Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Institute of Metals Division - Influence of Additives in the Production of High Coercivity Ultra-Fine Iron PowderBy E. W. Stewart, G. P. Conard, J. F. Libsch
The effects of several additives upon the reduction characteristics of hydrogen-reduced ferrous formate are described. The various additives inhibit sintering of the reduced iron particles by apparently different mechanisms. The magnetic properties of the low density compacts produced from the resulting ultra-fine iron powders were improved markedly. THE permanent magnetic characteristics of ultra-fine iron powder prepared by various means have been a subject of considerable interest and experimentation in the past few years. When such particles are small enough to show single domain behavior, they possess' 1—permanent saturation magnetization, and 2—high coercive force. In the absence of domain boundaries, the only magnetization changes in a particle occur through spin rotation which is opposed by relatively large anisotropy forces. With decreasing particle size, the coercive force tends to increase to a maximum and then decrease because of the instability in magnetization associated with thermal fluctuations. Kittel' has calculated the critical diameter at which a spherical particle of iron can no longer sustain domain boundaries or walls to be approximately 1.5x10-' cm. Stoner and Wohlfarthr in England and Neel4,6 in France have shown from purely theoretical calculations that the high coercive force expected from single domain particles is dependent upon crystal anisotropy, shape anisotropy, or strain anisotropy contributions. Further work by Weil, Bertaut,' and many others has contributed much to the understanding of fine particle theory. Neel and Meikeljohn" have demonstrated that a decrease in particle size below a critical value of approximately 160A leads to a quite rapid decrease in coercive force because of the prevention of stable magnetization by thermal agitation. Lih1, working with powders prepared by the reduction of formate and oxalate salts of iron, has shown the marked influence of powder purity upon magnetic properties. Maximum coercive force was obtained in powders of approximately 65 pct metallic iron content while the maximum energy product, (BxH) occurred in powders of 85 pct metallic iron content. Careful consideration of the preceding theoretical considerations and experimental results has led to the manufacture of permanent magnets from ultra-fine ferromagnetic powders by powder metallurgy techniques. Such work has been done by Dean and Davis," the Ugine Co. of France, and Kopelman." The aforementioned work of Kopelman and the Ugine Co. was concerned somewhat with the effect of various additives upon the properties of hydrogen-reduced ferrous formate. Virtually no work, however, has been published on the effects of additives on the reduction rates of metal formates, although unpublished work by Ananthanarayanan16 howed promise of improved energy product in ultra-fine iron compacts prepared by the hydrogen reduction of a coprecipitated mixture of magnesium and ferrous formate. After consideration of the preceding information, it was hoped that a better balance between the metallic iron content and particle size of the reduced iron powder could be accomplished by a prevention of the attendant sintering of the partially reduced iron powder during the reduction reaction. It appeared possible that magnesium oxide might interpose a mechanical barrier between adjacent iron particles and prevent their sintering together, while metallic cadmium and metallic tin would interpose a liquid barrier which might accomplish the same purpose. The degree to which these materials were effective in accomplishing the foregoing objective and the experimental details associated with the work are reported in the following sections of this paper. Experimental Procedure Preparation of Formate and Oxide Mixtures: To obtain ferrous formate of reproducible reduction characteristics, a slight modification' was made in the technique of Fraioli and Rhoda." A supersaturated solution of ferrous formate was mixed with an equal volume of 95 pct ethyl alcohol and the formate crystals precipitated by stirring and screened to —325 mesh. These crystals were in the shape of elongated hexagons, approximately 4x10 micron in dimension. Various preparations of such ferrous formate, designated as lot 111, were reduced for 2 hr, yielding ultra-fine iron particles of exceedingly reproducible size, metallic iron content, and magnetic properties. The magnesium and cadmium formates were prepared by the reaction of dilute formic acid with their respective carbonates, while the tin formate was prepared by the reaction of dilute formic acid with stannous hydroxide. To evaluate the effect of metallic formate additives in intimate mixture with the ferrous formate, varying amounts of magnesium, cadmium, and tin formates were coprecipitated with the latter. The designations of these materials and their chemical compositions are given in Table I. Due to the differing solubilities of the various formates in aqueous media,
Jan 1, 1956
-
Metal Mining - Primary Blasting Practice at ChuquicamataBy Glenn S. Wyman
CHUQUICAMATA, located in northern Chile in the Province of Antofagasta, is on the western slope of the Andes at an elevation of 9500 ft. Because of its position on the eastern edge of the Atacama Desert, the climate is extremely arid with practically no precipitation, either rain or snow. All primary blasting in the open-pit mine at Chuquicamata is done by the churn drill, blasthole method. Since 1915, when the first tonnages of importance were removed from the open pit, there have been many changes in the blasting practice, but no clear-cut rules of method and procedure have been devised for application to the mine as a whole. One general fact stands out: both the ore and waste rock at Chuquicamata are difficult to break satisfactorily for the most efficient operation of power shovels. Numerous experiments have been made in an effort to improve the breakage and thereby increase the shovel efficiency. Holes of different diameter have been drilled, the length of toe and spacing of holes have been varied, and several types of explosives have been used. Early blasting was done by the tunnel method. The banks were high, generally 30 m, requiring the use of large charges of black powder, detonated by electric blasting caps. Large tonnages were broken at comparatively low cost, but the method left such a large proportion of oversize material for secondary blasting that satisfactory shovel operation was practically impossible. Railroad-type steam and electric shovels then in service proved unequal to the task of efficiently handling the large proportion of oversize material produced. The clean-up of high banks proved to be dangerous and expensive as large quantities of explosive were consumed in dressing these banks, and from time to time the shovels were damaged by rock slides. As early as 1923 the high benches were divided, and a standard height of 12 m was selected for the development of new benches. The recently acquired Bucyrus-Erie 550-B shovel, with its greater radius of operation compared to the Bucyrus-Erie 320-B formerly used for bench development, allowed the bench height to be increased to 16 m. Churn drill, blasthole shooting proved to be successful, and tunnel blasts were limited to certain locations where development existed or natural ground conditions made the method more attractive than the use of churn drill holes. Liquid oxygen explosive and black powder were used along with dynamite of various grades in blast-hole loading up to early 1937. Liquid oxygen and black powder were discontinued because they were more difficult to handle due to their sensitivity to fire or sparks in the extremely dry climate. At present ammonium nitrate dynamite is favored because of its superior handling qualities and its adaptability to the dry condition found in 90 pct of the mine. In wet holes, which are found only in the lowest bench of the pit and account for the remaining 10 pct of the ground to be broken, Nitramon in 8x24-in. cans, or ammonium nitrate dynamite packed in 8x24-in. paper cartridges, is being used. This latter explosive, which is protected by a special antiwetting agent that makes the cartridges resistant to water for about 24 hr, currently is considered the best available for the work and is preferred over Nitramon. Early churn drill hole shots detonated by electric blasting caps, one in each hole, gave trouble because of misfires caused by the improper balance of resistance in the electrical circuits. Primarily, it was of vital importance to effect an absolute balance of resistance in these circuits, the undertaking and completion of which invariably caused delays in the shooting schedule. Misfires resulting from the improper balance of electrical circuits, or from any other cause, were extremely hazardous, since holes had to be unloaded or fired by the insertion of another detonator. The advent of cordeau, later followed by primacord, corrected this particular difficulty and therefore reduced the possibility of missed holes. After much experimentation, the blasting practice evolved into single row, multihole shots, with the holes spaced 4.5 to 5 m center to center in a row 7.5 to 8 m back from the toe. Sucti shots were fired from either end by electric blasting caps attached to the main trunk lines of cordeau or primacord. The detonating speed of cordeau or primacord gave the practical effect of firing all holes instantaneously. Double row and multirow blasts, fired instantaneously with cordeau or primacord, proved to be unsatisfactory in the type of rock found at Chuquica-
Jan 1, 1953
-
Minerals Beneficiation - Principles of Present-Day Dust Collectors and Their Application to Mining and Metallurgical IndustriesBy R. H. Walpole, J. M. Kane
IN all probability the mining and metallurgical industry as a whole can demonstrate a larger ecorlomic return from installation of dust-control equipment than any other major industrial group. This fact has partially accounted for the marked increase of dust-control installations made during the past decade. While the primary objectives for installation of dust-collecting systems are improved working and operating conditions for men and equipment, the fact that an economic return can be anticipated on salvageable materials is an added advantage which shows in partial or complete equipment write-off. The conditions apply to most phases of the mining, milling, and smelting industry, both non-metallic and metallic. As with any mechanical devices, selection of suitable dust collector equipment involves evaluation of available products with characteristics most nearly meeting conditions of the application at hand. When there is valuable product to be collected, and/or when there are possibilities of air pollution or public nuisance, collector selection is often guided by the maxim of "highest available collection efficiency at reasonable cost and reasonable maintenance." A brief review of dust collector designs will permit outlining of major characteristics of each group. Final selection will involve detailed data against a background of the problem under consideration. The dry centrifugal collectors, see Fig. 1, represent a group of low cost units with minimum maintenance. They are subject to abrasion under heavy abrasive dust loads and to plugging with moist materials. Efficiency drops off rapidly on particle sizes below the 10 to 20 micron group. Because of the large amounts of —10 micron particles in most mining dust problems, they will normally be used as primary collectors and will be followed by high efficiency units. This combination is cspecially popular where the bulk of material is desired in a dry state with wet collection indicated for the final cleanup portion. In remote plant