Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Producing–Equipment, Methods and Materials - The Calculation of Pressure Gradients in High-Rate Flowing WellsBy P. B. Baxendell, R. Thomas
Work on the calculation of vertical two-phase flow gradients by Cia. Shell de Venezuela has been based mainly on the "energy-loss" method proposed by Poett-mann and Carpenter in 1952. The "energy-loss-factor" correlation proposed by Poettmann and Carpenter was based on relatively low-rate flow data. This correlation proved inapplicable to high-rate flow conditions. In an attempt to establish a satisfactory correlation for high rates, a series of experiments was carried out at rates up to 5,000 BID in Cia. Shell de Venezuela's La Paz field in Venezuela, using tubing strings fitted with electronic surface-recording pressure elements. As a result of these experiments a correlation between energy-loss factor and mass flow rate was established which is believed to be applicable to a wide range of conduit sizes and crude types at high flow rates (e.g., above 900 BID for 27/8-in. OD tubing). It is anticipated that the resulting gradient calculations will have an accuracy of the order of % 5 per cent. At lower flow rates the energy-loss factor cannot be considered as constant for any mass rate of flow, but varies with the free gas in place and the mixture velocity. No satisfactory correlating parameter was obtained. As a practical compromise for low flow rates, a modification of the curve proposed by Poettmann and Carpenter was used. In practice this was found to give gradient accuracies of approxirnately ± 10 per cent clown to flow rates as low as 300 B/D in 27/8-in. tubing. INTRODUCTION Production operations in Cia. Shell de Venezuela's light- and medium-crude fields are principally concerned with high-rate flowing or gas-lift wells. Under these conditions the analysis of well performance, the selection of production strings and the design of gas-lift installations are vitally dependent on an accurate knowledge of the pressure gradients involved in vertical two-phase flow. Initially, attempts were made to establish the gradients empirically as done by Gilbert,' but the results were not reliable due to scarcity of data over a full range of rates and gas-oil ratios. Several methods of calculation based on energy-balance considerations were attempted, but the computations were cumbersome and the results cliscouraging. In 1952 a paper was published by Poettmann and Carpenter' which proposed a new approach. Their method was also based on an energy-balance equation. but it was original in that no attempt was made to evaluate the various components making up the total energy losses. Instead, they proposed a form of analysis which assumed that all the significant energy losses for mutiphase flow could be correlated in a form similar to that of the Fanning equation for frictional 1osses in single-phase flow. They then derived an empirical relationship linking measurable field data with a factor which, when applied to the standard form of the Fanning equation, would enable the energy losses to be determined. The basic method was applied in Venezuela to the problem of annular flow gradients in the La Paz and Mara fields" This involved establishing a new energy-loss-factor correlation to cover high flow rates and, also, some adaptation of the method to permit mechanized calculation using punch-card machines. The final result was 1 set of gradient curves for La Paz and Mara conditions which proved to be surprisingly accurate. With the encouraging results of the annular flow calculations, several attempts were made to obtain a corresponding set of curves for tubing flow. Here, unfortunately, little progress could be made. The original correlation of Poettmann and Carpenter was based on rather 1imited data derived from low-rate observations in 23/8- and 27/8-in. OD tubing. It did not cover the higher range of production rates, and extrapolation proved unsuccessful. A new correlation covering high flow rates was required, but this proved to be extremely difficult to establish since tubing flow pressure measurements at high rates did not exist—due to the difficulty of running pressure bombs against high-velocity flow. The necessity for reliable tubing flow data increased with the development of the new concessions in Lake Maracaibo, where high-rate tubing flow from depths of 10,500 ft became routine. Thus. it was decided to set up a full-scale test to establish a reliable energy-loss factor for tubing flow conditions. A La. Paz field light-oil producer with a potential of approximately 12,000 B/D on annular flow was chosen. To obtain full pressure gradients, a special tubing string was installed which was equipped with electronic surface-recording pressure measuring devices,
-
Iron and Steel Division - Reduction Kinetics of Magnetite in Hydrogen at High PressuresBy W. M. McKewan
Magnetite pellets were reduced in flowing hydrogen at pressures up to 40 atm over a temperature range of 350° to 500°C. The rate of weight loss of oxygen per unit area of the reaction surface was found to be constant with time at each temperature and pressure. The reaction rate was found to be directly proportional to hydrogen pressure up to 1 atm and to approach a maximum rate at high pressures. The results can be explained by considering the reaction surface to be sparsely occupied by adsorbed hydrogen at low pressures and saturated at high pressures. PREVIOUS investigation1,2 have shown that the reduction of iron oxides in hydrogen is controlled at the reaction interface. Under fixed conditions of temperature, hydrogen pressure, and gas composition, the reduction rate is constant with time, per unit surface area of residual oxide, and is directly proportional to the hydrogen pressure up to one atmosphere. The reduction rate of a sphere of iron oxide can be described3 by the following equation which takes into account the changing reaction surface area: where ro and do are the initial radius and density of the sphere; t is time; R is the fractional reduction; and R, is the reduction rate constant with units mass per area per time. The quantityis actually the fractional thickness of the reduced layer in terms of fractional reduction R. It was found in a previous investigation2 of the reduction of magnetite pellets in H2-H,O-N, mixtures, that the reaction rate was directly proportional to the hydrogen partial pressure up to 1 atm at a constant ratio of water vapor to hydrogen. Water vapor poisoned the oxide surface by an oxidizing reaction and markedly slowed the reduction. The enthalpy of activation was found to be + 13,600 cal per mole. It was also found that the magnetite reduced to meta-stable wüstite before proceeding to iron metal. The following equation was derived from absolute reaction-rate theory4,8 to expfain the experimental data: where Ro is the reduction rate in mg cm-2 min-'; KO contains the conversion units; Ph2 and PH2O are the hydrogen and water vapor partial pressures in atmospheres; Ke is the equilibrium constant for the Fe,O,/FeO equilibrium; Kp is the equilibrium constant for the poisoning reaction of water vapor; L is the total number of active sites; k and h are Boltzmann's and Planck's constants; and AF is the free energy of activation. Tenenbaum zind Joseph5 studied the reduction of iron ore by hydrogen at pressures over 1 atm. They showed that increasing the hydrogen pressure materially increased the rate of reduction. This is in accordance with the work of Diepschlag,6 who found that the rate of reduction of iron ores by either carbon monoxide or hydrogen was much greater at higher pressures. He used pressures as high as 7 atm. In order to further understand the mechanism of the reduction of iron oxide by hydrogen it was decided to study the effect of increasing the hydrogen pressure on rebduction rates of magnetite pellets. EXPERIMENTAL PROCEDURE The dense magnetite pellets used in these experiments were made in the following manner. Reagent-grade ferric oxide was moistened with water and hand-rolled into spherical pellets. The pellets were heated slowly to 550°C in an atmosphere of 10 pct H2-90 pct CO, and held for 1 hr. They were then heated slowly to 1370°C in an atmosphere of 2 pct H2-98 pct CO, then cooled slowly in the same atmosphere. The sintered pellets were crystalline magnetite with an apparent density of about 4.9 gm per cm3. They were about 0.9 cm in diam. The porosity of the pellets, which was discontinuous in nature, was akrout 6 pct. The pellets were suspended from a quartz spring balance in a vertical tube furnace. The equipment is shown in Fig. 1. Essentially the furnace consists of a 12-in. OD stainless steel outer shell and a 3-in. ID inconel inner shell. The kanthal wound 22 in. long, 1 1/2, in. ID alumina reaction tube is inside the inconel inner shell. Prepurified hydrogen sweeps the reaction tube to remove the water vapor formed during the reaction. The hydrogen is static in the rest of the furnace. The sample is placed at the bottom of the furnace in a nickel wire mesh basket suspended by nickel wire from the quartz spring. The furnace is then sealed, evacuated, and refilled with argon several times to remove all traces of oxygen. It is then evacuated, filled with
Jan 1, 1962
-
International Availability Of Economic MineralsBy Hokuichiro Ohmachi
