Institute of Metals Division - The Effect of Stress on X-Ray Line Profiles

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. I. Garrod R. A. Coyle
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
479 KB
Publication Date:
Jan 1, 1964

Abstract

The shapes and positions of X-ray reflections from specimens of copper, steel, and aluminum alloy haue been examined in the elastic and plastic ranges both while the specimen was under stress and in the unloaded condition. For the aluminum alloy the shape was unaltered by the application of stress either within the elastic limit or in the plastic range provided that no additional plastic strain was induced. In copper the broadening accompanying plastic deformation was very slightly reduced when the specimen was unloaded. A similay but more marked elastic component of broadening was also found for steel, but in this case below the yield stress. Line profiles corrected for instrumental and particle-size broadening indicate very large internal stresses in local regions of the plastically deformed metals. The results are discussed in terms of a recent suggestion that the heterogeneous dislocation distribution between the cells and their boundary walls plays a major role in the peak shifts and broadening of the X-ray reflections. STUDIES of the X-ray line profiles from strained polycrystalline aggregates concentrate usually on one or the other of two main parameters: a) the displacement of the peak of the intensity contour from its position for a strain-free aggregate, or b) the shape of the profile. From peak shifts data can be obtained either on the relation in both the elastic and plastic ranges between applied external stress and average lattice strains in a given (hkl) direction, or, alternatively, on the residual lattice strains which are present after a plastically deformed specimen is unloaded.' On the other hand, the shapes of the broadened profiles from cold-worked metals can be analyzed to separate the broadening produced by small particle size and by heterogeneous lattice strains.' In this paper the terms "size broadening" and "strain broadening'' are used in the general sense adopted by warren.' In the past, apart from two early qualitative observation, it has been customary to examine only the movements of the peaks of the profiles while the specimen is actually under load, since the line broadening induced by plastic strain remains after removal of the external stress. Consideration of the implications of existing data of this type suggests, however, that fruitful additional information on a number of fundamental aspects might be gained by careful examination of whether the X-ray line profile is in fact different in the loaded and unloaded states of the specimen. By taking advantage of the sensitivity and convenience of modern diffractometer techniques it is possible to explore with relative ease the magnitude and importance of any elastic effects which may be superimposed upon the well-known permanent changes in profile. The main aim of the work to be described was thus to investigate this point for typical metals and alloys. For this purpose annealed specimens were extended first elastically and then plastically and the positions and shapes of X-ray reflections were recorded. Initially it was anticipated that prime interest would center on observations within the plastic range; it has been found, however, that small changes in profile sometimes occur both before and after the nominal elastic limit of the material is reached. It is shown that the results obtained have important implications in relation to the structural changes and processes associated with deformation. I) EXPERIMENTAL To enable the diffraction lines to be recorded while the specimen was under uniaxial-tensile stress, a small hydraulic testing machine was designed and constructed for direct attachment to the goniometer of a Philips diffractometer. The specimens, which were machined from 1/2-in.-diam rod and had a central rectangular section 3/8 by 1/16 in. over a gage length of 1 in., were held in the machine by split collets mounted in grooves in the cylindrical ends of each specimen. No special precautions were taken to ensure precise axiality of loading. Constant oil pressure was maintained by a lever and weights system and transmitted to the loading rig by flexible pipe. The actual load on the specimen was measured by a load cell in the machine to an accuracy of * 1 pct. To enable smooth X-ray profiles to be obtained the specimen and machine were oscillated continuously during recording through *7-1/2 deg about the normal half-angle position of the goniometer. The three materials chosen for the investigations were high-purity copper as representative of a ductile fcc metal, a low-carbon steel for a bcc metal, and an aluminum alloy as a material in which the proof stress/ultimate strength ratio is high. Details are as follows. a) Copper. 99.999 pct purity. After machining the specimen surface was polished mechanically and
Citation

APA: R. I. Garrod R. A. Coyle  (1964)  Institute of Metals Division - The Effect of Stress on X-Ray Line Profiles

MLA: R. I. Garrod R. A. Coyle Institute of Metals Division - The Effect of Stress on X-Ray Line Profiles. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account