locations, dry centrifugal~ can be used alone if product in dust form has no value or if dust loading is light enough to eliminate a nuisance in the plant area. Where high efficiency dust colleotion equipment must be selected, choice will normally involve fabric arresters, wet collectors, or high voltage Electro-Static precip-itators. Fabric arresters, see Fig. 2, rely on the passing of dust-laden air at low velocity through filter fabric. Velocity ranges from 1 to 3 fpm for the usual installation and may be as high as 10 to 20 fpm in arrangements where automatic frequent vibration or continuous cleaning of the filter media is employed. Fabric is normally suspended in either stocking type or in an enlvelope shape. Collection efficiency is excellent even on sub-micron particle sizes. Equipment is bulky, must be vibrated to remove the collected dust load, and is restricted in applications from temperature and moisture standpoints. Condensation of moisture on the fabric filter mcdia causes plugging of the passages with great reduction in air flow. Temperatures for the usual medias of cotton or wool are 180" and 200°F maximum, although the introduction of synthetic materials such as nylon, orlon, and glass cloth have increased the possibilities of this type of collector for higher temperature applications. The wet-type collector may employ a number of different principles so that entering dust particles in the gas stream are wetted and removed. Principles usually include impingement on collector surface or water droplets, often in combination with centrifugal forces. Variety of wet collector designs is indicated by typical collectors illustrated in Figs. 3 and 4. Collection efficiency is a function of the particular design, although the better collectors will have high collection efficiency on particles in the 1-micron range. Wet collectors have the advantage of handling hot or moist gases, take up small space, and eliminate secondary dust problems during the disposal of the material. At times collection of the material wet is a disadvantage. Wet collectors may also be subject to corrosion and freezing factors. The high voltage Electro-Static precipitator, see Fig. 5, is probably the most expensive type of high efficiency collector. It finds its applications generally in problems in which collectors previously discussed cannot be employed. Its collection efficiency is based on its design features and can be excellent on the finest of fume particles. Material is normally collected dry. Gas temperatures are of no great concern as long as condensation does not occur within the dry type of precipitator and the temperatures do not exceed the limits for materials used in its construction. As with the fabric arrester, provisions
Jan 1, 1954
-
Extractive Mettallurgy Division - Dissolution of Pyrite Ores in Acid Chlorine SolutionsBy M. I. Sherman, J. D. H. Strickland
USE of a hydrometallurgical approach to the oxidation of sulfide ores and extraction of metals therefrom may have advantages over the more common smelting techniques when a low grade deposit is difficult to concentrate or the subsequent separation of metals, coexisting in the ore, is laborious by any known smelting operation. For economic reasons, the most promising oxidants are either atmospheric oxygen or electric power. The use of oxygen, or air under pressure, has recently been revised. Pyrrhotite has been converted to iron oxide and elementary sulfur' and a variety of sulfides have been treated by Forward and co-workers.2-4 Generally sulfate is the end form of the sulfur but with galena in an acid medium, elementary sulfur can be formed." For economic reasons chlorine and ferric iron salts are about the only possible alternatives to the atmosphere as oxidizing agents for base metal sulfides. If aqueous solutions of chlorine or ferric iron are employed, the reduction products can be oxidized electrolytically in situ and used again, thus acting as catalysts for electric power as oxidant. The use of ferric salts for this purpose is established hydrometallurgical practicea but, although chlorine gas has been employed in the dry state at an elevated temperature, its use in aqueous solution at or near room temperature has not found favor. The reaction of chlorine water with the soluble sulfide ion has been studied by several workers,7-9 and both sulfate and elemental sulfur are found as end products, the latter being favored by the presence of a low concentration of oxidant relative to that of sulfide in solutions of about pH 9 to 10. Of direct bearing on the work in hand are an early American patent" and a recent Austrian patent." The former advocates stirring powdered ore with an aqueous solution of ferric chloride chlorine oxides and chlorine. In the latter it is claimed that both metal and sulfur can be obtained by electrolysis, in a diaphragm cell, of a metal ore slurry in brine. Details in these patents are scant and no data or explanation is given for the mechanism of the reaction which, in the Austrian work, is attributed to the (unlikely) action of nascent chlorine at the anode surface. No mention is made of possible differences in behaviour between various ores. Apparatus A complication encountered when working with chlorine water is that a serious loss of chlorine occurs by gas partitioning unless an enclosed system is used and any air space in the apparatus is kept very small and constant. Arrangements were made, therefore, to take out samples for analysis without letting air into the system to replace the liquid removed. For convenience in studying a heterogeneous reaction the apparatus was so designed that a reproducible controlled stirring rate could be maintained and the ratio of surface area of ore to volume of solution was approximately constant throughout any experiment. The apparatus used is shown in Fig. 1. The ground ore was placed in the horizontal cylindrical vessel, A, of about 1 liter capacity, heated by a constant temperature circulating bath pumping water through the concentric jacket, B. By adding chro-mate to this water, an ultraviolet radiation filter effectively surrounded the reaction vessel, greatly reducing any possible photochemical decomposition of chlorine solutions. Stirring was effected by glass paddles, C, attached by an axle to a magnet which was rotated by another powerful Alnico magnet, D, outside the glass end, this magnet being itself rotated by an electric motor electronically controlled to constant speed. Speed could be varied from about 150 to 900 rpm and was measured and held to within 1 pct of a given value. The end of the reaction vessel remote from the stirring magnet was closed by another one-ended glass cylinder, E, connected by thin polyethylene bellows, F, clamped by screw clamps and watertight rubber gaskets to the main vessel. Through E, a glass electrode and calomel electrode projected into the solution and a hypodermic syringe pierced a small bung and allowed acid or alkaline to be added to maintain a constant pH. By pushing the fully extended bellows until the two cylinders touched, from 50 to 100 ml of solution could be forced out through a sintered disk into the three-way tap system, G, either to waste (for flushing purposes) or up into a 10 ml burette where the solution could subsequently be measured out for analysis. The ore samples were introduced at H, the tube being stoppered by a thermometer of —1 to +52ºC range, graduated to 0.1°C intervals. To prevent ore from being ground in the end bearings of the stirrer these bearings were pro-
Jan 1, 1958
-
Financial Objectives Of A Mining CompanyBy E. Kendall Cork
The traditional financial objective for a single mine company has been to operate as frugally as possible and to pay out most of the earnings as dividends. If the business is cyclical (as it is for most metals) the dividends might fluctuate quite widely. When the mine is exhausted the company disappears. This is still quite a viable strategy for a single mine company. It is not however a viable strategy for the world as a whole. The mining industry is built by mine development companies who can mobilize the people and capital to bring new mines into production. Their skills must include marketing, engineering, finance and other politics. It is very rare for a property to be brought in without the support of a major company that can provide all these services. The exceptions will usually have some other form of big brother support, for example the U.S. government uranium contracts at guaranteed generous prices. The mine development company will seek as a minimum to perpetuate itself by developing new mines in order to replace those which are running out. The more common and more ambitious objective is to grow -- that is to add to its ore reserves and current production by developing more new mines. The financial objectives for that company are very different. Obviously if all the earnings were paid out in dividends there would be nothing left to work with. The first financial policy then is to spend an appropriate amount on exploration for new properties. The next is to retain enough of the earnings to provide the capital for new projects at least sufficient for the equity. There is no magic formula as to what proportion of earnings should properly be distributed as dividends by a growth-oriented mine development company. As a rough rule of thumb distributing half or more will probably leave too little to work on and 30% or so is probably a good balance. However the circumstances differ widely from company to company. It may be useful to set an objective for the rate of growth of a company's earnings. Some have picked rates such as 15% per annum compounded. Others have set a target in real terms which might appear as 10 or 11% plus inflation. Obviously the arithmetic of compound interest is very attractive; however in practice there is much variation. Indeed current returns from existing operations swing widely with the business cycle and there is no assurance that economic new properties will be found according to someone's arbitrary time schedule. For example, Western Mining Corporation Limited in Australia explored for 30 years with little to show for it, but then found the great Australian nickel deposits and more recently the huge Roxby Downs copper. That long dry spell could not have fitted anyone's arbitrary calendar of growth and yet they would not have found such orebodies without that long period of effort. Should they have abandoned the search? Once a new property has been found or acquired there has to be a threshold rate of return on the new capital to be invested against which to evaluate the property's economics. Conventionally this seems to be 15% after tax, a number common in other heavy industries as well. In some cases it is expressed as a lower number plus allowance for inflation. Discounted cash flow analysis is a very useful tool but it does not make the decision. In the end a "go" decision depends on judgment of many factors some of which are numbers used in the DCF calculation whose credibility must be examined. It is curious how frequently investment proposals come in with the rates of return very close to 15%. The project advocates know that a number much less than 15% will not fly and that a number much more is not necessary. With much higher nominal and real interest rates of recent years, even though before tax, logic suggests that the hurdle rate should also rise. The power of compound interest is so great that 20% is very hard to achieve in any cash flow projection but 18% may be a sensible yard - stick. Once again it is remarkable how many project proposals come in with an 18% return. On the record the mining industry as a whole has not been overly restrictive in choosing its hurdle rates of return. This is shown by the abundance of metals in recent years and the failure of metal prices to keep up with inflation. All of the foregoing is standard text book stuff.