INTRODUCTION Metallic minerals have been formed only through complex geologic processes which took place at certain stages of the earth's histrory. Their concentration, abundance, and distribution are, therefore, restricted geologically, and very small in global scale. Ore is a mineral deposit or mineral concentration from which metals can be economically extracted by the contemporaneous technology. By this definition, several factors should be considered before any mineral deposit is regarded as an ore. The grade of mineral concentration and the scale of the reserve are most important. Demand for the metal and its price are the other factors. Advancement of technology in mining and extraction are also vital. Copper, for example, is now commonly extracted from the ores containing less than 0.3% of the metal. However, in the 1700's the common minerable grade was about 13%, and in the 1900's between 5 to 2.5%. This decrease in minerable grade is a function of not only the demand for copper, but also technological progress in mining and metal extraction in this case. Availability of ores has recently been subject to political factors, which were not the primary concern in the past. The petroleum of the Middle East is the prominent example. The metallic minerals are classified into three categories. The first one is the minerals free from these factors mentioned above. Iron and manganese belong to this category. The second category include aluminum, copper, nickel, cobalt, titanium, lead and zinc. These metals can be provided by the future progress in technology which enables the use of lower grade deposits. The third one represents the metals whose occurrence is geologically limited, and, thus, subject to the political factors. Niobium and tantalium are the example. In this article, I discuss these minerals in detail to give an outline of the factors which brought their concentration, distribution and availability. SELECTED MINERAL CONCENTRATIONS Iron Major iron ore deposits are the features of the relics of ancient continental crusts. They are found in all the continents where the Precambrian rocks expose. They do not occur in the oldest rocks (3,000my old) nor in the youngest ones (600my old). They are sedimentary rocks, normally, exhibiting alternations of bands of iron oxides (magnetite and hematite) or iron silicates (especially greenalite), and bands of silica, variously described as jasper, quartzite and chert. The best known banded iron ore deposits exist in the Lake Superior region of the North America, and their distribution extends at intervals to Labrador of Canada. Other examples occur in the U.S.S.R. Brazil, Venezela, India, the mainland China, and southern and western Africa (Liberia and Guines) (Table 1). Recently large deposits have been discovered in the Hammersley region of the western Australia, and northern and central region of Brazil. These ore deposits were originally formed in shallow seas where simple but abundant life existed. After the deposition, enrichment processes , related to tropical weathering, have brought about wholesale removal of silica to produce the deposits of best quality. Ores with 50-60% iron represent the best products in the Precambrian fields. Since local reserves of this high grade ores approach to exhaustion, benefication processes have been used effectively to upgrade much leaner ores (for example, taconite with 20-25% iron in Minesota, U.S.A.). There are two other types of iron deposits. Ironstone, a sedimentary rock containing goethite, chamosite and siderite, first appeared in early Paleozoic times in the stratigraphic record, and reached its Zenith in the Jurassic. Similar bedded iron deposits are found in the belt from the Cleveland Hills to Oxford in England, and in the "minette" oolitic ores of Alsace-Lorraine in Luxenburg and France. The iron content of these ironstones seldom exceed 30%, but they usually contain calcite and are self-fluxing. They also have phosphorous as undesirable impurity. Because of the grade and impurities, they require more fuel than the Precambrian ores. The third type of iron ore is associated with igneous activity and consists of magnetite and some hematite, and apatite. This deposit is believed to be a product of magmatic differenciation. It occurs in Kiruna of Arctic Sweden. The iron ore, therefore, present no global shortage problem. They extend to considerable depths. Their concentration is largest among the metals. If low grades were treated, the resource can be stepped up much substantially. Manganese Manganese is a ferro--alloy metal, thus, essential to the manufacture of sound steel. Manganese comes from manganese oxide and silicate ores. Many minerals contain manganese, but only a few oxides, silicates, and, in some places, carbonates (rhodecrosite) are mined as ore. Types of manganese deposits are bedded, massive,
Jan 1, 1982
-
Technical Papers and Notes - Institute of Metals Division - On the Solubility of Iron in MagnesiumBy W. Rostoker, A. S. Yamamoto, K. Anderko
ALTHOUGH the corrosion resistance of magnesium and its alloys is closely related to iron content, there has been no direct measurement of the solid solubility of iron in magnesium. Bulian and Fahrenhors;1 and Mitchel]2 agree that pure iron or a limited terminal solid solution crystallizes from the Mg-rich liquid. For this reason a magnetic-moment method was selected to estimate that portion of the total iron content which is not in solid solution. Since iron in solid solution in magnesium cannot contribute to ferromagnetism, the difference between chemical and magnetic-iron analyses should yield the solid solubility. By experimentation it was found that the melting of pure sublimed magnesium (99.995 wt pet purity) in Armco-iron crucibles at about 800°C is a convenient way to introduce small amounts of iron. Melts retained 5, 10 and 20 min at 800°C analyzed 0.003,, 0.005,, and 0.018 & 0.001 weight pet Fe, respectively, after being stirred, heated to 850°C, and cast into graphite molds. The as-cast alloys were pickled in acid (dilute HC1 + HNO3), annealed at 600°C for 3 days, scalped on a lathe to remove the pitted surface, pickled again, extruded at about 100°C to 3-mm wire, reannealed 41/2 days at 500°C, and water-quenched. The specimens were again scalped, pickled, and used both for chemical and for magnetic analysis. Most of the precautions described were intended to prevent iron pickup by contact with tools or superficial iron enrichment by volatilization of magnesium during heat-treatment. It is believed that the specimens ultimately used for test were homogeneous and characteristic of phase equilibria at 500°C. Magnetic Analyses A susceptibility apparatus of the Curie type was used for magnetic analyses. Field strengths of up to 10,400 oersteds could be generated. By this method, an analytical balance measures the force of attraction which a calibrated magnetic field exerts on a suspended specimen. The force equation is as follows f/m = M dh/dy where f/m = force per unit mass of sample M = magnetic moment per unit mass dH/dy = magnetic field gradient The dH/dy characteristic of the instrument is determined by the use of a standard palladium sample, and the calibration is made independently for all values of H. Since a large finite field is required to saturate an assembly of ferromagnets, it is necessary to measure the apparent magnetic moment for increasing steps of H until a saturation value is obtained. The percentage of iron in the sample as free ferromagnetic iron may then be computed simply C= 100 (M1/M1) where C = percent content of undissolved iron in sample M1 = saturation magnetic moment of sample per unit mass M1 = saturation magnetic moment of iron per unit mass taken as 217 emu-cm per gm There is no serious difficulty in applying this method except for the unusual magnetic behavior of very fine particles of ferromagnetic substances. It has been found and is the basis for a widely accepted theory that with sufficient subdivision, the magnetic fields required to saturate and the coercive force after saturation rise to exceedingly high values. Recent work on precipitates of Fe and Co from copper solid solutions8 showed that about 5000 oersteds were necessary to approach saturation. The magnetic moments as a function of field strength measured in the present investigation are listed in Table I. Only the 0.018 wt pet Fe alloy yielded a magnetization curve with a fairly well-defined saturation plateau at 3.76x10 -2 emu-cm/ gm. This corresponds to 0.017 & 0.001 wt pet Fe in the alloy. This indicates that the solid solubility must be of the order of 0.001 wt pet Fe. The magnetic-moment data of the other two alloys are badly scattered, indicating that the amount of ferromagnetic iron in these samples is so low that the magnetic forces acting on them cannot be measured accurately by the analytical balance used. Nevertheless, the fact that even the 0.003, wt pet Fe alloy shows ferromagnetism indicates that the solid solubility must be below that value. Acknowledgment This work was sponsored by the Pitman-Dunn Laboratory of Frankford Arsenal, Philadelphia, Pa. The support and permission to publish are gratefully acknowledged. References W. Bulian and E. Fahrenhorst: Zeic. Metallkunde, 1942, vol. 34, pp. 116-170. 2 D. W. Mitchell: AIME Transactions, 1948, vol. 175, pp. 570-578. 3 G. Bate, D. Schofield, and W. Sucksmith: Philosophical Magnsine, 1955, vol. 46, pp. 621-631.
