Reservoir Engineering – Laboratory Research - Wet and Partially Quenched Combustion

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. N. Dietz J. Weijdema
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1240 KB
Publication Date:
Jan 1, 1969

Abstract

In the conventional underground combustion process (dry combustion) much heat is left behind in the swept formation and goes to rva.rte. Econonmy can be improved by heat recuperation through water injection. This is most advantageous if done at the earliest opportunity before much heat is dissiputed to cap and base rock. Water injected simultaneously with the air will flash to superheated steam, which passes through the combustion front together with the nitrogen from the air. A condensation front traveling up to three times as fast as the combustion front drives out the oil. In this type of wet combustion, the water evaporates before it reaches the combustion zone. The evaporation front travels more slowly than the combustion zone. If so much water is injected that the evaporation front overrun the combustion front, combustion in that spot will be quenched and some unburned fuel will be left behind. Air reacts with the oil farther down-stream where steam temperatures occur; at steam temperature, the air reacts rapidly with the oil. Velocity of the combustion front is increased thereby and is governed essentially by the water-injection rate. In the extreme case of high water-injection rate, a short heat wave of constant length is driven through the formation by water injection. Once this wave has been established, no more heat need be generated than that required to make up the heat losses from the short heat wave; a relatively low rate of air injection will suffice. The feasibility of partially quenched combustion has been confirmed in tube experiments. A heat wave at steam temperature is observed. Chemical analyses of flue gas indicate preferential burning of hydrogen while a carbonaceous residue is left in the formation. Introduction A disadvantage of so-called dry in situ combustion is that air-compression costs are rather high. An air consumption of about 400 std cu m/cu m (400 scf/cu ft) of formation swept is an accepted figure. This high consumption is mostly wasted since much heat is left behind in the depleted oil sand. Methods were investigated for recuperating as much as possible of the heat left behind. This paper deals only with basic principles and is confined mainly to one-dimen- sional flow without lateral heat losses; experiments were conducted in relatively narrow, well insulated tubes. If some water is injected with the air, it will turn to superheated steam in an evaporation front, which should travel behind the combustion front. The steam having passed the combustion front causes a steam drive by a condensation front that can travel faster than the combustion front. The latter needs to travel only part of the distance covered by the oil-displacing condensation front, and thus consumes less air. The water-air ratio would seem limited to that at which cold water overruns the combustion. This limitation was deliberately exceeded considerably in theory and experiments. It was found that combustion is then indeed quenched, but only locally. Farther downstream, the oxygen finds residual oil at steam temperature, which is suficiently high to ensure rapid oxidation. Thus, the combustion front uses only part of the available fuel because it is chased through the formation faster than its normal velocity. No heat is left behind. This new process is called "partially quenched combustion". At the upper limit of the water-air ratio, a small heat slug is moved through the formation by the flow of water and steam. Only a small flow of air is needed since it has only to generate sufficient heat to make up for the lateral heat losses of the short heat slug. Theory Although many factors complicate underground combustion, the processes will be presented in their simplest form. For this reason, one-dimensional flow without lateral heat losses is assumed. Heat conduction in the direction of flow also is disregarded. Under these conditions, dry combustion causes very high temperatures. The heat-carrying capacity of the gas stream is small. Heat generated by oxidation of a residual oil saturation is retained in the sand. The available fuel determines the air requirement and the temperature obtained. Accepting the often-mentioned air consumption of 400 std cu m/cu m (400 scf/cu ft) formation, we calculate a temperature of the swept sand of 1,200C (2,192F) (Fig, I). If water is injected at a modest rate with the air, it will flash to superheated steam upon contact with the heated sand. One cu m (35.31 cu ft) of hot formation will evaporate about 0.5 cu m (17.66 cu ft) of water, and thereafter will accommodate (at an estimated 0.80 saturation and an assumed 0.40 porosity) another 0.3 cu m (10.59 cu ft) of water in cold condition. As long as less than 0.5 + 0.3 = 0.8 cu m (28.25 cu ft) of water is injected for every 400 std cu m (14,125 scf) of air (water-
Citation

APA: D. N. Dietz J. Weijdema  (1969)  Reservoir Engineering – Laboratory Research - Wet and Partially Quenched Combustion

MLA: D. N. Dietz J. Weijdema Reservoir Engineering – Laboratory Research - Wet and Partially Quenched Combustion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account