Jan 1, 1985
-
Primary Blasting Practice At ChuquicamataBy Glenn S. Wyman
CHUQUICAMATA, located in northern Chile in the Province of Antofagasta, is on the western slope of the Andes at an elevation of 9500 ft. Because of its position on the eastern edge of the Atacama Desert, the climate is extremely arid with practically no precipitation, either rain or snow. All primary blasting in the open-pit mine at Chuquicamata is done by the churn drill, blasthole method. Since 1915; when the first tonnages of importance were removed from the open pit, there have been many changes in the blasting practice, but no clear-cut rules of method and procedure have been devised for application to the mine as a whole. One general fact stands out: both the ore and waste rock at Chuquicamata are difficult to break satisfactorily for the most efficient operation of power shovels. Numerous experiments have been made in an effort to improve the breakage and thereby increase the shovel efficiency. Holes of different diameter have been drilled, the length of toe and spacing of holes have been varied, and several types of explosives have been used. Early blasting was done by the tunnel method. The banks were high, generally 30 m, requiring the use of large charges of black powder, detonated by electric blasting caps: Large tonnages were broken at comparatively low cost, but the method left such a large proportion of oversize material for secondary blasting that satisfactory shovel operation was practically impossible: Railroad-type steam and electric shovels then in service proved unequal to the task of efficiently handling the large proportion of oversize material produced. The clean-up of high banks proved to be dangerous and expensive as large quantities of explosive were consumed in dressing these banks, and from time to time the shovels were damaged by rock slides. As early as 1923 the high benches were divided, and a standard height of 12 m was selected for the development of new benches. The recently acquired Bucyrus-Erie 550-B shovel, with its greater radius of operation compared to the Bucyrus-Erie 320-B formerly used for bench development, allowed the bench height to be increased to 16 m. Churn drill, blasthole shooting proved to be successful, and tunnel blasts were limited to certain locations where development existed or natural ground conditions made the method more attractive than the use of churn-drill holes. Liquid oxygen explosive and black powder were used along with dynamite of various grades in blasthole loading up to early 1937. Liquid oxygen and black powder were discontinued because they were more difficult to handle due to their sensitivity to fire or sparks in the extremely dry climate. At present ammonium nitrate dynamite is favored because of its superior handling qualities and its adaptability to the dry condition found in 90 pct of the mine. In wet holes, which are found only in the lowest bench of the pit and account for the remaining 10 pct of the ground to be broken, Nitramon in 8x24-in. cans, or ammonium nitrate dynamite packed in 8x24-in. paper cartridges, is being used. This latter explosive, which is protected by a special antiwetting agent that makes the cartridges resistant to water for about 24 hr, currently is considered the best available for the work and is preferred over Nitramon. Early churn drill hole shots detonated' by electric blasting caps, one in each hole, gave trouble because of misfires caused by the improper balance of resistance in the electrical circuits. Primarily, it was of vital importance to effect an absolute balance of resistance in these circuits, the undertaking and completion of which invariably caused delays in the shooting schedule. Misfires resulting from the improper balance of electrical circuits, or from any other cause, were extremely hazardous, since holes had to be unloaded or fired by the insertion of another detonator. The advent of cordeau, later followed by primacord, corrected this particular difficulty and therefore reduced the possibility of missed holes. After much experimentation, the blasting practice evolved into single row, multihole shots, with the holes spaced 4.5 to 5 m center to center in a row 7.5 to 8 m back from the toe. Such shots were fired from either end .by electric blasting caps attached to the main trunk lines of cordeau or primacord. The detonating speed of cordeau or primacord gave the practical effect of firing all holes instantaneously. Double row and multirow blasts, fired instantaneously with cordeau or primacord, proved to be unsatisfactory in the type of rock found at Chuquica-
Jan 1, 1952
-
Draw Control in Principle and Practice at Henderson MineBy Victor deWolfe
INTRODUCTION The Henderson Mine, located near Empire, Colorado, utilizes a continuous panel caving system to extract ore as one of the world's major producers of molybdenum. Any mine using a caving-by-gravity technique of mining must rely on closely controlled draw of the caved ore. This control is essential to insure proper caving action, to avoid damaging load concentrations of weight and to minimize the dilution of ore with waste material. Henderson is no exception. Draw control is a major factor in all production planning, from long- range plans to short-range and day-to-day ore scheduling. Draw control is reviewed constantly and administered daily in an effort to optimize production efficiency, ore recovery, and cave management. MINING METHOD The cave at Henderson is massive, moving slowly through large panels that are 244 m (800 ft.) wide by 610 m (2,000 ft.) long. Generally two cave areas are drawn at one time. The areas under active draw vary in size but can be as large as 244 m (800 ft.) by 244 m (800 ft. ) containing 400 draw points. Each draw point contains 45,360 mt (50,000 st) on the average and takes about two and one half years to exhaust. A complete panel is worked for seven to ten years. No pillar exists between panels, but rather a buffer zone of broken ore, or "static face," is left in each panel to be drawn with the adjacent, yet-to-be-caved panel in efforts of minimizing dilution of a working area from an exhausted one. (Figure 1) Production drifts are driven on 24.4 m (80 ft.) centers through the ore body. Between the production drifts are funnel-shaped draw bells on 12.2 m (40 ft.) x 24.4 m (80 ft.) centers to receive ore from the cave. Each bell is accessed by two draw points, one from the production drift on either side, thus forming a 12.2 m (40 ft.) x 12.2 m (40 ft.) draw pattern. Extraction of the ore is by rubber-tired, 3.8 m3 (5 yd3) load-haul-dump equipment. The LHDs then tram the ore a maximum of 49 m (160 ft.) to ore passes. Cave initiation and bell development are done from the undercut drifts which are parallel to and 17 m (55 ft.) directly above the production drifts. Longhole rings are drilled and blasted from the undercut drifts to define the bells and establish the undercut for caving. (Figure 2) DRAW CONTROL Since the cave line at Henderson is constantly advancing, it is necessary to be continually initiating new cave at one end while exhausting it at the opposite end. There must exist, therefore, an angle on the ore-waste contact in the broken rock from initiation to exhaustion. The basic concept of draw control is to keep this angle as smooth and even as possible, particularly at the time of exhaustion. If this is achieved, draw points are exhausted more or less in a line, avoiding pockets of remaining ore surrounded by exhausted areas. These pockets would cause spotty ore extraction at the time of exhaustion, increasing the amount of dilution occurring while introducing the potential for significant weight problems in the production area. To arrive at the desired angle on the ore- waste contact, maximum tonnage percentages are assigned to each row of draw points increasing at 10% or 15% increments (depending on cave size and velocity of draw) working away from the cave line. The available tonnage indicated by these percentages is the maximum allowable tonnage to be extracted from each draw point until the available tonnage percent- age is increased. As the cave moves, these percentages increase for each draw point regularly. However, in general the tonnage drawn from each draw point is kept at about 50% of this allowable maximum in order to maintain adequate available tonnage in the cave to sustain production for seven months if cave initiation were to cease. This available tonnage cushion is a safeguard built into the draw control program at Henderson to accommodate fluctuations in the rate of cave advance. When draw points move past the row of 100% tonnage availability, they are drawn past the desired 50% at the same increments per row until exhausted. (Figure 3) To achieve proper draw control, the number of LHD buckets to be taken from each draw point is assigned daily. The actual buckets taken, which may at times deviate from the
Jan 1, 1981
-
Applications Of Gravity Beneficiation In Gold Hydrometallurgical Systems (1984)By D. E. Spiller
Introduction Precious metals recovery from ore can generally be accomplished using gravity concentration, flotation, and/or hydrometallurgical (leaching) techniques. The objective of this paper is to show why gravity concentration can be an important part of recovery systems that employ leaching as the primary unit operation. A brief discussion of modem gravity concentration equipment is also presented. Discussion Gravity concentration of ores has generated increasing interest in recent years. Reasons for this interest include: • Gravity concentration is environmentally attractive. There is little or no use of reagents. Hence, it is relatively nonpolluting. • The cost of cyanide has continued to increase. Therefore, cost savings may be realized whenever leaching feed tonnage can be reduced by preconcentration. • Compared to flotation and leaching, gravity equipment costs are low per processed ton. Field installation costs for gravity circuits usually are less because many' units are supplied as self-contained modules. Also, the cost required to supply services, particularly power, to a gravity plant site are also less. In situations where preconcentration at coarse particle size is applicable, significant grinding equipment savings may be possible. • Gravity circuit operating costs are also relatively low compared to typical flotation and leaching circuits. Reagents, power, maintenance, and manpower savings in a well-engineered gravity plant may be realized. Again, if grinding is reduced, significant power and steel (media and liners) savings are possible. •In recent years, more efficient gravity concentrating devices have been developed. Benefits to Precious Metal Leaching Gravity beneficiation can complement precious metal leaching in two ways. First, the recovery of coarse liberated values before leaching may reduce leach time requirements and may reduce reagent consumption. Second, gravity preconcentration can reduce the size of a leach plant by decreasing the quantity of material to be leached. Coarse gold and silver have been shown to leach rather slowly. Kameda (1949) and Habashi (1967) have investigated the kinetics of cyanide leaching systems. They concur that in a heterogeneous reaction, the rate of gold and silver dissolution is directly proportional to the surface area. Thus, the instantaneous rate of dissolution for spherical 0.37 mm (400 mesh) gold is theoretically -25 times faster than for the same amount of gold at .841 mm (20 mesh), based on data from Fuerstenau, Chander, and Abouzeid (1979). Conversely, coarse liberated, +.841 mm (20 mesh), gold is more readily recovered by gravity concentration than is fine, -.037 mm (400 mesh) gold. Therefore, it is apparent that the two recovery systems complement one another. Figure 1 data demonstrates the potential synergism. A sample of - 3.327 mm (6 mesh) Nevada gold-bearing ore was cyanide leached using conventional bottle-roll test procedures. Gold extraction was determined as a function of leaching time. A second sample split from the same leach feed material was hand jigged to remove a coarse heavy mineral fraction, including virtually all of the +.210 mm (65 mesh) liberated free gold. This second sample, with the coarse gold and heavy minerals removed, was subjected to an identical cyanide leach procedure. Figure 1 presents the resulting comparative extraction data. Note that the percent gold extraction for the sample containing no +.210 mm (65 mesh) free gold includes the coarse gold recovered by gravity. The data show that the sample containing coarse gold required about 72 hours of leaching time to achieve 80% extraction. This compared to about 22 hours of leaching time for 80% gold recovery from the sample that contained only -.210 mm (65 mesh) free gold. Thus, there was a 69% reduction in leaching time. The improved extraction data is not wholly attributable to coarse gold removal, but rather it was the combination of gold removal and rejection of other heavy mineral cyanide consumers or leach retardants. Further investigation was not warranted at this time. Preconcentration is the second manner in which leaching systems can benefit from gravity concentration. The premise is that preconcentration can reduce the quantity of leach feed, which, in turn, may reduce leaching costs. Figure 2 presents preliminary data developed by CSMRI for US Minerals Exploration (USMX). Centennial Exploration Inc., in agreement with USMX, is proceeding with evaluations to determine the suitability of various processing schemes for recovery of gold values from the Montana Tunnels property. The data shows how the ore can be preconcentrated by gravity techniques to result in a reduced feed tonnage to secondary extraction techniques, presumably flotation or cyanide leaching. Testing has shown that Reichert cones, followed by treating the cone concentrate on spirals, can deliver about 88% gold recovery in about 13% weight, that is, 87% weight rejection. Consequently, fine grinding and reagent costs are attributable to only 13% of the plant feed rate. Cost data is not yet available, but the potential exists for significant cost savings.