Jan 1, 1959
-
Institute of Metals Division - Distribution of Lead between Phases in the Silver-Antimony-Tellurium SystemBy Voyle R. McFarland, Robert A. Burmeister, David A. Stevenson
The distribution of lead between phases in the Ag-Sb-Te system was studied using microautoradio -graphy. Two compositions were investigated, both containing an intermediate phase Known as silver antimony telluride as the major phase, and one containing AgzTe and the other SbzTes as the minor phase. For both compositions, two thermal treatments were used: nonequilibrium solidification from the melt and long equilibration anneals of the as-solidified structure. For each composition, lead was segregated in the minor phase of the as-solidified structure, but was distributed in the matrix after anneal. The electrical resistivity and carrier type were insensitive to the distribution of lead in the two-phase structure. ThERE has been considerable interest in the Ag-Sb-Te system because of its thermoelectric properties. The major interest has been in compositions on the vertical section between AgzTe and SbzTes, particularly the 50 mole pct SbzTes composition AgSbTez (compositions are conveniently expressed as mole percent SbzTes along the AgzTe-SbzTes section). One of the major problems in the proper evaluation and utilization of this material is the inability to control the electrical properties through impurity additions: all alloys prepared to date have been p-type, even with the addition of large amounts of impurities. It has been shown Wit all the compositions previously studied contain an intermediate phase of the NaCl st'ructure as a major phase (denoted by b) and a second phase, either AgzTe or SbzTe3, as a minor phase.'-3 One explanation for the unusual electrical behavior of this material is that the impurity additions have a higher solubility in the second phase than in the matrix; the impurity would segregate to the second phase, leaving the bulk matrix essentially free of impurity.4 In order to investigate this mechanism with a specific impurity element, the distribution of lead between the two phases was determined using autoradiography. Lead 210 was chosen because of the suitability of its 0.029 mev 0 particle for autoradiography and also because of the interest in lead as an impurity in this system.5'6 EXPERIMENTAL PROCEDURE Two compositions were taken from the vertical section between AgzTe and SbzTes, 50 mole pet SbzTes (Viz. AgSbTez) and 75 mole pct SbzTes, in which AgzTe and SbzTes appear, respectively, as the minor phase. Lead containing radioactive lead (pb210) was added to the above compositions to provide a concentration of 0.1 wt pct Pb. The material was placed in a graphite crucible in a quartz tube which was then evacuated and sealed. The samples were melted and solidified by cooling at a rate of 8°C per min and then removed and prepared for microa~toradiography. After autoradiographic examination of these samples, they were again encapsulated and annealed in an isothermal bath at 300°C for a number of days and prepared for examination. An alternate method of preparation employed a zone-melting furnace; the molten zone traversed the sample at a rate of 1.2 cm per hr and the solid was maintained at a temperature of 500°C both before and after solidification. This treatment had the same effect as solidification at a slow rate followed by an anneal for several hours at 500°C. In order to obtain the best resolution, thin sections of the alloy were prepared by hand lapping to a thickness of approximately 20 p. Other samples were prepared for examination by lapping a flat surface on the bulk sample. The resolution, although somewhat better in the former procedure, was adequate in both instances and the majority of the samples were treated in the latter fashion. A piece of autoradiographic film (Kodak Experimental SP 764 Autoradiographic Permeable Base Safety Stripping Film) was stripped from its backing, care being taken to avoid fogging due to static-electrical discharge. A small amount of water was placed on the sample, the film applied emulsion side down on the surface of the sample, and the sample and the film dipped into water in order to assure smooth contact. After drying, the film was exposed for 2 to 5 days, the period of time selected to give the best resolution. The film was developed on the specimen and fixed and washed in place. Two major factors must be considered in establishing the reliability of an autoradiograph: the in-
Jan 1, 1964
-
Iron and Steel Division - The Influence of Temperature on the Affinity of Sulphur for Copper, Manganese, and IronBy E. M. Cox, A. S. Skapski, N. H. Nachtrieb, M. C. Bachelder
As a result of using copper-containing scrap in the steelmaking process, the copper content of steels has been steadily increasing for years. Consequently the possible role copper may play in the steelmaking process and in the finished product begins to attract the metallurgists' attention. Some time ago one of the present authors forwarded the idea—based on the results of the analysis of nonmetallic inclusions extracted electrolytically from steels—that sulphur in plain carbon steels is distributed mainly between copper and manganese, the amount of iron sulphide being very small; and that, consequently, the problem of copper and that of sulphur in steel cannot be treated separately.' At the time of the publication of the quoted paper little was known about the relative affinities of copper and manganese for sulphur at high temperatures except that at moderate temperatures (below 1000°C) the affinity of manganese for sulphur is much greater. To gather more experimental data on this subject, the present authors undertook the investigation of the equilibrium constants of the reactions: 2Mn(8 or 1) + S2(g) = 2MnS(s) 4Cu(s or 1) + S2(g) = 2Cu2S (S or I)* 2Fe(s) + S2(g) = 2FeS (s or 1) over a range of temperatures wide enough to establish the dependence of these equilibrium constants on temperature. From the equilibrium constants (K = l/Ps2) the free energy of formation (affinity) can be calculated from F° = -RTln 1/PSt (1) where the standard conditions chosen are: 1 atm of sulphur pressure and the activities of condensed components equal one. The decomposition pressure, Ps2, of sulphur over the respective sulphides is too small to be measured directly, but there is a way of eliminating this difficulty by measuring the equilibrium constant of the reaction between the sulphide and hydrogen. From the latter and from the equilibrium constant of the thermal dissociation of H2S we then calculate Ps2 for the respective sulphide. 2Mn + 2H2S = 2MnS + 2H, 2H2 + S2 = 2H2S_________ 2Mn + S2 = 2MnS The numerical values of the equilibrium constant of the thermal dissociation of H2S at different temperatures were taken from Kelley's paper, "The Thermodynamic Properties of Sulfur and its Inorganic Compounds."² In previous experimental work published by Jellinek and Zakowski3 and by Britzke and Kapustinsky4 the equilibrium constants of the reactions Metal sulphide + H2 = H2S + metal were determined by passing hydrogen, at different rates of flow, over the sulphide, analyzing the resulting H2S + H2 mixture and then extrapolating the H2S/H2 ratio (which is a function of the rate of flow) to the zero speed of flow, a method necessarily involving considerable uncertainty. In the present work the equilibrium ratio was actually measured instead of being extrapolated. The apparatus is shown in Fig 1. Experimental Procedure The sulphides were prepared by the following methods: FeS Powdered iron which had been reduced with hydrogen (ferrum reduc-tum) was mixed in stoichiometric ratio with sublimed sulphur and carefully ground. The mixture was put into an alundum crucible, covered with pure sulphur, and the reaction started by touching the mixture with a glowing iron rod. After the reaction was completed the product (still containing some metallic iron) was again ground with sulphur, put into a Rose crucible, covered with sulphur, and heated in a strong current of pure hydrogen. Analysis of the final product showed 62.46 pct Fe and 36.59 pct S. Theoretical for FeS: 63.53 pct Fe and 36.47 pct S. MnS Manganese sulphide (precipitated and carefully washed with distilled water containing H2S) was dried in a Rose crucible in an atmosphere of H2S and heated in a current of hydrogen for 2 hr at red heat. The product was then ground and ignited for several hours at 1000°C in a current of hydrogen sulphide. Analysis showed 64.53 pct Mn and 36.63 pct S. Theoretical: 63.15 pct Mn and 36.85 pct S. Some MnS samples were prepared from metallic manganese and sublimed sulphur by mixing and grinding them and then heating in a current of hydrogen sulphide in an alundum tube.
Jan 1, 1950
-
Extractive Metallurgy Division - Fuming of Zinc from Lead Blast Furnace Slag. A Thermodynamic StudyBy G. H. Turner, R. C. Bell, E. Peters
Zinc oxide activities in a typical lead blast furnace slag have been calculated from plant operating data. These activities were used to assess the probable effect of fuel composition, oxygen enrichment, and air preheating on the efficiency and capacity of the slag-fuming operation. THE physical chemistry of zinc fuming has been examined with three objectives in mind: 1—to predict conditions favorable to increasing furnace capacity, 2—to predict the changes required to fume zinc more economically, and 3—to explain reported differences in the efficiencies of various slag-fuming plants. This study, made at ail in the plants and laboratories of The Consolidated Mining and Smelting Co. of Canada Ltd., developed from a program undertaken some three years ago on behalf of the AIME Extractive Metallurgy Div. subcommittee on slag fuming. Lead metallurgists first became interested in the recovery of zinc from lead blast furnace slags in 1905 and 1906. An excellent review of the early experimental work has been made by Courtney,' who described blast furnace, reverberatory furnace, and converter methods of fuming zinc from slag. Some of the investigators did not appreciate the importance of reducing the zinc oxide content of the slag to metal in order to fume it, since they tried compressed air blast without fuel in their earliest attempts. However, by 1908, the importance of reducing the zinc was established.' In 1925, the Waelz process for the recovery of zinc oxide from oxidized zinc ores was developed in Germany.' This process was not readily adaptable to lead blast furnace slags because of the difficulty in handling fusible charges in a kiln. What appears to have been the first slag-fuming operation as it is known was commenced by the Anaconda Copper Mining Co. at East Helena, Mont. in 1927." The first Trail furnace was completed in 1930, and this was followed by the construction of several other slag-fuming plants. During the period in which slag fuming has been extensively employed, little development of the chemistry of this process as a whole has taken place. Several good papers on the petrography of lead blast furnace slags have been published,""= but these studies could do little more than establish the forms in which lead and zinc occur in the initial charge and final products of the slag-fuming operation. In recent years, zinc-smelting problems have been ap- proached from a thermodynamic point of view. Maier has published an excellent thermodynamic treatment of zinc smelting." The important thermodynamic properties of zinc and its compounds have been determined and checked by other investigators.' However, to the best