Part XII – December 1968 – Papers - Evidence for the Importance of Crystallographic Slip During Superplastic Deformation of Eutectic Zinc-Aluminum

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Charles M. Packer Roy H. Johnson Oleg D. Sherby
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
483 KB
Publication Date:
Jan 1, 1969

Abstract

Originally round tensile specimens of a eutectic Zn-A1 alloy develop elliptical cross sections during superplastic deformation. This observation, coupled with a detailed study of the microstructure and preferred orieniation, suggests that crystallographic slip and continuous grain boundary migration or re-crystallization are important processes during super-plastic deformation. In spite of the extensive activity in superplasticity1-15 and the numerous explanations proposed, no single model has had universal acceptance. It has been established, however, that the general requirements for superplastic extension of two-phase alloys include an extremely fine, stabilized grain size of the order of a few microns, a temperature about equal to or greater than one-half the melting point, a critical range of strain rate, and a similarity in the mechanical strength of the major phases. The proposed models can perhaps best be characterized in terms of the important phenomena associated with them. These phenomena include: phase instability,1 diffusional creep by volume diffusion3 or grain boundary diffusion4,5 slip and continuous grain boundary migration or recrystalliza-tion,= grain boundary Sliding,7-9,13,14 and dislocation glide.'5 In this paper, experimental observations will be reported which support a model involving slip and continuous grain boundary migration or recrystalliza-tion. Specifically, a correlation will be made between this model and the development of elliptical cross sections as originally round specimens are superplas-tically deformed. For the most part, superplasticity studies have been conducted with eutectic or eutectoid alloys. Probably the most thoroughly studied material has been the monotectoid Zn-A1 alloy.1,2,6,12,13,15 No attention to the eutectic Zn-A1 alloy has previously been reported, and the results discussed in this paper represent part of a general study of the superplastic properties of this alloy. MATERIALS The alloys used in this investigation were prepared by melting appropriate quantities of 99.99+ pct A1 and 99.999 pct Zn in air, mixing, and pouring into a water- cooled stainless-steel mold. Wet-chemical analysis was conducted with each heat of alloy prepared, using the procedure of Fish and smith.16 The composition of the eutectic alloy was 95.1 wt pct Zn. Ingots about 2 in. thick were rolled to 0.4-in. plate at about 300°C with a reduction of 5 to 10 pct per pass. Specimens were machined from the plate with the tensile axis parallel to the rolling direction. The specimens were round, with 0.150-in.-diam, 1.25-in.-long gage length, and 0.25-in.-diam threaded grip sections. EXPERIMENTAL PROCEDURE Specimens were mounted inside a uniform-temperature quartz tube which was surrounded by a double elliptical radiant furnace with a 12-in.-long uniform-temperature hot zone and a low thermal capacity. The tube extended through the top and bottom of the furnace and permitted rapid quenching of the loaded specimens when quickly filled with cold water at the conclusion of the test. The quench precluded any effects on specimen microstructure from a normal, slow cool. Constant stress was applied to test specimens by suspending a load on a constant stress cam of the type described by Hopkin.17 The design of this cam permitted application of a constant stress for elongations up to 200 pct. For greater elongation, approximately constant stress conditions were maintained by systematically reducing the load manually. RESULTS As part of an investigation of the superplastic properties of the eutectic Zn-A1 alloy, evidence was obtained for the development of elliptically shaped cross sections as originally round specimens were extended. For example, after an elongation of about 100 pct, a round specimen with an initial diameter of 0.150 in. became elliptical with major and minor axis of 0.128 and 0.88 in., respectively. Photographs are presented to illustrate the ellipticity developed during superplastic deformation, Fig. 1. The specimen shown was deformed at a stress of 500 psi, at a temperature of 285°C, and a strain rate of 2.28 x 10-2 min-1. The strain-rate sensitivity exponent* was measured at *The strain-rate sensitivity exponent, m, is defined as d In o/d In c where o is the steady-state flow stress and E is the strain rate. this temperature and in the strain rate range 10"3 to 10-1 min-1 was found to be about 0.5. This value is typical of those observed with superplastic materials. The material studied exhibited negligible strain hardening during superplastic deformation, the creep rate remaining constant under constant stress and temper-
Citation

APA: Charles M. Packer Roy H. Johnson Oleg D. Sherby  (1969)  Part XII – December 1968 – Papers - Evidence for the Importance of Crystallographic Slip During Superplastic Deformation of Eutectic Zinc-Aluminum

MLA: Charles M. Packer Roy H. Johnson Oleg D. Sherby Part XII – December 1968 – Papers - Evidence for the Importance of Crystallographic Slip During Superplastic Deformation of Eutectic Zinc-Aluminum. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account