Jan 1, 1985
-
Producing - Equipment, Methods and Materials - Laboratory Study of Rock Softening and Means of Prevention During Steam or Hot Water InjectionBy J. L. Huitt, B. B. McGlothlin, J. J. Day
Laboratory tests were made with pure minerals and actual reservoir rock samples to study the effects of hydrothermal (steam m hot water) treatments on reservoir rock properties. These tests showed that hydro-thermal treatment of many reservoir rocks can result in significant rock softening. The softening was attributed primarily to the partial destruction of dolomite and kaolinite and the synthesis of montmorillonite in the presence of excess silica. In many cases, the softening was great enough to cause considerable healing of propped fractures; therefore, a serious reduction in welt productivity could result. In other tests it was found that the addition of ammonia to a hydrothermal treating fluid in a concentration as low as 0.013 Ib/lb of water not only could prevent rock softening but could cause rock hardening. The results of X-ray diflraction analyses of rock samples showed that when ammonia was added to the treating fluid, ammonium-mica and analcite were formed instead of montmorillonite. No significant permeability damage was observed in the sandstones that were subjected to the ammonia-hydro-thermal environment; in some sandstones, permeabifity improvements resulted. INTRODUCTION As the use of steam or hot water becomes more prevalent in well stimulation methods. the need for information on the effects of such treatments on reservoir rock properties becomes increasingly apparent. Several works have been published on high-temperature changes in rock properties,',' but these are more applicable to in situ combustion operations than to steam or hot water injection processes. The mineralogical literature contains many publications which report on the changes occurring with various pure minerals in hydrothermal systems. A review of this literature denotes the ease with which entirely new, crystalline mineral phases can be synthesized from other minerals in hydrothermal environments at temperatures, pressures and residence times typical of those encountered in oilfield thermal recovery or stimulation processes. Discussions of many of these experiments are given by Deer et al. Grim,' Roy et al., Zen\ and Hawkins.' One of the most significant of these pure mineral studies is the hydrothermal synthesis work of Levinson and Vian" in which montmorillonite was synthesized from naturally occurring minerals; i.e., kaolinite, quartz and carbonate minerals (particularly dolomite). These reactions occurred at 575F in only 2 days and at 300F in 5 days. These results may be applicable to petroleum reservoir rocks since the minerals studied were those which are commonly found in sandstones. Furthermore, the environmental conditions imposed in the studies were very similar to those involved in thermal stimulation of petroleum reservoirs, e.g., steam or hot water injection. Other studies have suggested that weak rocks could be hardened by "electrochemical induration", a process in which an electric current is applied to a clay-containing rock body. These tests can be regarded as hydrothermal treatments since they were conducted in some instances with aqueous solutions and since clay temperatures during the electrical treatment reached a maximum of about 100C. Although a number of studies of the reaction of pure minerals have been reported, very little has been published on the reactions of petroleum rock-hydrothermal systems. No work has been reported on preventing the more detrimental rock changes in rock softening which might occur during the injection of steam or hot water into reservoirs. The studies described in this paper were conducted to provide such information. EXPERIMENTAL APPROACH The laboratory tests included studies of the effect of hydrothermal treatment on core samples from several different reservoirs. The hydrothermal treatments (simulated steam treatments) were conducted with distilled water at 575F, for the most part, for periods of 2 to 6 days. This temperature level was selected because it represented that temperature which would probably prevail in several cases under consideration for steam injection projects. The core samples, as well as the pure mineral samples, were contained in high-pressure stainless steel, autoclave-type pressure vessels. The effects of the hydrothermal treatments were evaluated by measuring the penetrometer hardness, formation rock embedment strength and permeabilities of the core samples before and after the treatments (Fig. 1)'" In addition, the mineralogical changes in the specimens were studied by X-ray diffraction. Concomitant with the core sample studies, the mineralogical changes were studied in greater detail by conducting hydrothermal synthesis experiments with pure minerals at similar temperature levels and residence times. For the most part, samples of finely-crushed pure dolomite.
-
Technical Papers and Notes - Institute of Metals Division - The System Mercury-ThoriumBy W. Rostoker, R. F. Domagala, R. P. Elliott
The phase equilibria of the Hg-Th system over the composition range 0-100 pct Th and temperatures up to 1000°C have been studied for a small-volume, closed system. The solubility of Th in liquid Hg is about 5 pct at 300°C and decreases sharply with decreasing temperature. Two intermediate phases occur, Hg3 Th and HgTh. The structures of these are hexagonal (nonideally close-packed) and face-centered cubic, respectively. The HgTh phase decomposes eutectoidally at 400°-500°C. The solubility of Hg in solid thorium seems to be negligible. AFULL-phase diagram for this system would have to be defined on temperature-composition-pressure co-ordinates. This paper describes the pseudo phase diagram of a closed system, that is, where the alloy enclosed in a small volume equilibrates with a vapor pressure of mercury dictated by composition and temperature. Because of the experimental difficulties in studying a system of this nature, many of the phase relations can only be sketched. Alloy Preparation Alloys over the full range of composition were made from triple distilled mercury and one of two grades of thorium. For the bulk of the work, a calcium-reduced metal in sintered pellet form of reported 99+ pct total thorium content was used. Arc-melted specimens of this thorium gave a hardness of 135 VPN. The microstructure showed small primary dendrites of ThO2. A number of alloy compositions were made with a high-purity, iodide-decomposition thorium metal. The are-melted hardness of a button of this material was 35 VPN. Although the microstructure of the arc-melted specimens showed no dendrites of ThO2, there was definite evidence of an unidentified phase enveloping the grain bound-aries. There were no distinguishable differences between the constitution of alloys made with the two grades of thorium metal. Under normal conditions thorium is not wetted by liquid mercury. The film of ThO2 on all thorium metal cannot be penetrated by either liquid or vaporous mercury. It was therefore necessary to comminute thorium in the presence of mercury under such conditions that oxide films could not reform on the newly exposed metal surfaces. This was accomplished by the use of a high-speed, carbide-tipped rotary cutter incorporated in a chamber purged with argon and connected at the bottom to a demountable Vycor bulb containing a weighed amount of mercury. This experimental device is fully described in a separate paper.1 Alloy compositions were calculated by weighing the empty bulb, the bulb containing the mercury, and the bulb containing the mercury and the thorium chips. Many alloys were analyzed chemically for thorium and/or mercury after subsequent homogenization; the agreement between analyzed and calculated compositions was invariably very close. Bulbs containing the requisite amounts of mercury and fine thorium chips were clamped off, removed to a sealing unit, evacuated and sealed. Amalgamation under these conditions proceeded rapidly even at room temperature. To insure homogeneity, the specimens were annealed to 300-400°C. Alloys containing less than 30 pct Th remained pasty after all treatments, indicating an equilibrium condition of liquid plus solid. Alloys with more than 30 pct Th were transformed into a dark powdery product. These latter specimens were annealed for times of up to 1 week to complete interdiffusion. Many of the alloy compositions are pyrophoric. On exposure to air they oxidize with considerable evolution of heat to a mixture of ThO2 and free mercury. It was mandatory that alloy specimens be handled in a "dry box" purged thoroughly with argon. All X-ray diffraction specimens were powdered, screened, and sealed in capillary tubes within the dry box. Experimental Procedures Thermal analysis experiments, useful only in the mercury-rich region of the system, were conducted with the alloys in their original containers. A reentrant thermocouple well formed an integral part of the bulb. These bulbs were heated in a silicone oil bath and cooled in a dry ice-acetone mixture. The rates of heating and cooling were slowed by immersing the specimen bulb in a larger tube containing silicone oil. This provided a suitable thermal lag. In all tests, pure mercury was run as a basic standard. While the invariant reaction at about the melting point of mercury was detected by thermal analysis, the heat effect at the liquidus was not sufficient to produce an inflection in the cooling curve. It was necessary to determine the liquidus temperatures at the mercury-rich end of the system by "breaks" in electrical reslstivity versus temperature curves for individual alloys. The apparatus for this purpose consisted of a pyrex tube about 2 in. diam and 12 in
Jan 1, 1959
-
Reservoir Engineering- Laboratory Research - The Effect of Connate Water on the Efficiency of High-Viscosity WaterfloodsBy D. L. Kelley