of the authors' knowledge, no thermodynamic treatment of the fuming of zinc from slag has been published. A thermodynamic study of any process requires that the essential chemistry of that process be known. In slag fuming there appear to be some differences of opinion as to whether the active reducing agent is elemental carbon or carbon monoxide. Furthermore, some observers have noted that high volatile coals appear to be more efficient than low volatile coals, indicating that hydrogen is also an important factor in the reducing efficiency of a fuel. That both hydrogen and carbon monoxide are effective reducing agents for the zinc oxide content of lead blast furnace slags can be demonstrated readily by introducing these gases into a slag bath held in a neutral vessel at 2100°F (1150°C). Elemental carbon also will reduce zinc oxide, but it is improbable that much free carbon is available for reduction of zinc, as the reaction between the finely powdered coal and air should be largely completed before the solid coal particles reach the slag. Some large-scale fuming experiments using gaseous hydrocarbons have been carried out by other investigators, but, as far as is known, these have not been developed yet into operating processes. The thermodynamic treatment in this paper is based on the following reactions: 1—to supply the thermal requirements C+V2O2- CO [1] C + 0,-CO, [2] H2+ ~z0,-H,O 131 and 2—to reduce ZnO ZnO + CO + Zn + CO, c41 ZnO + H, e Zn + H,O. [51 The furnace-gas composition also is controlled by the equilibrium constant of the familiar water-gas reaction H,O + CO + CO, + H2. C6l In order for the thermodynamic calculations to be quantitatively applicable, it is necessary that the chemical reactions to which they are being applied
Jan 1, 1956
-
Iron and Steel Division - A Determination of Activity Coefficients of Sulfur in Some Iron-Rich Iron-Silicon-Sulfur Alloys at 1200°CBy Thomas R. Mager
An in.t!estigation has been made of the equilibrium conditions at 1200°C in the reaction between hydrogen sulfide gas and sulfur dissolved in Fe-Si alloys From this the equilibrium constant, activity coefficient, and activity of sulfur in solution were calculated. A number of studies of the equilibrium of sulfur with iron and iron alloys have given closely agreeing results from which the activity and free energy of the dissolved sulfur may be found. Sherman, El-vander, and chipman1 discussed the significant researches of dilute solutions of sulfur in liquid iron prior to 1950, and the results of this study indicated that the relationship between the ratio of PH2S/PH2 in the environment and the percentage of sulfur in solution is not a linear one. Morris and williams2 studied the equilibrium conditions in the reaction between hydrogen sulfide gas and sulfur dissolved in liquid iron and Fe-Si alloys, and reported that silicon dissolved in iron has a pronounced effect on the equilibrium conditions. They found that the activity of sulfur in iron is increased by the addition of silicon. At a silicon content of 4 pet the activity coefficient of sulfur was about twice that for sulfur dissolved in pure iron. Sherman and chipman3 investigated the chemical behavior of sulfur in liquid iron at 1600°C through the study of the equilibrium: H2 + S = H2S; K = PH2S/PH2 . 1/as [1] From the known equilibrium constant of the reaction between H2, H2S, and S and the experimental data, the activity of sulfur in the melt was determined. They found that the activity coefficient of sulfur defined as fs = as/%s is increased by silicon and decreased by manganese. Morris4 and Turkdogan5 also reported that manganese decreases the activity coefficient of sulfur in liquid iron and iron-base alloys. A recent technique of sulfur analysis developed by Kriege and wolfe6 of the Westinghouse Research Laboratories permits an accurate sulfur analysis of 0.5 * 0.2 ppm in the range of 0.1 to 3 ppm, whereas in the range of 3 to 50 ppm the accuracy is ±1 ppm. This technique of sulfur analysis was utilized in this experiment. Previous unpublished data reported that sulfur analysis by the combustion technique was not accurate below 20 ppm. EXPERIMENTAL PROCEDURE Five 5-lb ingots of high-purity Fe-Si were prepared. Three of these ingots were prepared without the addition of manganese but with a variation of silicon contents from 2 to 4 pet. The remaining two ingots contained 3 pet Si with the addition of manganese. Ingots were made at each of three silicon levels: 2, 3, and 4 pet. No alloys were made with less than 2 pet Si since below approximately 1.8 pet Si the binary alloy exhibits a to ? transformation. The two additional ingots of 3 pet Si-Fe were made at each of two manganese levels: 0.20 and 0.50 pet. To minimize the effects, if any, of impurities on the activity of sulfur on Si-Fe, the best metals available were used for melting. All ingots were vacuum-melted in magnesium oxide crucibles. After obtaining samples for chemical analyses, the ingots were processed. This consisted of hot rolling and subsequently cold rolling the alloys. Each ingot was hot-rolled at 1000°C, reheating between every pass to minimize grain growth. All heating was done in a protective argon atmosphere. The slabs were hot-rolled to strips 50 mils thick. After hot rolling, all the material was pickled to remove the scale formed on the surface of the strip during hot rolling. The material was then cold-rolled to 12-mil strips. Single strips of the material used in this experiment were hydrogen-annealed at 1200°C for 16 hr in an alumina tube. Chemical analyses of strips M-1, M-3, M-4, M-7, and M-8 are given in Table I. Sulfur, silicon, and manganese analyses were made from the millings from the cold-rolled 12-mil strips. The oxygen analyses were made from slugs of the as-cast material. The hydrogen sulfide used in these experiments was supplied from cylinders containing a mixture of argon and 1 pet hydrogen sulfide. The parts per million of hydrogen sulfide were determined from the analysis of the exit gas of the annealing furnace during each anneal. The flow rate of hydrogen was approximately 1 liter per min in all anneals. The
Jan 1, 1964
-
Part VI – June 1968 - Papers - Thermodynamic Properties of Interstitial Solutions of Iron-Base AlloysBy D. Atkinson, C. Bodsworth, I. M. Davidson
A geometric model of interstitial solid solutions, which has been used previously as a basis for the prediction of carbon activities in Fe-C austenite, is shown to serve also for the calculation of nitrogen activities in Fe-N austenite. The model has been developed to enable predictions to be made of the activities of an interstitial element in the presence of two host atom species. The activities calculated via the model are shown to be in satisfactory agreement with the measured values in the austenite phase for carbon in Fe-C-Co, Fe-C-Cr, Fe-C-Ni, Fe-C-~n, Fe-C-Si, and Fe-C-V alloys and for nitrogen in Fe-N-Ni alloys. The effect of the second substitu-tional solute on the logarithm of the activity of the interstitial element is expressed as the product of a constant mad the atomic concentration of that solute. The constants so derived we related to the thermo-dynamic interaction coefficients which describe the effect on the activity coefficient of carbon of an added solute element. In recent years the thermodynamic activities of carbon and nitrogen in the single-phase austenite field have been determined for iron binary alloys and for several iron-base ternary alloys. In order to extend the use of these measurements, it is desirable to be able to predict with reasonable accuracy the activities of the interstitials at compositions and temperatures other than those which have been measured experimentally. In all the systems studied to date, the interstitial elements do not conform to ideal behavior. Hence, the available data cannot be extrapolated or interpolated using the simple thermodynamic concepts of solutions. Several models have, therefore, been formulated for the purpose of predicting the activity of an interstitial element in the presence of one species of host atom. These models can be divided into the geometric1"5 and energetic6-' types. The former group is based on the assumption that at low concentrations the activity of the interstitial species is determined by a composition-dependent configurational entropy term and an excess free-energy term which is temperature-dependent but independent of composition. The purpose of this paper is to show that the treatment, based on a geometric model, can be extended to enable predictions to be made of interstitial activities in the presence of two substitutional host atom species. THE CONFIGURATIONAL ENTROPY OF MIXING ICaufman5 has shown that the configurational entropy, S,, for a binary solution comprising of a host atom species, A, and an interstitial species, I, can be expressed as: where NI is the atom fraction of the interstitial species, R is the gas constant, and (2 - 1) is the number of interstitial sites excluded from occupancy by the strain field around each added interstitial atom. The number of interstitial sites per host atom, p, is unityg for the fcc austenite solutions considered here. The configurational entropy of mixing for a ternary solution comprising two substitutional atom species, A and B, and one interstitial species, I, can be derived similarly. Let the number of atoms per mole of each of these species in the solution be represented by «a, ng, and nI. From geometric considerations, it is improbable that the addition of a few atom percent of a second host atom species will change the type of sites (i.e., octahedral) in which the interstitial atom can be accommodated in the austenite lattice. At higher concentrations (determined largely by the relative atomic radii of the atomic species present and any tendency to nonrandom occupancy of the host lattice sites) other types of interstitial sites may become energetically favorable. Restricting consideration to compositions below this limit, for 1 = 1 the number of suitable interstitial sites is given by (n + nB). However, if each interstitial atom excludes from occupancy (Z - 1) additional sites, the total number of sites available for occupation is reduced to (n + ng)/Z. The number of vacant interstitial sites is given by: The total number of recognizable permutations of the atoms must include the recognizable, different configurations of the A and B atoms on the host lattice. Assuming that these arrangements are purely random, and are not affected by the presence of the interstitial species, the total number of recognizable permutations in the ternary alloy is given by: The configurational entropy is obtained by expanding, using Stirling's approximation, and collecting like items, as:
Jan 1, 1969
-
Extractive Metallurgy Division - Bismuth Recovery at OroyaBy W. C. Smith, P. J. Hickey
