Part X – October 1968 - Papers - Effects of Hydrostatic Pressure on the Mechanical Behavior of Polycrytalline Beryllium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 752 KB
- Publication Date:
- Jan 1, 1969
Abstract
The effects of hydrostatic pressure up to 400 ksi at 25" to 300°C on the mechanical properties of three forms of commercial beryllium (hot-pressed block, extruded rod and cross-rolled sheet) were investigated. Three effects of pressure were studied: mechanical beharior under pressure, the effect of pressure-cycling, and the effect of tensile prestraining under hydrostatic pressure on the subsequent tensile properties at atmospheric pressure. For all three materials the ductility increased with pressure whereas the flow stress did not appear to be significantly influenced by pressure. An increase in the subsequent atmospheric pressure yield strength generally occurred as a result of pressure-cycling or prestraining under pressure, whereas either no change or a decrease in ductility occurred. The only exception to this was sheet material, which exhibited some improvement in ductility following a pressure-cycle treatment of 304 ksi pressure. The effects of pressure-cycling and prestraining were relatively independent of the temperature at which they were conducted. Stabilized cracks of the (0001) type were found in hot-pressed specimens and {1120) type in extruded and sheet specimens following straining under pressure. Also, pyramidal slip with a vector out of the basal plane, presumably c + a, was identified by electron transmission microscopy for extruded rod and for sheet strained under pressure. Small loops similar to those previously reported were found after straining at pressures of the order of 300 ksi. THE use of beryllium in structures is limited because of its poor ductility under certain conditions. Therefore, one objective of the present research was to determine if the ductility of beryllium at atmospheric pressure could be improved by prior pressure-cycling or prestraining under hydrostatic pressure. Another objective was to study the mechanisms associated with the plastic flow and fracture of the polycrystalline form of this metal with pressure as an additional variable. Since the early work of Bridgman,1 it has been recognized that many materials which are brittle at atmospheric pressure exhibit appreciable ductility when strained under high hydrostatic pressure. This effect has been reported for beryllium by Stack and Bob-rowsky2 and by Carpentier et al.3 and has been attributed to the operation of pyramidal slip systems with slip vectors inclined to the basal plane while cleavage or fracture is suppressed.4 That such slip may occur simply by the application of pressure alone without external straining (pressure-cycling) is suggested by the results on polycrystalline zinc5 and polycrystalline beryllium,6 where nonbasal dislocations with a vector (1123) were reported. A significant improvement in the ductility of the bee metal chromium by pressure-cycling has been reported.7 On the other hand, limited studies on the pressure-cycling of the hcp metals zinc67819 and beryllium6 indicated no improvement in ductility; there only occurred an increase in the yield and ultimate strengths. The study on beryllium was limited to hot-pressed material. Consequently, additional studies on the effects of pressure-cycling on other forms of beryllium seemed desirable, especially since for chromium some authors10 have been unable to detect any improvement in ductility while others find a large improvement.7 That the ductility of polycrystalline beryllium at atmospheric pressure might be improved by prior straining under hydrostatic pressure was suggested by the known beneficial effects of cold work on the ductile-to-brittle transition temperature in the bee metals. It was reasoned that, by straining under hydrostatic pressure, fracture would be suppressed, and during the propagation of slip from one grain to its neighbor dislocations with a vector inclined to the basal plane"-'4 would operate. Upon subsequent straining at atmospheric pressure, these dislocations with a nonbasal vector would continue to operate and thereby reduce the tendency for fracture to occur, by assisting in the propagation of slip across grain boundaries and by interacting with any cracks that may develop. It was recognized that maximum improvement in ductility would probably occur at some optimum amount of prestrain under hydrostatic pressure. If the pre-strain was too small, an insufficient number of dislocations with a nonbasal vector would be activated; if it was too large, internal stresses (work hardening) might increase the flow stress more than the fracture stress, or incipient cracks or other damage could develop. EXPERIMENTAL PROCEDURE 1) Materials and Specimen Preparation. The materials employed in this investigation consisted of hot-pressed block (General Astrometals, CR grade), extruded rod (General Astrometals, GB-2 grade with a reduction ratio of 8:1), and cross-rolled sheet (Brush S200, 0.065 in. thick). The analyses of these materials and mechanical properties at room temperature and atmospheric pressure are given in Table I. The grain size of the hot-pressed block was 15 to 16 µ, that of the extruded rod 10 to 11 µ, and that of the sheet 7 to 10 µ in the rolling plane and 5 to 6 µ in the thickness, all determined by the linear intercept method. Al-
Citation
APA:
(1969) Part X – October 1968 - Papers - Effects of Hydrostatic Pressure on the Mechanical Behavior of Polycrytalline BerylliumMLA: Part X – October 1968 - Papers - Effects of Hydrostatic Pressure on the Mechanical Behavior of Polycrytalline Beryllium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.