High-viscosity water injection has been proposed for use in reservoirs containing high-viscosity crude oils. Previous publications have largely ignored the possible effects of the connate water on the proposed process. This paper describes experimental work which indicates that the connate water will be forced ahead of the injected water to form a bank of low-viscosity water. This decreases the oil recovery which would be expected if such a bank were not formed. These effects are shown for a range of fluid mobilities and connate-water saturations for a five-spot injection system. In general, oil recoveries using viscous water are significantly greater than for untreated water even though they are less than would be expected if no connate water bank were formed. INTRODUCTION The effect of mobility ratio on the oil recovery of wa-terfloods has been known for many years. Muskat first pointed out that the fluid mobilities (k/µ) in the oil and water regions would affect the performance of the water-flood, and he estimated the general effect of these variables.' Since this early work, studies of the effect of mobility ratio on secondary recovery have been reported where mathematical,' potentiometric3 and scaled flow models' were used. These studies have shown that a reduction in the mobility ratio between the oil and the displacing fluid would cause additional oil recovery when water-flooding reservoirs containing viscous crude oils. Studies reported by Pye- nd Sandiford 8 have indicated that chemicals to increase injection water viscosity are now available and can be used to reduce the over-all mobility ratio of a waterflood. Where mobility ratios are controlled by the injection of viscous fluids, the connate water of the reservoir can play an important part in the displacement of the reservoir oil. The purpose of this study was to determine the effect of the connate-water saturation in waterfloods where viscous waters are used for injection. DISPLACEMENT OF THE CONNATE WATER Russell, Morgan and Muskat7 were the first to recognize the mobility of connate waters in waterflooding. They conducted waterfloods on oil-saturated cores containing 20 and 35 per cent irreducible water saturations, and found that from 80 to 90 per cent of the "irreducible" water was produced after only one pore volume of water was injected. However, their experiments were conducted at rates of flow significantly higher than those ordinarily occurring in waterfloods. Also, the cores were only from 4.0 to 8.5 cm long. Brown 4 studied a 100-cm linear sand pack which had been prepared to contain connate water and oil. He used 140- and 1.8-cp oils with injection water of essentially the same viscosity as the connate water. He found that all of the connate water was displaced by the injection water in both cases. However, the injection volumes required for complete displacement of the connate water were considerably higher in the case of the more viscous oil. To verify the results of the foregoing experiment, a 10-ft-long linear model was constructed by packing 250-300 mesh sand in a 1/2-in. diameter nylon tube. The model was evacuated, saturated with a brine of 1-cp viscosity, and flooded with a 41-cp mineral oil to the irreducible water saturation of 10.9 per cent. The model was then waterflooded by the injection of a water solution which had an apparent viscosity of 42.6 cp. The solution consisted of 0.5 per cent methylcellulose in distilled water. The viscosities of the oil and connate water were measured with an Ostwald viscosimeter. The viscosity of the polymer solution was calculated by Darcy's law using pressures measured during actual flow conditions. The ratio of the mobility in the oil region to the mobility in the inject ion-water region was approximately 0.32. The mobility ratio of the oil region to the connate-water bank was approximately 14. The mobility ratio between the connate-water bank and the injection water region was 0.024. Approximately 84.5 per cent of the recoverable oil was produced before water breakthrough. Immediately following breakthrough, oil and connate water were produced at an increasing water-oil ratio until the viscous injection water broke through. At viscous-water breakthrough, 96 per cent of the original connate water had been produced. After breakthrough of the viscous water, there was no additional production of connate water or oil. The near-
Jan 1, 1967
-
Part XII – December 1968 – Papers - Evidence for the Importance of Crystallographic Slip During Superplastic Deformation of Eutectic Zinc-AluminumBy Charles M. Packer, Oleg D. Sherby, Roy H. Johnson
Originally round tensile specimens of a eutectic Zn-A1 alloy develop elliptical cross sections during superplastic deformation. This observation, coupled with a detailed study of the microstructure and preferred orieniation, suggests that crystallographic slip and continuous grain boundary migration or re-crystallization are important processes during super-plastic deformation. In spite of the extensive activity in superplasticity1-15 and the numerous explanations proposed, no single model has had universal acceptance. It has been established, however, that the general requirements for superplastic extension of two-phase alloys include an extremely fine, stabilized grain size of the order of a few microns, a temperature about equal to or greater than one-half the melting point, a critical range of strain rate, and a similarity in the mechanical strength of the major phases. The proposed models can perhaps best be characterized in terms of the important phenomena associated with them. These phenomena include: phase instability,1 diffusional creep by volume diffusion3 or grain boundary diffusion4,5 slip and continuous grain boundary migration or recrystalliza-tion,= grain boundary Sliding,7-9,13,14 and dislocation glide.'5 In this paper, experimental observations will be reported which support a model involving slip and continuous grain boundary migration or recrystalliza-tion. Specifically, a correlation will be made between this model and the development of elliptical cross sections as originally round specimens are superplas-tically deformed. For the most part, superplasticity studies have been conducted with eutectic or eutectoid alloys. Probably the most thoroughly studied material has been the monotectoid Zn-A1 alloy.1,2,6,12,13,15 No attention to the eutectic Zn-A1 alloy has previously been reported, and the results discussed in this paper represent part of a general study of the superplastic properties of this alloy. MATERIALS The alloys used in this investigation were prepared by melting appropriate quantities of 99.99+ pct A1 and 99.999 pct Zn in air, mixing, and pouring into a water- cooled stainless-steel mold. Wet-chemical analysis was conducted with each heat of alloy prepared, using the procedure of Fish and smith.16 The composition of the eutectic alloy was 95.1 wt pct Zn. Ingots about 2 in. thick were rolled to 0.4-in. plate at about 300°C with a reduction of 5 to 10 pct per pass. Specimens were machined from the plate with the tensile axis parallel to the rolling direction. The specimens were round, with 0.150-in.-diam, 1.25-in.-long gage length, and 0.25-in.-diam threaded grip sections. EXPERIMENTAL PROCEDURE Specimens were mounted inside a uniform-temperature quartz tube which was surrounded by a double elliptical radiant furnace with a 12-in.-long uniform-temperature hot zone and a low thermal capacity. The tube extended through the top and bottom of the furnace and permitted rapid quenching of the loaded specimens when quickly filled with cold water at the conclusion of the test. The quench precluded any effects on specimen microstructure from a normal, slow cool. Constant stress was applied to test specimens by suspending a load on a constant stress cam of the type described by Hopkin.17 The design of this cam permitted application of a constant stress for elongations up to 200 pct. For greater elongation, approximately constant stress conditions were maintained by systematically reducing the load manually. RESULTS As part of an investigation of the superplastic properties of the eutectic Zn-A1 alloy, evidence was obtained for the development of elliptically shaped cross sections as originally round specimens were extended. For example, after an elongation of about 100 pct, a round specimen with an initial diameter of 0.150 in. became elliptical with major and minor axis of 0.128 and 0.88 in., respectively. Photographs are presented to illustrate the ellipticity developed during superplastic deformation, Fig. 1. The specimen shown was deformed at a stress of 500 psi, at a temperature of 285°C, and a strain rate of 2.28 x 10-2 min-1. The strain-rate sensitivity exponent* was measured at *The strain-rate sensitivity exponent, m, is defined as d In o/d In c where o is the steady-state flow stress and E is the strain rate. this temperature and in the strain rate range 10"3 to 10-1 min-1 was found to be about 0.5. This value is typical of those observed with superplastic materials. The material studied exhibited negligible strain hardening during superplastic deformation, the creep rate remaining constant under constant stress and temper-
Jan 1, 1969
-
Natural Gas Technology - Evaluation of Underground Gas-Storage Conditions In Aquifers Through Investigations of Groundwater HydrologyBy P. A. Witherspoon, R. W. Donovan, T. D. Mueller
The use of petroleum-barren aquifers for underground storage has become extremely important to the natural-gas industry. A critical problem in assessing the feasibility of a specific aquifer for such use is the permeability determination of the caprock over the proposed storage project. The approach used here is to conduct both static and dynamic field tests on the aquifer being analyzed. Valuable information on the possibility of communication between the storage aquifer and any other aquifers above can be obtained by measuring hydrostatic water levels and water analyses. Significant differences in such data give evidence of the lack of communication between the intended storage reservoir and other horizons. The dynamic approach requires that one well be pumped in the storage aquifer, and changes in fluid levels recorded in both the aquifer and its caprock. The interpretation of the data from such pumping tests involves the solution of nonsteady radial flow in an infinite aquifer and the influence on such flow of a leaky caprock. A finite-difference model has been used to investigate this problem, and the transient behavior has been solved numerically with a digital computer. It has been found that the pressure transients in the storage aquifer are not affected significantly by moderate caprock leakage. The pressure behavior of the caprock is a much better indicator of the degree of leakage, and generalized solutions for this behavior are included. Field data are presented to demonstrate both the static and dynamic approach. If is concluded that appropriate investigation of the groundwater hydrology in an aquifer-type gas-storage project can provide much valuable information for determining the effectiveness of the caprock to hold gas. INTRODUCTION Underground storage of natural gas in the United States has been developing at a rapid rate over the past few years. In 1955, the total gas-storage capacity was about 1.6 trillion cu ft; by 1961, this figure was almost 3.2 trillion cu ft, an increase of 100 per cent in six years.' This trend un- doubtedly will continue because the economics favor the development of gas storage, as opposed to the construction of new pipelines, to meet the inherent cyclic demand for fuel in the metropolitan areas of this country.' About 15 per cent of the current underground gas storage has been developed in petroleum-barren aquifers, i.e., geological domes or anticlines in which no commercial quantities of oil or gas had been produced prior to the storage operations. The necessity for using barren aquifers outside many metropolitan areas of this country has been due to the lack of depleted oil or gas fields that were near enough and large enough to meet the demands of such consuming areas. Pipeline companies have developed aquifer storage along their transmission lines to meet the fluctuating needs of their complex systems. Considerable thought has also been given to the problem of storing gas in a structureless aquifer, both in this country' and in the Soviet Union outside the city of Leningrad.'," Conditions such as these have led to the development of aquifer gas-storage projects in many parts of the U. S. Most of these developments have centered in the Mid-Continent area, and the greatest amount of activity has been concentrated in Illinois.6 Thus, the use of petroleum-barren aquifers for gas-storage purposes has become extremely important to the natural-gas industry. There are three basic problems in developing aquifer-type storage: (1) finding an adequate geologic structure, (2) finding a suitable storage reservoir within the structure and (3) determining the tightness of the caprock over the intended storage zone. The first two problems can be solved by applying conventional methods of exploration geology, but once these problems are solved, the question arises as to why no oil or gas is present in an otherwise favorable setting. Two situations are possible: (1) an adequate source bed was never present, or (2) a source bed was present but the petroleum seeped away because of a leaky caprock. Determining the tightness of the caprock is one of the most critical problems in assessing the feasibility of a specific aquifer for storage purposes. In attacking this problem, one usually takes cores of the caprock and subjects them to a rigorous investigation. Such core data are desirable, but they only detail the matrix properties and cannot be expected to reveal the gross characteristics of the caprock. Several gas-storage projects in the U. S. have had considerable leakage where