After a short historical background of the process evolution, this article descvibes present-day plant facilities and operating techniques utilized for high-purity bismuth production. The plant is one of the world's largest, with an annual output of some one million pounds of refined bismutlz. PREVIOUS papers1 written by staff members of Cerro de Pasco Corp. have referred briefly to the production of refined bismuth. Since the Corporation is one of the world's foremost producers of high-purity bismuth, a detailed description of the process for extracting the metal may be of general interest. Following a short historical background of the development of the actual process, this presentation will trace the progress of bismuth from its entry into the primary smelting circuits to its concentration in electrolytic lead cell slimes. Our facilities for the treatment of anode muds will be described and the extractive methods given in some detail, with particular emphasis on the techniques which result in the production of refined metal. HISTORICAL BACKGROUND Shortly after Cerro de Pasco began smelting operations at Oroya, Peru in 1922, it became apparent that the dust carried by copper converter gas contained appreciable amounts of bismuth. Although dust collection efficiency was poor prior to building of the 550-ft stack and installation of the central cottrells in 1938, a large stock of dust was accumulated during the intervening years, having the following approximate composition: Oz. per ton Ag - 11.0 Pct Sn — 0.5 Pct Pb - 49.0 Pct Zn - 6.5 Pct Bi - 2.0 Pct Insol. - 1.5 Pct Cu - 0.7 Pct Fe - 2.3 Pct Sb - 3.0 Pct S - 10.0 Pct As - 7.5 In the mid-1920's, experimental crucible melts of this dust with carbon indicated that most of the bismuth and silver, and some of the lead, could be reduced to a fairly clean bullion. Other products were a small amount of leady copper matte and a slag high in zinc, arsenic, antimony, and lead; this slag contained some tin but only small quantities of silver, bismuth, and copper. After the laboratory results had been confirmed by operation of a small reverberatory, a dust reduction furnace was constructed. The ±10 pct Bi-Pb bullion produced from this operation was stocked until 1930, when an Oroya-designed converter type furnace3 was installed for the elimination of arsenic, antimony, and some lead from the bullion. This process concentrated the bismuth from 10 to about 60 pct. By means of the bismuth process developed4 by W. C. Smith at East Chicago (1909-1914) and the discovery of a method5 for separation of lead from bismuth with chlorine gas in 1929, it became possible to begin production of refined bismuth. Unfortunately, bismuth deleaded with chlorine always contained residual chlorides, and the removal of the chlorides by caustic soda left a lead content of 0.02 to 0.04 pct. This final problem was solved6 by substitution of air-blowing for the caustic treatment, which effectively removed all excess chlorine and gave bismuth which was practically lead-free. In 1934, a pilot electrolytic lead refinery began operations at Oroya. Lead smelting was resumed in 1935 and two years later a 100-ton-per-day lead refinery was put into service. In conjunction with the latter, the present-day Anode Residue Plant was constructed. Until 1940, the plant treated both lead anode slimes and dust reduction bullion. The dust reduction furnace was shut down in that year, and all cottrell dusts (with the exception of the product from the arsenic cottrell) were mixed with pyrite and treated in a Wedge roaster to eliminate all possible arsenic. Calcine from this operation joined the sinter plant feed; hence the bismuth from the copper and lead circuits was collected in the lead bullion and subsequently in lead anode slimes from the electrolytic lead refinery. The latter source has been the only bismuth-bearing material of any consequence entering the Anode Residue Plant from late 1940 to the present. A copper refinery began operating in 1948, and the cell mud from this plant is mixed with lead slimes and processed through the same circuit, though only a small quantity of bismuth is present in electrolytic copper cell residues. BISMUTH INTAKE Present-day routes which are followed by the new bismuth feed from its entry into the primary smelting circuits to its arrival at the Anode Residue Plant are traced schematically in Fig. 1. As illus-
Jan 1, 1962
-
Part IX – September 1968 - Papers - Convection Effects in the Capillary Reservoir Technique for Measuring Liquid Metal Diffusion CoefficientsBy J. D. Verhoeven
In the past 15 years a considerable amount of experimental and theoretical work has been done concerning the onset of convection in liquids as a result of interm1 density gradients. This work, which has been doue in many different fields, is reviewed here and extended slightly to give a rrlore quantitative understanding to the probletrz of conzection in liquid metal dlffusion experinletzts. In liquid metal systems the capillary reservoir technique is currently used, almost exclusively, to measure diffusion coefficients. In this technique it is necessary that the liquid be stagnant in order to avoid mixing by means of convection currents. Convective mixing may result from: 1) convection produced as a result of the initial immersion of the capillary; 2) convection produced in the region of the capillary mouth as the result of the stirring frequency used to avoid solute buildup in the reservoir near the capillary mouth; 3) convection produced during solidification as a result of the volume change; and 4) convection produced as a result of local density differences within the liquid in the capillary. The first three types of convection have been discussed elsewhere1-a and are only mentioned for completeness here. This work is concerned only with the fourth type of convection. Local density differences will arise within the liquid as a result of either a temperature gradient or a concentration gradient. It is usually, but not always, recognized by those employing the capillary reservoir technique that the top of the capillary should be kept slightly hotter than the bottom and that the light element should be made to migrate downward in order to avoid convection. In the past 15 years a considerable amount of work, both theoretical and experimental, has been done in a number of different fields which bear on this problem. This work is reviewed here and extended slightly in an effort to give a more quantitative understanding of the convective motion produced in vertical capillaries by local density differences. The Stokes-Navier equations for an incompressible fluid of constant viscosity in a gravitational field may be written as: %L + (v?)v = - ?£ + Wv - g£ [1] where F is the velocity, t the time, P the pressure, p the density, v the kinematic viscosity, g the gravitational acceleration, and k a unit vector in the vertical direction. A successful diffusion experiment requires the liquid to be motionless, and under this condition Eq. [I] becomes: where a is the thermal expansion coefficient [a =-(l/po)(dp/d)], a' is a solute expansion coefficient [a' = -(l/po)(dp/d)], and the solute is taken as that component which makes a' a positive number. Combining with Eq. [3] the following restriction is obtained: Since there is no fixed relation between VT and VC in a binary diffusion experiment, Eq. [5] shows that the condition of fluid motionlessness requires both the temperature gradient and the concentration gradient to be vertically directed. Given this condition of a density gradient in the vertical direction only, it is obvious that, as this vertical density gradient increases from negative to positive values, the motionless liquid will eventually become unstable and convective movement will begin. The classical treatment of this type of instability problem was given by aleih' in 1916 for the case of a thin fluid film of infinite horizontal extent; and a very comprehensive text has recently been written on the subject by handrasekhar.' It is found that convective motion does not begin until a dimensionless number involving the density gradient exceeds a certain critical value. This dimensionless number is generally referred to as the Rayleigh number, R, and it is equal to the product of the Prandtl and Grashof numbers. For the sake of clarity a distinction will be made between two types of free convection produced by internal density gradients. In the first case a density gradient is present in the vertical direction only, and, since the convection begins only after a critical gradient is attained, this case will be called threshold convection. In the second case a horizontal density gradient is present and in this case a finite convection velocity is produced by a finite density gradient so that it will be termed thresholdless convection. Some experimentalists have performed diffusion experiments using capillaries which were placed in a horizontal or inclined position in order to avoid convection. These positions do put the small capillary dimension in the vertical direction and, consequently, they would be less prone to threshold convection than the vertical position. However, if the diffusion process produced a density variation, as it usually does, it would not be theoretically possible to avoid thresh-
Jan 1, 1969
-
Part VII – July 1968 - Papers - The Solubility of Nitrogen in Liquid Iron and Liquid Iron-Carbon AlloysBy A. McLean, D. W. Gomersall, R. G. Ward
An experimental study has been made of the solubility of nitrogen in liquid iron and liquid Fe-C alloys using levitation melting and a rapid quenching device. Iron alloy droplets were equilibrated with nitrogen gas at 1 atm pressure, quenched, and analyzed. Previous techniques for studying the Fe-C-N system have produced data which me in marked disagreement. This disagreement is due largely to errors caused by reaction between the molten alloy and the crucible material. With the levitation procedure, errors from this source have been eliminated and precise solubility data obtained for temperatures between 1450° and 1750°C. C-N interactions in molten iron have been expressed in terms of first- and second-order free energy, enthalpy, and entropy parameters. ALTHOUGH the solubility of nitrogen in iron base alloys is in general small, the effects of nitrogen on the properties of steel may be quite profound. For most purposes nitrogen in finished steels is undesirable, particularly in the low-carbon grades, since on cooling to room temperature the solubility limit of nitrogen in the steel may be exceeded and this can lead to embrittlement and loss of ductility on aging. On the other hand, nitrogen can improve the work-hardening properties and machinability of steels while in certain stainless grades nitrogen is important in order to stabilize the austenite phase. It is, therefore, desirable that one should be able to predict the solubility of nitrogen in liquid iron alloys. To do this, information is required concerning the interactions between nitrogen and the various alloying elements which may be present in liquid iron. There have been several investigations of these effects in recent years1"7 and the interactions between nitrogen and many elements dissolved in liquid iron are now known to a high degree of precision at steel-making temperatures. Unfortunately, a number of iron alloy systems which are of interest in steelmaking have been difficult to deal with by the experimental techniques generally used for this type of investigation. Among the most important of these are the Fe-C alloys. In the past, two methods have been widely used for determining nitrogen solubilities: the Sieverts' technique, in which the amount of nitrogen required to saturate a given mass of liquid metal at a particular temperature and pressure is measured volumetrically, and the sampled-bath technique in which liquid metal held in a crucible is equilibrated with a gas phase containing a known partial pressure of nitrogen, and samples drawn from the melt are quenched and analyzed. These two methods have been discussed in detail elsewhere.5,8 With the Sieverts' technique, errors may be introduced from the following sources: i) Gas adsorption on metal films