternating current at higher potentials than these is quite common in large mines, but it is very rare that an accident happens from this source. This is explained by the fact that where these high voltages are warranted, proper precautions are taken, and the installations are directed by those who fully appreciate the dangers incidental to the work. Direct current is in much more general use than alternating current because of its adaptability to haulage locomotives and the low cost of installation in small operations. We are, however, coming to a more extended application of alternating current for the operation of mechanical devices used in connection with mining. Our underground direct-current wiring system is an evolution from the surface trolley and feeder systems. This is probably due to the fact that our earlier successful applications were electric locomotives, which required the use of a trolley wire. The trolley current has been almost banished from industrial establishments on the surface because of the hazard involved, yet we use it indiscriminately underground, where the dangers from accidental contact or fire are infinitely greater., This does not mean that the underground trolley systems should be eliminated, but it does imply the proper safeguarding of such equipment as is necessarily a part of the trolley systems. It is a fact that the men now employed in the installation and maintenance of mining equipment may be in many cases incompetent or not thoroughly familiar with the work, but they are the men who must do the work and, in order to do it properly, it is necessary that they be educated
Jan 1, 1915
-
Chattanooga Paper - Thin Plates of MetalBy T. Egleston
The importance of having perfectly pure metals has led me to present to the lnstitute a record of some of the trials that have been made to obtain these metals, and also to show one of the largest specimens of extremely thin metal plate which has ever been made. The malleability of metals varies generally directly with their purity, and hence it is only with very pure metals that thin sheets can be obtained. The competition among different manufacturers has been so great at times as to lead to expensive and apparently useless experiments in obtaining in the first instance very thin sheets, and afterwards very large and thin sheets of metal, apparently with no other purpose than that of being able to say that they had produced the thinnest or the largest thin sheet that had ever been made. These experiments were at first confined exclusively to iron, their object being to show the great dexterity of manipulation, as well as the purity of the metal manufactured. They have since been extended to almost all metals by electrical action, and have gone far beyond the limits of what was possible with purely mechanical means. The processes which have been used are rolling or hammering, electrical deposition in a vacuum, and lastly, electrical deposition on plates, easily soluble in acids. The first and last of these methods have been known and practiced for a very long time, having been used to make thin sheets of almost all the metals. The other is of quite recent application. In the iron manufacture, the strife to produce these thin sheets was commenced in the year 1865, by the Sligo Iron Works writing to a firm in Birmingham, England, on a sheet of iron containing 270 square centimeters, and weighing only 4.469 grams. For some time this was considered to be the thinnest sheet iron that could be made. T. W. Booker & Co., of Cardiff, England, however, produced a few months afterward, a sheet of the same size, weighing only 4.015 grams. This was succeeded by one rolled by Neville and Everitt, of Llannelly, weighing only 3.174 grams. This was followed by one from Hallam, of Swansea, which was 283 square centimeters in size, and weighed but 2.979 grams; and this by one rolled by R. Wil
Jan 1, 1879