-
Reservoir Engineering-Laboratory Research - Experimental and Calculated Performance of Miscible Floods in Stratified ReservoirsBy R. A. Fitch, J. D. Griffith
A performance calculation method was used in conjunction with experimental studies to develop means of predicting and interpreting miscible floods and to explore possible methods. of improving their efficiency. The calculation method is based upon the division of reservoirs into multiple independent zones or strata. Comparison was made with some experimental floods and with a field project to obtain some measure of the applicability of the method. Two aspects of miscible flooding were considered: (I) the displacement of a miscible front through a reservoir, and (2) the distribution and utilization of the solvent volume injected to maintain miscibility. Calculations and experihental observations indicate that alternate gas-water injection behind a miscible front significantly improves miscible flood performance, both within a single stratum and in a multistrata reservoir. Calculations were made on the extent to which miscibiliry is maintained by a given solvent volume in a stratified reservoir. Two alternate criteria for determining the optimum volume of solvent for injection are discussed. The preinjection of a small volume of water ahead of the solvent is suggested as a method of obtaining more efficient utilization of solvent. Calculations and experiments were made to investigate the effects of water preinjection. INTRODUCTION Miscible fluid displacement as a possible means of recovering oil has been the subject of extensive research and numerous field tests over the past several years. This work has brought out both favorable and unfavorable features of the miscible recovery methods. Many tests have shown that a miscible fluid can displace all of the oil contacted, leaving no high residual oil saturation, as is characteristic of immiscible displacements. The miscible methods have proven dificult to control, however, as evidenced by early breakthrough of the displacing fluid and poor sweep efficiency in several field projects. It became apparent early in the investigation of miscible displacement that the development of improved techniques and better methods of control would be required to extend the range of applicability to any significant portion of our petroleum reservoirs. The purpose of this study was to consider the problem of designing miscible floods to obtain better performance. A performance calculation was used in conjunction with experimental studies to develop means of predicting and interpreting miscible floods and to explore possible methods of improving their efficiency. Two aspects of miscible floods were considered separately in this study and the results are presented in two parts. The first part concerns the manner in which the miscible front is displaced through the reservoir. In these calculations the condition of miscibility between the reservoir oil and the displacing fluid is assumed. In the second portion the distribution and utilization of the preinjected solvent in maintaining rniscibility is considered. This portion dealing with solvent utilization applies only to the enriched gas or LPG slug processes. CALCULATION METHOD AND EXPERIMENTAL STUDIES COMPUTATIONAL MODEL The calculations for expected reservoir performance are based upon the multi-strata concept of reservoir properties. The method assumes multiple, independent strata (no crossflow between strata) and explicitly includes variations in patterns, injectivity, areal sweep and displacement efficiency. Lateral variation in permeability within the strata (for example, directional permeability) may be considered in the calculations, provided the variations are similar in all strata. The calculations based on this model furnish the rates of injection and rates of production of both oil and the displacing fluid for the composite system of strata. To carry out calculations on the mathematical model described, information is required on the performance of the displacement process under consideration in a single stratum element of the pattern to be used. In particular, for a given pattern and displacement process, data are required relating injectivity and composition of the produced stream to the volume of fluid injected. Data on the variations in areal sweep must also be available if it is desired to track the areal sweeps in the multi-strata model. These data may be obtained from experimental work such as model studies or other suitable methods. This representation of reservoir properties is, of course, an approximation and may be inappropriate in some cases. But the representation is not an arbitrary one since most oil reservoirs are essentially successive layers of sediment with the net producing pay zone often comprising but a fraction of the gross formation thickness. The fact that permeabilities measured in the vertical direction are frequently but a fraction of the horizontal permeability adds some evidence to the validity of this model. This type cal-
Jan 1, 1965
-
Institute of Metals Division - The Effect of Stress on X-Ray Line ProfilesBy R. I. Garrod, R. A. Coyle
The shapes and positions of X-ray reflections from specimens of copper, steel, and aluminum alloy haue been examined in the elastic and plastic ranges both while the specimen was under stress and in the unloaded condition. For the aluminum alloy the shape was unaltered by the application of stress either within the elastic limit or in the plastic range provided that no additional plastic strain was induced. In copper the broadening accompanying plastic deformation was very slightly reduced when the specimen was unloaded. A similay but more marked elastic component of broadening was also found for steel, but in this case below the yield stress. Line profiles corrected for instrumental and particle-size broadening indicate very large internal stresses in local regions of the plastically deformed metals. The results are discussed in terms of a recent suggestion that the heterogeneous dislocation distribution between the cells and their boundary walls plays a major role in the peak shifts and broadening of the X-ray reflections. STUDIES of the X-ray line profiles from strained polycrystalline aggregates concentrate usually on one or the other of two main parameters: a) the displacement of the peak of the intensity contour from its position for a strain-free aggregate, or b) the shape of the profile. From peak shifts data can be obtained either on the relation in both the elastic and plastic ranges between applied external stress and average lattice strains in a given (hkl) direction, or, alternatively, on the residual lattice strains which are present after a plastically deformed specimen is unloaded.' On the other hand, the shapes of the broadened profiles from cold-worked metals can be analyzed to separate the broadening produced by small particle size and by heterogeneous lattice strains.' In this paper the terms "size broadening" and "strain broadening'' are used in the general sense adopted by warren.' In the past, apart from two early qualitative observation, it has been customary to examine only the movements of the peaks of the profiles while the specimen is actually under load, since the line broadening induced by plastic strain remains after removal of the external stress. Consideration of the implications of existing data of this type suggests, however, that fruitful additional information on a number of fundamental aspects might be gained by careful examination of whether the X-ray line profile is in fact different in the loaded and unloaded states of the specimen. By taking advantage of the sensitivity and convenience of modern diffractometer techniques it is possible to explore with relative ease the magnitude and importance of any elastic effects which may be superimposed upon the well-known permanent changes in profile. The main aim of the work to be described was thus to investigate this point for typical metals and alloys. For this purpose annealed specimens were extended first elastically and then plastically and the positions and shapes of X-ray reflections were recorded. Initially it was anticipated that prime interest would center on observations within the plastic range; it has been found, however, that small changes in profile sometimes occur both before and after the nominal elastic limit of the material is reached. It is shown that the results obtained have important implications in relation to the structural changes and processes associated with deformation. I) EXPERIMENTAL To enable the diffraction lines to be recorded while the specimen was under uniaxial-tensile stress, a small hydraulic testing machine was designed and constructed for direct attachment to the goniometer of a Philips diffractometer. The specimens, which were machined from 1/2-in.-diam rod and had a central rectangular section 3/8 by 1/16 in. over a gage length of 1 in., were held in the machine by split collets mounted in grooves in the cylindrical ends of each specimen. No special precautions were taken to ensure precise axiality of loading. Constant oil pressure was maintained by a lever and weights system and transmitted to the loading rig by flexible pipe. The actual load on the specimen was measured by a load cell in the machine to an accuracy of * 1 pct. To enable smooth X-ray profiles to be obtained the specimen and machine were oscillated continuously during recording through *7-1/2 deg about the normal half-angle position of the goniometer. The three materials chosen for the investigations were high-purity copper as representative of a ductile fcc metal, a low-carbon steel for a bcc metal, and an aluminum alloy as a material in which the proof stress/ultimate strength ratio is high. Details are as follows. a) Copper. 99.999 pct purity. After machining the specimen surface was polished mechanically and