which have condensed on the cooler parts of the reaction chamber. ii) Uncertainty in the determination of "hot volume" calibrations. iii) Crucible-melt interaction, particularly if a gaseous reaction product is formed or if the melt becomes contaminated with material from the crucible walls. The sampled-bath method may also suffer from errors due to reaction between the melt and the crucible material. In addition, there is the possibility that gas may be lost from the sample during solidification and cooling. In the present investigation, the solubility of nitrogen in liquid iron alloys has been studied by means of a new technique based on the use of levitation melting equipment and a rapid quenching device. In addition to the fact that problems of the type outlined above are avoided, this particular approach has the following advantages: i) The high-frequency current induces vigorous stirring within the levitated droplet so that gas-metal equilibration is rapidly attained. ii) The gas phase surrounding the melt can be changed very quickly and is easily controlled. For example, a droplet may be levitated in helium, deoxidized in hydrogen, equilibrated with nitrogen, and quenched, within a period of 15 min. ii) Melts can be readily under cooled or superheated, thus extending the effective temperature range of an investigation and allowing temperature-dependent data to be determined with a high degree of precision. Excellent reviews of levitation melting techniques and their application to physical-chemistry studies at high temperature have been published recently by Jenkins et al.,9 Peifer,10 and Rostron.11 In the present investigation a levitation melting technique has been used to obtain data for the solubility of nitrogen in pure liquid iron and liquid Fe-C alloys at temperatures between 1450° and 1750°C. The solution of nitrogen in liquid iron can be described by the reaction:
Jan 1, 1969
-
Producing–Equipment, Methods and Materials - Fractures and Craters Produced in Sandstone by High-Velocity ProjectilesBy J. S. Rinehart, W. C. Maurer
The mechanics of impact crater formation in rock, particularly sandstone, has been sutdied, the velocity range being approximately that normally associated with oilwell gun perforators. The bullets were small steel spheres having diameters of 3/16, 9/32 and 7/16 in; impact velocities ranged from 300 to 7,000 ft/sec. The craters have two distinct parts — a cylindrical hole (or burrow) with a diameter the same as that of the impacting sphere, and a wide-angle cup comprising most of the volume of the crater. The burrow is fornred as material in front of the projectile is crushed and pushed aside, forming a cylindrical hole surrounded by a high-density zone. The clip forms as fractures are initiated in front of the projectile and propagate along logarithmic spirals, approximaling maximum shear trajectories, to the free surface of the rock. A most significant observation (made for the first time) was that, below the base of the cup in one type of sandstone, there are a group of similar fractures, not extending to the surface, which are spaced uniformly a few millimeters apart. Each fracture follows roughly the contour of the base of the cup and appears to require a certain threshold impulse to initiate it. These fractures comprise a relatively high fraction of the total, newly exposed surface area. The volume of the material removed by crushing varies as the first power of the impact velocity and the volume removed by fracturing, as the second power of the impact velocity. Penetration varies linearly with the impact velocity and is inversely proportional to the specific acoustic resistance of the target material, the proportionality constant being dependent upon the shape of the projectile. INTRODUCTION Yield of oil from a producing well is frequently enhanced by firing bullets and shaped charges through the well casing into the oil-bearing rock, forming craters and fractures from which oil can flow more readily. The purpose of this investigation has been to develop a better understanding of the mechanics of impact crater formation in rock, particularly sandstone, the velocity range being approximately that normally associated with oilwell gun perforators. FORCES OPERATIVE DURING IMPACT When a projectile moving at considerable velocity strikes a- massive target such as oil-bearing sandstone, intense and complex transient stress situations develop within both the projectile and the rock or sandstone against which it is striking. Usually the struck rock fails, the missile or projectile penetrating into the rock to some depth where it comes to rest or is forcibly ejected from its burrow by expansion of a plug of target material compressed in front of it. When the impact velocity is very high, the projectile itself may fail, breaking apart or becoming distorted; this situation is not considered here, the discussion being limited to nondeforming projectiles. Many experimental studies'.' have been carried out to determine the nature of the mechanics of crater formation and the salient features of the forces coming into play, some of the earliest studies being the French Army experiments performed at Metz between 1835 and 1845.' The stratagem in most instances has been to make a post-mortem examination of the crater, measuring volume and depth of penetration and deducing force relationships from these observations rather than performing the more difficult (usually almost impossible) feat of measuring stresses during penetration. In many materials, the force acting during penetration of the projectile is found to be the sum of two components—(1) a constant force, independent of the velocity, representing some inherent strength of the target material; and (2) a component, proportional to the square of the velocity, representing inertial forces. For such materials, the average force per unit area acting on the projectile at any instant while it is in motion and being decelerated may be written F/A = a + bv2 . . . (1) where v is the velocity of the projectile at that instant, A is the cross-sectional area of the penetrating projectile taken normal to its trajectory, and a and b are constants which are dependent upon the target material and the shape of the projectile. It follows that the total penetration s is given by .........(2) where v, is the velocity of the projectile when it just strikes the target. Values of a and b for spherical projectiles impacting in a loose sand-gravel mixture and compacted earth were obtained in the Metz experiments. For sand-gravel, a and b are 620 psi and 0.0115 (psi) (ft/sec)', respectively; and for compacted earthworks, a and b are 432 psi and 0.0008 (psi) (ft/sec)'. Figs 1 and 2
-
Institute of Metals Division - Latent Hardening in Silver and an Ag-Au AlloyBy B. Ramaswami, U. F. Kocks, B. Chalmers
The latent hardening of silver and an Ag-Au alloy was investigated by lateral compression, overshoot in tension and cormpression, and the stability of multiple-slib orientations. The latent hardening of a secondary slip systenz depends on its relation to the primary slip system. For most secondary slip systems the latent hardening is larger for Ag-10 at. pct Au than for pure silver. The maximum increase in. flow stress on a secondary slip system over that of the primary slip system was 40 pct. The work hardening during the lateral-compression test on the latent system after prestress on the primary system is iuterbreted in terms of the preferential distribution of barriers to dislocation movement with respect to the active slip system in work-lzardened fcc crystals. The work-hardening in fcc crystals is mainly due to the dislocation interactions and the barriers to dislocation movement formed as a result of reactions between dislocations of different slip systems. The operation of sources on the latent system depends on the flow stress of those systems; hence, the increase in flow stress of a latent system due to glide on an active system, which is called latent hardening, is an important element in understanding the phenomenon of work hardening. The problem of latent hardening has attracted the attention of many investigators in the past. For example, a theoretical study of the elastic latent hardening of the latent systems due to glide on an operative system has been made by Haasen' and ~troh. These calculations, however, neglect the stress required for the intersection of forest dislocations by the glide dislocations, a factor which would be important for producing macroscopic strains on the secondary slip systems. The importance of this factor will become evident from the results presented here. Attempts have also been made to determine the latent hardening of different slip systems by experimental means by the methods summarized in Table I.3-9 The experimental methods used have been subject to certain limitations. For instance, in the method used by Hauser,9 frictional constraints between the specimen and the compression platen were not eliminated by proper lubrication (see Hos- ford10). Secondly, with the exception of Kocks,6 Hauser,9 and Rohm and Kochendorfer,11 latent-hardening studies have been made on only one of the slip systems, i.e., on either the conjugate or the coplanar slip system; hence, extensive results are not available on the latent hardening of different slip systems in the same materials, with the exception of aluminum.6 It was therefore decided to study the latent hardening of the conjugate, critical and half-related slip systems in silver. Similar experiments were done in Ag-10 at. pct Au to study the effect of solute (gold) on the latent hardening of silver. Lastly, indirect evidence can be obtained by a study of the orientation stability of crystals of multiple-slip orientations in tension and compression. This method has been used by Kocks6 to supplement his studies of latent hardening in aluminum. Similar studies were made at room temperature in single crystals of silver. EXPERIMENTAL PROCEDURE The single crystals of the desired orientations were grown and the tensile test specimens were prepared as described in Ref. 12. The compression tests were made on 1/4-in.-cube specimens. The specimens were cut from single crystals, in the Servomet spark-erosion machine.13 The two cut surfaces were planed using the lowest available planing rate in the machine to minimize the deformation layer. A brass strip was used as the planing tool. This method of preparation ensured plane parallel faces for the compression tests. The deformed material was removed by prolonged etching in a weak etching solution. A weak etching solution was used to prevent pitting of the surfaces and to ensure uniform etching. About 25 to 50 µ of material were removed from all faces by the etching treatment. The specimens were then annealed for 24 hr at 940°C in oxygen-free helium and cooled in the furnace to room temperature over a period of 7 hr. After annealing, the orientation of the specimens was determined by Laue back-reflection technique to make sure that no recrystallization had occurred on annealing. The compression-test technique and setup are described in Ref. 14. The Laue back-reflection technique was used to study the overshoot in tension, the overshoot in compression, and the stability of the axial orientation in tension and compression. The tests were interrupted after every few percent strain to determine the axial orientation. In investigating the overshoot in compression, the operative system was determined by studying the asterism of the Laue spots.
