Metal Mining - Primary Blasting Practice at Chuquicamata

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Glenn S. Wyman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
353 KB
Publication Date:
Jan 1, 1953

Abstract

CHUQUICAMATA, located in northern Chile in the Province of Antofagasta, is on the western slope of the Andes at an elevation of 9500 ft. Because of its position on the eastern edge of the Atacama Desert, the climate is extremely arid with practically no precipitation, either rain or snow. All primary blasting in the open-pit mine at Chuquicamata is done by the churn drill, blasthole method. Since 1915, when the first tonnages of importance were removed from the open pit, there have been many changes in the blasting practice, but no clear-cut rules of method and procedure have been devised for application to the mine as a whole. One general fact stands out: both the ore and waste rock at Chuquicamata are difficult to break satisfactorily for the most efficient operation of power shovels. Numerous experiments have been made in an effort to improve the breakage and thereby increase the shovel efficiency. Holes of different diameter have been drilled, the length of toe and spacing of holes have been varied, and several types of explosives have been used. Early blasting was done by the tunnel method. The banks were high, generally 30 m, requiring the use of large charges of black powder, detonated by electric blasting caps. Large tonnages were broken at comparatively low cost, but the method left such a large proportion of oversize material for secondary blasting that satisfactory shovel operation was practically impossible. Railroad-type steam and electric shovels then in service proved unequal to the task of efficiently handling the large proportion of oversize material produced. The clean-up of high banks proved to be dangerous and expensive as large quantities of explosive were consumed in dressing these banks, and from time to time the shovels were damaged by rock slides. As early as 1923 the high benches were divided, and a standard height of 12 m was selected for the development of new benches. The recently acquired Bucyrus-Erie 550-B shovel, with its greater radius of operation compared to the Bucyrus-Erie 320-B formerly used for bench development, allowed the bench height to be increased to 16 m. Churn drill, blasthole shooting proved to be successful, and tunnel blasts were limited to certain locations where development existed or natural ground conditions made the method more attractive than the use of churn drill holes. Liquid oxygen explosive and black powder were used along with dynamite of various grades in blast-hole loading up to early 1937. Liquid oxygen and black powder were discontinued because they were more difficult to handle due to their sensitivity to fire or sparks in the extremely dry climate. At present ammonium nitrate dynamite is favored because of its superior handling qualities and its adaptability to the dry condition found in 90 pct of the mine. In wet holes, which are found only in the lowest bench of the pit and account for the remaining 10 pct of the ground to be broken, Nitramon in 8x24-in. cans, or ammonium nitrate dynamite packed in 8x24-in. paper cartridges, is being used. This latter explosive, which is protected by a special antiwetting agent that makes the cartridges resistant to water for about 24 hr, currently is considered the best available for the work and is preferred over Nitramon. Early churn drill hole shots detonated by electric blasting caps, one in each hole, gave trouble because of misfires caused by the improper balance of resistance in the electrical circuits. Primarily, it was of vital importance to effect an absolute balance of resistance in these circuits, the undertaking and completion of which invariably caused delays in the shooting schedule. Misfires resulting from the improper balance of electrical circuits, or from any other cause, were extremely hazardous, since holes had to be unloaded or fired by the insertion of another detonator. The advent of cordeau, later followed by primacord, corrected this particular difficulty and therefore reduced the possibility of missed holes. After much experimentation, the blasting practice evolved into single row, multihole shots, with the holes spaced 4.5 to 5 m center to center in a row 7.5 to 8 m back from the toe. Sucti shots were fired from either end by electric blasting caps attached to the main trunk lines of cordeau or primacord. The detonating speed of cordeau or primacord gave the practical effect of firing all holes instantaneously. Double row and multirow blasts, fired instantaneously with cordeau or primacord, proved to be unsatisfactory in the type of rock found at Chuquica-
Citation

APA: Glenn S. Wyman  (1953)  Metal Mining - Primary Blasting Practice at Chuquicamata

MLA: Glenn S. Wyman Metal Mining - Primary Blasting Practice at Chuquicamata. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account