Jan 1, 1964
-
Institute of Metals Division - Determining Boron Distribution in metals by Neutron ActivationBy Barbara A. Thompson
A previously reported high-resolution method for the location of boron-rich areas in metallurgical and biological specimens was been adapted for general use on a routine basis. The rnetlzod utilizes neutron activation and autoradiograpizy. Alpha-particles emitted by boron nuclei upon neutron capture are recorded on a photographic emulsion. The resulting a-particle tracks show the location of boron-rich areas. Experimental techniques, interferences, and limitations of the method are discussed in detail. The method is most useful where there is marked segregation of boron. In this type of sample, the segregation can be observed when the nominal boron concentration is as low as 0.0006 pct. THE positive identification and location of boron-rich areas in metals is frequently of great interest in metallurgical work. Unequivocal identification is often difficult to make by conventional metallo-graphic methods. Recently, a method has been described which accomplishes this objective by neutron activation and autoradiography.l-3 The method can be described briefly as follows. Upon neutron capture, a -particles are emitted by boron nuclei according to the following reaction: ,Blo + n - ,a4 + 3Li7 + 2.4 mev The energy is dissipated as kinetic energy of the products. By irradiating a boron-containing sample in contact with a photographic emulsion and subsequently developing this emulsion, a-particle tracks are obtained whose location corresponds to the location of boron-rich areas in the sample. Two factors combine to make the reaction extremely specific for boron. The first is the unusually high (755 barns) cross section of boron for thermal neutron capture. The second is the higher neutron energy required to produce (n, a ) reactions in essentially all other nuclei except lithium. These two factors make the method specific for boron by six to seven orders of magnitude when a predominantly thermal neutron source such as the Brookhaven reactor is used. The reported limit of detection of this method is of the order of 0.01 pct B., The present work was originally undertaken to determine whether this limit could be lowered by use of a thinner emulsion. However, initial experiments showed that in order to use the method at all, it was necessary to reestablish the optimum experimental conditions in terms of the available irradiation facilities. It is the purpose of this paper to describe these experimental conditions in detail, to discuss the factors influencing sensitivity, and to evaluate several techniques for increasing sensitivity. EXPERIMENTAL A) Preliminary Experiments—The first measure-ments were made using samples of crystal oriented silicon steel containing various concentrations of boron. In the later experiments, samples of various high-temperature alloys such as M-252, hcoloy 901, Nichrome V, and so forth, were used. Faraggi, et al.,2 reported that the lower limit of sensitivity in this type of sample was about 0.01 pct B using nuclear emulsions of 50- u thickness. but that it should be possible to extend this limit by the use of thinner emulsions. Accordingly, we first used Kodak Auto-radiographic Stripping Film (Permeable Base) which has an emulsion thickness of only 5 µ. This was mounted on the metallographic specimens according to the technique described by Boyd.4 The emulsion remained in contact with the metal surface throughout exposure and development. Since the emulsion is transparent after development, the autoradiograph and metal surface can be viewed simultaneously and any correlation between film blackening and structure of the metal can be made directly with no problems of realignment. Because the silicon steel is readily attacked by moisture alone, it was necessary to apply a protective coating to the metal surfaces before mounting the emulsion. The coating was made extremely thin in order to absorb as few a-particles as possible. Boyd4 and Gomberg5 have discussed various plastics used for this purpose; however, none was sufficiently impermeable to prevent chemical attack of the steel during the developing process. This attack resulted in the production of gross chemical artifacts in the emulsion. It was, therefore, necessary to use the method of Wolfsberg and John6 as follows. A very thin (approximately 1 µ) coating of Plexiglas II was applied by dipping the sample in a 2 pct solution of Plexiglas II in dichloroethylene. Then, because the emulsion will not adhere to Plexiglas 11, a thin coating of Parlodion was applied in a similar manner using 2 pct Parlodion in iso-amyl acetate. No protective coating was necessary with the high-tem-
Jan 1, 1961
-
Extractive Metallurgy Division - Extraction of Alumina from Haiti and Jamaica BauxitesBy T. D. Tiemann
The chemical and mineralogical composition of Caribbean bauxite ores are described. Extraction of alumina by several processes from both Haiti and Jamaica bauxites is discussed and data presented. IMMENSE deposits of bauxite occur in the Caribbean islands of Hispaniola and Jamaica in the high plateau lands and have been excellently described by 0. C. Schmedeman.' The bauxite occurs as deposits in catchments or etched depressions in Tertiary limestone believed to have been deposited in the Eocene and Oligocene periods.' In appearance both the Haiti and Jamaica bauxites resemble a relatively high iron clay and have indeed been mistaken for such.' They are very soft and friable and disperse readily on vigorous agitation in water. The color range in general is light brown to red. Chemically, the outstanding characteristic of the bauxites is the low silica and high ferric oxide content. The extremely low silica makes them particularly valuable for the production of alumina in the Bayer plant since silica is responsible for the loss of both alumina and soda chemically combined as XNa,OYSiO2,ZAl2O2. The ferric oxide, only traces of ferrous iron are present, offers no interference in the production of high grade alumina. Typical oxide analyses of three types of ore are given in Table I2 and a list of the elements occurring in spectrographic quantities in Table 11." The size of the individual particles in the ore makes successful petrographic examination extremely difficult. The ores contain some relatively coarse grains of heavy minerals such as ilmenite, magnetite, and rutile, but other than occasional crystals of a few microns, the greater portion of the minerals are submicroscopic in size and approach colloidal dimensions. The mineralogic composition of the ores has been investigated by X-ray and differential thermal analysis.' These investigations indicate that the predominant mineral phases present are gibbsite (A1203.3H2O), boehmite (Al2O3.H2O), hematite (Fe2O3), and goethite (Fe2O3-H2O). There is no evidence of the occurrence of diaspore (Al2O3.H2O) in either the Haiti or Jamaica ores, but some type of "amorphous" alumina may be present in some of the bauxites of Jamaica." The temperature stability regions in the alumina-water system have been investigated and are given in recent literature. In the temperature range where the hydrated forms are stable, as determined by hydrothermal bomb methods," ibbsite is the stable phase to 155°C (311°F), boehmite from 155°C (311°F) to 280°C (536oF), and diaspore from 280°C (536°F) to 450°C (842°F). Although quite similar in many characteristics, the Haiti and Jamaica ore show a divergence in mineralogic composition that is reflected in the extractability of the alumina described in later paragraphs. Two principal differences occur in mineralogic composition. The iron-bearing mineral in the Haiti ores is predominantly hematite, while in the Jamaica ores goethite is predominant.4 Directly related to the extraction of alumina are the two minerals, gibbsite and boehmite. Boehmite is relatively high in the Haiti ores and in some of the less soluble Jamaica ores, while gibbsite predominates in the ores in Jamaica amenable to the American Bayer process of extraction. Pedersen and Related Processes In general, all processes for the extraction of alumina involving sintering or fusion of bauxite ores with limestone, soda ash, or a combination of limestone and soda ash followed by leaching, are based on the formation of alumina compounds that. yield alumina soluble in the subsequent leach. The principal idealized reactions in respect to alumina and silica for the three types of processes are as follows: Soda Ash Sinter: A12O3 + Na2CO3 = Na2O-Al2O, + CO2 SiO2 + Na2CO3 = Na2O . SiO2 + CO2 A12O2 + SiO2 + Na2CO3 = Na2O.Al2O8. SiO2 + CO2 Leach (with excess water): H2O + Na2O-A12O3 = 2 NaOH + A12O3 (insolution) H2O + Na2O-SiO2 = 2 NaOH + SiO2 (in solution) Soda Ash— Limestone Sinter: Na2CO2 + A12O3 = Na2O.A1203 + CO2 2CaCO3 + SiO2 = 2CaO . SiO2 + 2CO2 Leach (with excess water): Na2O' A1208 + H2O = 2NaOH + A13O3 (in solution) These latter reactions are the basis of the sinter process currently used for the recovery of soda and
Jan 1, 1952
-
Minerals Beneficiation - The Mechanism of Fracture PropagationBy E. F. Poncelet
Forty years ago A. A. Griffith developed a theory explaining why brittle materials displayed such low tensile strengths.' He based his views on two points. First, he found himself compelled to assume that all brittle materials are replete with flaws, cracks, and other defects that act, although quite invisible, as large stress raisers. Second, he applied the "theorem of minimum potential energy," which says that the total potential energy of a system must pass from the unbroken to the broken condition by a process involving a continuous decrease in potential energy. By this means he satisfactorily accounted for the noted low strength of such solids and also for the wide spread obtained in experimental measurement of these strengths. So successful has the theory been that it is favored by some to this day. Unfortunately this theory is of limited use beyond the explanation of these two noted phenomena and it is keenly felt that a better theoretical insight into the physics of the fracturing process is needed as the volume of experimental evidence accumulates. The author proposes in the following to build on the fundamentally sound concepts of Griffith and, with the help of increased theoretical knowledge over that available to Griffith, develop a mechanism for frac-ture which will provide far greater understanding of the experimental evidence accumulated to date than is possible from the original Griffith idea. THE GRlFFlTH THEORY Very little progress indeed can be made without accepting the first postulate of Griffith which supposes all brittle solids to be full of microcracks. It would be difficult indeed to find a better mechanism for the small strength of such brittle materials, in conjunction with the fact that the energy that must be expended for comminution is by no means small. The postulate of the existence of the microcracks permits the breakup of the various bonds a few at a time by concentrating the stress at the tip of the progressing crack, while the total energy expended is the same as if they all had been ruptured