Jan 1, 1965
-
Industrial Minerals - Guide for Buying Domestic Muscovite MicaBy Blandford C. Burgess
Mica is an orchid among minerals. It is formed in pegmatites, one of the most bizarre of igneous formations, and is exceeded by few other minerals in the perfection it may attain as to size, color, and cleavage. First used for window glazing, as an ornament and article of trade, it has become one of the most essential insulators of electricity, heat, and shock. Most internal combustion engines use mica condensers or capacitors and such machines of war as planes, tanks, and submarines are immobile without it. The original manuscript of this guide was written in April 1943 at the peak of war emergency. It was not used because shortly thereafter a decision was made to buy on a one price basis eliminating differentials for both quality and size. This is now presented with the thought that from the standpoint of preparedness we can only consider another war imminent and every effort should be made to set up in usable form the experience gained during the Second Morld War. Colonial Mica Corp. was set up by Metals Reserve Co. as a wholly owned government agency to encourage production of domestic mica and to purchase it. It soon became the exclusive buyimg agency for such mica. The writer as Southern Manager called on all the private agencies buying mica to assist in formulating buying policies, methods, and prices. A meeting was held for that purpose in Asheville, N. C., July 20, 1942. In the general discussion the first two hours of the meeting it was decided that the following factors should be considered in pricing strategic mica: clearness, flatness, trimming, color, classification (size and quality), free splitting, hardness, and air inclusions. Most of the mica miners have been buying strategic mica, according to the mine, as No. 1, No. 2, or Nos. 1 and 2 combined. In addition to these grades of strategic mica they have been buying three lower grades of mica, electric (vegetable-stained), black-spotted and black-stained. A number of mines were named one by one and the buyers present gave their opinions as to the basis they would use in buying the sheet mica from each. It was suggested that in addition to the prices already published, prices be posted up to 10 pct higher for special quality and preparation and prices be posted 25 pct lower than the published prices for the lowest acceptable grades of strategic mica, giving the buyers authority to make intermediate prices according to the quality and preparation. It was thought desirable at the same time to announce prices for nonstra-tegic mica where such quality is being obtained in mines producing strategic mica and where it would be necessary to take the output in order to get the strategic mica. It was also suggested that the price of electric and black-spotted mica be 50 pct below the price of the lowest grade of strategic mica and the price of black-stained mica be 60 pct below the price of lowest grade strategic mica. The few experienced buyers available were employed but they were inadequate for the job and others had to be trained. All needed a guide or primer of some kind to attain systematic procedure and consistent prices in their respective buying areas. The Mica Buyers Guide was formulated for that purpose based on experience gained in the first six months of buying. The Preface to the original guide was as follows: The purpose of this guide is to serve as a text in training beginners and as a handbook for experienced buyers of the instructions which have been issued up to this time. At the meeting of prospective buyers last summer, it developed that the first essential to attain uniformity must be some kind of check sheet. Our "Mica Buyers Report" was developed for this purpose and forms the backbone of this guide. Price is determined according to size, quality and preparation. Size can be measured, but no system of measurement or machine has been devised which can be substituted for the trained eye of the buyer to deterrnine quality and preparation. Although the "One Price" system was instituted and the "Guide" not used, the buyers were required to continue making out a "Mica Buyers Report" (Fig1) with each lot of mica purchased. The form proved its value and there is no doubt that in another such emergency some similar form should be
Jan 1, 1950
-
Institute of Metals Division - Some Mechanical Properties of Austenitic Stainless-Steel Single CrystalsBy G. Meyrick, H. W. Paxton
Observations on the tensile deformation of single crystals of austenitic stainless steels as a function of composition, orientation, and temperature are described and compared with relevant data for other alloys. Crystals free from second phases show sharp yield points followed by Lüders' extensions of up to 20 pct. The critical resolved shear stress is strongly temperature-dependent increasing fourfold between 423O and 77°K. A temperature-independent low rate of hardening follows the Luders' extension and is frequently associated with overshoot. Unlike pure metals where Proficse cross slip usually occurs at the end of linear hardening, this stage is terminated either by cross slip or by slip on the conjugate system, the particular node apparently depending upon initial orientation and composition. The presence of 6 ferrite or martensite has a profound effect upon the magnitude of the yield stress and the shape of the stress-strain curve. In experiments on transgranular-stress corrosion cracking of austenitic stainless steels in boiling magnesium chloride, several workers1'2 have shown that increasing amounts of nickel tend to reduce the probability of specimen failure. Reed and paxton3 have observed in single crystals that the macroscopic crack plane changes as the nickel content is increased. For 18 pct Cr-8 pct Ni, the crack plane is sensibly perpendicular to the applied tensile stress; for 20 pct Cr-20 pct Ni the crack plane is (100). The average crack-propagation speed is much lower in the 20 pct Ni crystals. Furthermore, the possible importance of stack-ing-fault energy in nucleation and growth of cracks has been suggested by a number of workers. While the general effect of variations in stack ing-fault energy appears to be quite well-correlated with observed variations in cracking characteristics, each of the theories assigns rather different detailed reasons for these effects. Because the stack ing-fault energy of austenitic steels is believed to be increased with increasing nickel content, and because some theories of trans-granular cracking postulate a mechanical stage in the crack propagation (rather than relying entirely on electrochemical solution), it appeared to be of some interest to investigate the mechanical properties of a series of different compositions of aus-tenite single crystals. These experiments were considered of intrinsic value in view of the relative scarcity of such data on fcc alloys. This paper gives the results of some experiments carried out with this aim in mind, and suggests various 'other experiments which may be helpful in future studies. The experiments are also of interest in view of the recent interest in obtaining higher-strength steels by control of the imperfection content of austenite; although the compositions are not directly comparable, the results are still probably valuable. Comparisons with experiments on other fcc alloy crystals are made where possible to see how well the general pattern of behavior is understood. EXPERIMENTAL PROCEDURE The alloys used in this investigation were vacuum-melted heats of nominally 20 pet Cr-20 pet Ni-60 pet Fe, 20pctCr-16 pct Ni-64 pct Fe, and 20 pctCr-12 pet Ni-68 pet Fe.* Analyses of the material are
Jan 1, 1964
-
PART XI – November 1967 - Papers - Dilation of Alpha Iron by CarbonBy E. J. Fasiska, H. Wagenblast
The dilalion of a ivon by interslilial carbon was measured by two independent techniques —dilatometric mesurements at 719 c and X-ray measurments of the urlil cell parameters a1 room temperature after quenching. The relative expansion per increase in cavbon content by both methods is (2.9 + 0.3) x 10-3 pev at. pcl C nrzd is temperature- independent within experimental error. This corresponds to (6.3 5 0.6) cu cm per g-atom for the partial gram-atomic volume of carbon in a iron-only slightly smaller than the atomic volume for iron in the same temperature vange. THE only previous quantitative study of the dilational effect of carbon dissolved in a iron was performed in 1934 by Burns1 which, at the time, generated some discussion of possible sources of experimental error.2 For a system of such widespread importance, we felt that a new investigation was merited. Both X-ray diffraction and dilation measurements were used to determine the expansion of the a iron lattice by dissolved carbon, avoiding as much as possible any previous experimental problems and deficiencies. The dilation method at solution temperature offers not only measurements which are free of residual strain but also, in conjunction with the room-temperature X-ray measurements, a method to detect any large temperature dependence of the partial gram-atomic volume of carbon. To insure that quenching strains did not affect the room-temperature X-ray measurements, wire specimens of constant carbon content but different diameter were examined for such an effect. SPECIMEN PREPARATION The material used for both experimental techniques was "Ferrovac E" iron received in the form of 19-mm-diam rod and stated as having the following impurity contents: C, Cr, Cu, Mn, P, and V, each in the range of 10 to 50 ppm; Co, O, Mo, S, and Si, 60 to 100 ppm; W, 200 ppm; Ni, 230 ppm; N, 4 ppm. The stock material was cold-swaged to 0.71 mm diam for the Debye-Scherrer X-ray camera specimens and portions were cold-rolled from 6.3 mm diam to 0.79- and 0.25-mm sheet for X-ray diffractometer and dilation measurements. The wires were annealed in wet hydrogen for 6 hr at 840°C and 15 hr at 720°C, and then quenched into 0°C water. A chemical analysis for carbon after this treatment gave 0.0046 + 0.0014 at. pct C. Three portions of these wires were subsequently held at 719°C in three different hydrogen + methane mixtures and then quenched, resulting in carbon concentrations of 0.0283, 0.0598, and 0.1067 at. pct C by chemical analysis. After carburizing, the wires were swaged to 0.48 mm and electroplated with silver to prevent carbon loss during subsequent heat treatment. The final heat treatment consisted of holding the wires at 72 1°C for 5 min in a He-2 pct H mixture followed by quenching into 0°C brine. The wires were held at room temperature for a few minutes to remove the silver plating using a phosphoric acid-hydrogen peroxide solution, and then stored in liquid nitrogen until the measurements were made. EXPERIMENTAL TECHNIQUE A) Dilation Measurement. The dilatometer consisted of a gas-atmosphere vertical tube furnace modified so that length changes of a ribbon-shaped specimen could be measured externally. This was done by installing a gas-tight mercury seal at the top of the furnace as shown schematically in Fig. 1. The specimen (21.0 cm long, 1.27 cm wide, and 0.25 mm thick) was suspended in the center of the furnace by 3-mm-diam quartz rods with the upper one passing through the cap of the mercury seal. Above the cap, the upper quartz rod was coupled to a lever exerting a load of about 25 g (-12 lb per sq in.) on the specimen and having a 10 times mechanical magnification. The vertical position of a marker at the other end of the beam was read with a traveling microscope with a precision of 0.01 mm. The temperature gradient of the furnace was meas-
Jan 1, 1968
-
Institute of Metals Division - Solid Solutions of CdTe and InTe in PbTe and SnTe. I: Crystal ChemistryBy H. Becke, D. Stolnitz, D. Flatley, W. Kern
Extensive solid solubilities of CdTe (zincblende-type struckre) and InTe (B37 type) in each of the rock salt-type compounds, PbTe and SnTe, have been observed. Partial phase diagrams have been determined by thermal analysis and X-ray metallography. The limiting mol fraction. X,, of the solute in the rock salt-type a phase and the corresponding eutectic temperatures, T,, are: (PbTe)l-x(CdTe)x: X,- 0.2, T, =866°C; (PbTe),-,(lnTe),: X, - 0.35, T, = 646"C; (SnTe),-,(CdTe),:X,- 0.11, T, = 784 "C; (SnTe),-,(lnTe),: X,-0.53, T, = 630°C. The lattice parameters of the a phase decrease linearly with X, even in (PbTe),-,(CdTe),, where a, (CdTe) = 6.481A > %(PbTe) = 6.459A. This is taken as proof that the cadmium atom enters an octahedral interstice of the tellurium atom sublattice; i.e., the formation of the a phase entails the direct replacement of lead by cadmium. The a, us X curve extrapolates to 6.16A at X = 1, in agreement with the value predicted for an ionic crystal of CdTe; it is also consistent with the reported lattice parameter It is well-established that the compositions of intrinsic semiconducting and semimetallic compounds conform to normal valence rules.1"5 The apparent exceptions can be explained by taking account of anion-anion covalences, as in CdSb, or of multiple cation valences, as in In Te.'This empirical generalization is the basis of the chemical approach to semiconductors2 by which the properties of an intrinsic semiconductor are rationalized in terms of the ionic-covalent bonds necessary to saturate the valence-electron complement of the anion sublattice. A fundamental shortcoming of this approach is its disregard of long-range crystal interactions. It cannot, accordingly, deal with the phenomenon of charge conduction except through the use of ad hoc postulates. As an example, a crystal of CdTe would, in the valence-bond picture: be described in terms of electron pairs, each with the same discrete energy, localized between every cadmium and tellurium atom. This is, of course, contrary to the Pauli of the high-pressure rock-salt form of CdTe, corrected for decompression from 36 kbar. The free energy of formation of the a phase of pure CdTe at room temperature is calculated from the phase diagram to be +10 kcal per g-atom, in accmd with the value calculated from the transformation pressure. The standard enthalpy is +13 kcal per g-atom, and the standard entropy is +9 eu. The latter value implies the formation of extra classical particles, such as vacancies, interstitials, or nondegenerate charge carriers, but these alternatives are not consistent with the semiconducting properties and the densities of the a phase. The extrapolated values of the lattice parameters of (PbTe),-,(lnTe), and Spectively, for the rock salt-type modification of InTe. The corresponding interatomic separation is intermediate between monovalent and trivalent indium. The qualitative implications of the results are considered from the viewpoints of both valence-band theory and energy-band theory. principle, and is corrected by methods of molecular-orbital theory in which bonds are replaced by bands of molecular orbitals whose energies, E, depend upon a crystal-momentum vector, k.7 Each band is derived from a linear combination of atomic orbitals with two electrons required to saturate each molecular orbital in the band. In a crystal of N atoms containing z atoms in its primitive unit cell, there are 2 N/z states per band which lie in a region of k space bound by the Brillouin zone. In an intrinsic semiconductor, the bands can be grouped into valence bands which are normally filled and conduction bands which are normally empty. If the highest valence band and the lowest conduction band overlap anywhere within the Brillouin zone, the material is rendered semimetallic. The quantity defines the effective mass, m*, of an electron in a conduction band (or of a hole, i.e., an electron deficiency, in the valence band) and leads directly to the concept of charge mobility through the relation \x = et/m*, where e is the electron charge and t is the lattice relaxation time.
Jan 1, 1964
-
Round Mountain, Nevada - The Making Of The Round Mountain MineBy W. S. Cavender
The Round Mountain mining district, Nye County, Ne- vada, was discovered in 1906 on claims owned by Lewis D. Gordon. Initial mining operations uncovered gold veins of spectacular richness, and within a few days of discovery, Gordon sold his controlling interest for some $87,000. From this sale emerged the Round Mountain Mining Co., predecessor of Nevada Porphyry Gold Mines, Inc., the latter destined to become the major property owner in the area. Vein mining in the district continued sporadically into the early 1930s, yielding 9.3 Mg (330,000 oz) of gold plus substantial silver credits from approximately 626 kt (690,000 st) of ore. In addition to the lode deposits, the early miners recognized the placer potential in the alluvial fan material accumulated around the west and north sides of Round Mountain itself. Intermittent placer operations were carried out for a number of years, and in the 1940s and 1950s, Round Mountain Gold Dredging Co. worked the placers under a lease from Nevada Porphyry Gold Mines. The last placer operation terminated in 1959 when it, like some of its predecessors, proved uneconomic. Total placer production for the district is estimated at 3657 km (4 million yd) of gravel containing 59 Mg (210,000 oz) of gold and possibly 2.0 to 2.3 Mg (70,000 to 80,000 oz) of silver. Round Mountain is a small hill situated on the east flank of the Toquima Range in central Nevada. The hill is com- posed of relatively flat-lying Tertiary rhyolitic ash flow tuffs, which overlie Paleozoic metasediments and Cretaceous granites. Throughout the surrounding Round Mountain mining district, most of the known gold ores occur in the tuffs, although the metasediments and granites are also mineralized. Mineralization is structurally controlled, principally by a series of northwest-trending shears and shattered zones. Vein, stockwork, and disseminated ores occur, usually containing simple quartz-pyrite-gold mineral assemblages. The gold itself is electrum, having a silver content of 30% to 40%. In September, 1967, Elwood Dietrich, a prospector and mine promoter, obtained a purchase option on the 4452 ha (1 1,000 acres) of mineral rights held at Round Mountain by Nevada Porphyry Gold Mines. The original option had a buy-out price of $1 million and was established through Dietrich's friendship with officers of Nevada Porphyry. In April, 1968, Dietrich conveyed his option to Ordrich Gold Reserves Co., a partnership created by a group of west coast investors, mostly employees of the airline industry. There- after, Ordrich invested considerable funds in trying to test and develop the property, but soon recognized the need to seek financial and technical support from the mining industry. In December, 1968, Dietrich contacted Wayne Cavender, then Regional Geologist, Southwest, for Copper Range Exploration Company (CRX) in Tucson, Arizona, and made a data presentation. Shortly thereafter, Cavender was appointed Manager of Exploration and Chief Geologist for Copper Range Co. (parent company of CRX), New York City, and he asked C. Phillips Purdy, CRX Regional Geologist, Northwest, to make an initial property examination. Purdy's one-week field study took place in March, 1969, and resulted in a recommendation that CRX pursue its investigation of the property. The presence of low-grade gold mineralization in both the alluvial gravels and in the bedrock was verifiable, but the placer was deemed to have the greater immediate economic mining potential. At that time, gold was in the $1.41/g ($40 per oz) price range. Working from Purdy's information, Cavender decided to attempt acquisition of the property, and the first in a long series of negotiations was initiated with Ordrich. Basically, CRX felt that the placer had a promising potential for several reasons, including (I) past operators had recovered free gold but not the gold contained in the pebble fraction of the gravels; (2) past operations appeared to have been ineffectively designed or managed and not costefficient; and (3) the price of gold appeared to be poised for an upward move. Negotiations with Ordrich were prolonged and difficult, with CRX competing against several ma* mining companies, but finally an agreement was reached, effective June I, 1970. Gold was then back to $35. It is believed that, in
Jan 1, 1985
-
Hardenability Calculated From Chemical CompositionBy M. A. Grossmann
THE hardenability of most steels can be predicted within 10 to 15 per cent provided the complete chemical composition is known, including "incidental" elements; and provided the as-quenched grain size is known; and provided, finally, that the composition and heating temperatures for hardening are such as to result in austenite free from carbide particles. In method proposed herein, the steel is considered as having a base hardenability due to its carbon content alone (the hardenability of a ''pure steel" of the given carbon content, without any other elements), and this base hardenability is multiplied by a multiplying factor for each chemical element present. After multiplying all these together, the final product is the hardenability. Grain sue may be taken into account either in the base hardenability or after the multiplication. Hardenability is stated in terms of "ideal critical diameter"; namely, the diameter of bar, in inches, that will just harden all the way through (absence of un- hardened core) in an "ideal" quench, and the calculation may also be related to the Jominy test. The data bring out certain features rather clearly. For example: I. It is quite useless to attempt to predict hardenability unless all elements, including "incidentals," are known; thus an "incidental" chromium content of 0.20 per cent increases the hardenability by about 50 per cent. 2. The relative effectiveness of different alloys is sometimes unexpected; thus molybde- num when calculated in this way appears to be of the same order of effectiveness as manganese, rather than much more powerful as wouldappear to be common experience; observe that an increase from no manganese to 0.20 per cent Mn provides a multiplying factor of 1.67, and an increase from no molybdenum to 0.20 per cent Mo provides a factor of 1.63, an increase of over 60 per cent in each case. However, if to a steel containing 0.50 per cent Mn there is added " 20 points of manganese," the factor is raised from 2.65 (for 0.50 per cent Mn) to 3.35 (for 0.70 per cent Mn), or an increase of only 26 per cent. Thus the first small addition of an element has a much more powerful percentage effect than an equal further addition when some is already present, and in most cases the effect of molybdenum is considered in relation to a steel in which molybdenum is absent. 3. If two elements are equally effective, a greater hardenability will be obtained by using, for example, 0.5 per cent of each than by using 1.0 per cent of either of them alone. 4. A knowledge of the as-quenched grain size is essential for precise work, since a difference of only one grain size number (say No. 7 instead of No. 6) makes a difference of almost lo per cent in hardenability (in these units); this, however, does not apply to certain steels of high hardenability. It should be emphasized that in chromium steels (over 0.30 per cent Cr) and chrome- molybdenum and chrome-vanadium steels, undissolved carbides are likely to be present in the steel as quenched, and that in such cases the charts can indicate only a maximum possible hardenability, whereas the extent of hardening actually obtained may be much less. Thus tests on a number of chrome-molybdenum steels have indicated a degree of hardening amounting to only 50 to 65 per cent of the maximum possible, and in chromium steels from full hardening (100 per cent) down to as low as 70 per cent. On the other hand, when the amount of such elements is small (Cr under 0.30 per cent, Mo up to 0.25 per cent in the absence of Cr, and V up to 0.04 per cent), the charts provide reasonable approximations. The precise figures on the charts are suggested as tentative, subject to some modification as more data accumulate, but the fundamental concept appears to be supported by tests made on a wide variety of steels, a few of the correlations being shown in Fig. I.
Jan 1, 1942