simultaneously. The only flaw in the argument is that no reasonable explanation has been proposed to account for the genesis of such cracks. Indeed their very presence is in violation of the Griffith second postulate, the potential energy theorem. This theorem is straightforward for isothermal processes, and, in spite of Griffith, there is some doubt that treating the problem isothermally is legitimate. The surface energy of bodies is a free energy, not a potential energy as stated by Griffith, and the production of new surface free energies is not necessarily an isothermal process. There is ample evidence to the contrary. Generally speaking, if heating a body increases its surface area, then, by virtue of Le Chatelier's principle, any increase of that area by other means will tend to lower its surface temperature. Lord Kelvin calculated the actual cooling that resulted in drawing out a film of liquid.2 R. A. Houston calculated the surface cooling that resulted in stretching a metal wire.3 These calculations were made by applying the Carnot cycle to the process and evaluating the thermodynamics thereof. IRREVERSIBILITY OF THE FRACTURING PROCESS While Griffith was very careful not to say so, the impression gained from studying his papers is that he considered the fracturing process as reversible, that is, a succession of quasi-equilibrium states. There is ample evidence that it is not. The indication that the new surfaces produced by the propagation of a crack are cooler than the original body points to an irreversible heat flow from the interior to the new surfaces to equalize the temperatures. If the process be reversible, any crack accidentally formed should immediately close up as, in the absence of any strain energy, the potential energy would thereby be lowered. The fact that they do not, constitutes a paradox. Such paradoxes are nothing new where certain phenomena that propagate from minuscule nuclei are assumed to be reversible. Such is, for instance, the condensation of a pure saturated vapor that is suddenly chilled by adiabatic expansion. At the beginning the tiny droplets that are formed should be only a few angstroms in size, but the vapor pressure at such droplets is so high that they should evaporate at once. A similar situation arises if a saturated pure solution becomes super-saturated upon cooling; the first tiny crystal nuclei should dissolve as fast as
Jan 1, 1964
-
Technical Papers and Notes - Institute of Metals Division - Hydrogen Embrittlement of Vanadium By Catalytic Decomposition of Water with ManganeseBy P. D. Zemany, G. W. Sear, B. W. Roberts
Vanadium metal is embrittled by hydrogen at a temperature as low as 250°C when held in the presence of manganese metal and water vapor in a rough vacuum. It is established that the property changes are caused by the catalytic decomposition of water vapor at the vanadium surface and the diffusion into and solution in the vanadium of the resultant hydrogen. It is found that manganese is a necessary component of the catalyst. The manganese is transported in the vapor phase by an unknown molecule. A deuterium tracer experiment demonstates the role of water vapor in the embrittle-ment process. VANADIUM metal foils were observed to become embrittled' at a temperature of about 300 °C when held in the presence of manganese metal and a small amount of moist air, This paper describes the investigation to find the embrittling agent and an understanding of the relatively low temperature reactions that are involved. Experimental The vanadium metal foil used was prepared by cold-rolling and pack-rolling 32 mil sheet" in a series of steps down to 1 mil foil. The original observation was confirmed by sealing vanadium foils of 3 x 10 sq cm into individual Pyrex tubes with manganese powder† and a con- trol tube containing only the vanadium foil. These tubes were evacuated to 10 -5 mm Hg without baking and sealed. After heat treatment for 200 hr at 300°C, the control foil showed no change in duetility, whereas the foil contained in the manganese— containing tube was embrittled. The visual appearance of each was unchanged. A series of Pyrex sample tubes, about 2.5 cm diam and 25 cm long, were prepared, each containing a 3 x 10 sq cm piece of foil and 5 g manganese powder at the lower end of the tube. By reducing the time of anneal and the temperature of these samples, it was found that embrittlement could be created at 250°C in a time as short as 1 hr. Since the vanadium metal used here has been drastically cold-worked by rolling, it is assumed that it contains a maximum number of dislocations. To check the possible necessity of dislocations in this low temperature reaction, a vanadium foil sample was annealed in Vycor for 2 hr at 800°C to re crystallize and reduce the dislocation concentration. Metallographic examination showed grains which were not visible before annealing. The embrittlement procedure was carried out at 300°C and 3 hr. Upon checking the foil no embrittlement was observed. Further experiments demonstrated that about 6 hr at 300°C are required to create embrittlement in the foil. This delay in the onset of embrittlement in the vanadium foil suggests but does not prove that dislocation channels play a role in the embrittlement phenomena. If manganese metal is necessary for this low temperature embrittlement, do other elements in the transition metals group yield the same result? To check this qualitatively, a group of elements of similar atomic radii were obtained and sealed as before into Pyrex tubes with a sheet of vanadium foil. These tubes were annealed at 250°C for 6 hr and included (with radii)-2 A1 (1.4A), As (1.25A), Be (1.2A), Co (1.25A), Cr (1.45A), Cu (1.25A), Fe (1.25A), Ga (1.2A), Ge (1.25L%), Mn (1.3A), Ni (1.25A), Si (1.2A), Ti (1.45A), Zn (1.3A), air, H,O, 10 cm Hg of dry hydrogen, and MnO, powder. Upon testing the above sample foils for brittleness, only the manganese-containing tube yielded a brittle foil. Manganese Transport—To eliminate contact of manganese metal powder and vanadium foil, sample tubes were prepared with fritted glass barriers. The embrittlement reaction was still found to occur. Thus, the mode of transfer of manganese is certainly vapor transport. A vanadium foil was embrittled by this mechanism in an evacuated Pyrex tube for 8 hr at 300°C. By means of X-ray fluorescence analysis,' the amount of manganese added to the surface was established at 5 ±2 x 10 -6 g per sq cm. Since the average rate of manganese deposition is known, an effective average pressure of an assumed carrier compound can be computed. ___ P = M/T v2p mkT
Jan 1, 1959
-
Industrial Minerals - Natural Abrasives in CanadaBy T. H. Janes
NATURAL abrasives of some type are found in all countries of the world. In order of their hardness the principal natural abrasives are diamond, corundum, emery, and garnet, which are termed high grade, and the various forms of silica, including pumice, pumicite, ground feldspar, china clay and, most important, sandstone. The properties qualifying materials for use as abrasives are hardness, toughness, grain shape and size, character of fracture, and purity or uniformity. For manufacture of bonded grain abrasives such as grinding wheels, the stability of the abrasive and its bonding characteristics are also important. No single property is paramount for all uses. Extreme hardness and toughness are needed for some applications, as in diamonds for drill bits, while for other purposes the capacity of the abrasive to break down slowly under use and to develop fresh cutting edges is of greatest importance, as with garnet for sandpaper. In dentifrices, soaps, and metal polishes, of course, hardness and toughness are objectionable. First among the natural abrasives, industrial diamonds are essentially of three types: l—bort, which includes off-color, flawed, or broken fragments unsuitable for gems; 2—carbonado, or black diamond, a very hard and extremely tough aggregate of very small diamond crystals; and 3—ballas, a very hard, tough globular mass of diamond crystals radiating from a common center. Bort comes from all diamond-producing centers, carbonados only from Brazil, and ballas chiefly from Brazil, although a few of this last group come from South Africa. By far the largest producer of industrial diamonds is the Belgian Congo; the Gold Coast, Angola, the Union of South Africa, and Sierra Leone supply most of the remainder. There is no production in Canada, which imports $6 to $9 million worth of industrial diamonds annually. Industrial diamonds find innumerable uses in modern industry. They are used for diamond drill bits for the mining industry; in diamond dies for wire drawing; in diamond-tipped tools for truing abrasive wheels and for turning and boring hard rubber, fibers, and plastics; and in diamond-toothed saws for sawing stone, glass, and metals. High-speed tool steels, cemented carbides, and other hard, dense alloys can be cut, sharpened, or shaped efficiently only with diamond-tipped tools and diamond grinding wheels. .. Second only to the diamond in hardness is corundum, an impure form of the ruby and sapphire gems consisting of alumina and oxygen (Al²O³) with impurities such as silica and ferric oxide. Corundum generally crystallizes from magmas rich in alumina and deficient in silica, as in the nepheline syenites of eastern Ontario. Grain corundum is used in the manufacture of grinding wheels; very coarse grain is used in snagging wheels. Both types of wheels are employed in the metal trades, where the hardness of corundum, coupled with its characteristic fracturing into sharp cutting edges, makes it an ideal cutting tool. The finest corundum (flour grades) is used for fine grinding of glass and high-precision lenses. From 1900 to 1921 Canada was the world's leading producer of corundum. Following this period the deposits located in northern Transvaal of the Union of South Africa supplied more and more of the world's requirements, and since 1940 South Africa has provided almost the entire output, which has ranged between 2500 to 7000 tons a year during the last decade. Minor amounts have also been produced in Mozambique, India, and Nyassaland. Opportunities for Mining Corundum Corundum deposits in southeastern Ontario are of three types, which may be described as follows: 1—Scattered, irregularly-shaped deposits of coarse-grained corundum which could be mined by means of small pits. About 10 groups of such deposits are known. Although the tonnage of individual deposits of this type is not great, it has been estimated that several years' ore supply is available for a small tonnage operation. Deposits average about 9 pct corundum. 2—Large irregular deposits of coarse-grained corundum which would require mining by adit with possibly a scavenger operation on the remains of former surface deposits. The Craigmont deposit of this type produced about 20,000 tons of corundum concentrate during operations between 1900 and 1913. Most of the readily available surface ore was removed by operators during that time. Reserves of ore above road level have been estimated to average 7 pct corundum, but none of the so-called reserves have been blocked out, or even indicated, by diamond drilling. From 1944 to 1946, 2025 tons of
Jan 1, 1955