Institute of Metals Division - Distribution of Lead between Phases in the Silver-Antimony-Tellurium System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Robert A. Burmeister Voyle R. McFarland David A. Stevenson
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
479 KB
Publication Date:
Jan 1, 1964

Abstract

The distribution of lead between phases in the Ag-Sb-Te system was studied using microautoradio -graphy. Two compositions were investigated, both containing an intermediate phase Known as silver antimony telluride as the major phase, and one containing AgzTe and the other SbzTes as the minor phase. For both compositions, two thermal treatments were used: nonequilibrium solidification from the melt and long equilibration anneals of the as-solidified structure. For each composition, lead was segregated in the minor phase of the as-solidified structure, but was distributed in the matrix after anneal. The electrical resistivity and carrier type were insensitive to the distribution of lead in the two-phase structure. ThERE has been considerable interest in the Ag-Sb-Te system because of its thermoelectric properties. The major interest has been in compositions on the vertical section between AgzTe and SbzTes, particularly the 50 mole pct SbzTes composition AgSbTez (compositions are conveniently expressed as mole percent SbzTes along the AgzTe-SbzTes section). One of the major problems in the proper evaluation and utilization of this material is the inability to control the electrical properties through impurity additions: all alloys prepared to date have been p-type, even with the addition of large amounts of impurities. It has been shown Wit all the compositions previously studied contain an intermediate phase of the NaCl st'ructure as a major phase (denoted by b) and a second phase, either AgzTe or SbzTe3, as a minor phase.'-3 One explanation for the unusual electrical behavior of this material is that the impurity additions have a higher solubility in the second phase than in the matrix; the impurity would segregate to the second phase, leaving the bulk matrix essentially free of impurity.4 In order to investigate this mechanism with a specific impurity element, the distribution of lead between the two phases was determined using autoradiography. Lead 210 was chosen because of the suitability of its 0.029 mev 0 particle for autoradiography and also because of the interest in lead as an impurity in this system.5'6 EXPERIMENTAL PROCEDURE Two compositions were taken from the vertical section between AgzTe and SbzTes, 50 mole pet SbzTes (Viz. AgSbTez) and 75 mole pct SbzTes, in which AgzTe and SbzTes appear, respectively, as the minor phase. Lead containing radioactive lead (pb210) was added to the above compositions to provide a concentration of 0.1 wt pct Pb. The material was placed in a graphite crucible in a quartz tube which was then evacuated and sealed. The samples were melted and solidified by cooling at a rate of 8°C per min and then removed and prepared for microa~toradiography. After autoradiographic examination of these samples, they were again encapsulated and annealed in an isothermal bath at 300°C for a number of days and prepared for examination. An alternate method of preparation employed a zone-melting furnace; the molten zone traversed the sample at a rate of 1.2 cm per hr and the solid was maintained at a temperature of 500°C both before and after solidification. This treatment had the same effect as solidification at a slow rate followed by an anneal for several hours at 500°C. In order to obtain the best resolution, thin sections of the alloy were prepared by hand lapping to a thickness of approximately 20 p. Other samples were prepared for examination by lapping a flat surface on the bulk sample. The resolution, although somewhat better in the former procedure, was adequate in both instances and the majority of the samples were treated in the latter fashion. A piece of autoradiographic film (Kodak Experimental SP 764 Autoradiographic Permeable Base Safety Stripping Film) was stripped from its backing, care being taken to avoid fogging due to static-electrical discharge. A small amount of water was placed on the sample, the film applied emulsion side down on the surface of the sample, and the sample and the film dipped into water in order to assure smooth contact. After drying, the film was exposed for 2 to 5 days, the period of time selected to give the best resolution. The film was developed on the specimen and fixed and washed in place. Two major factors must be considered in establishing the reliability of an autoradiograph: the in-
Citation

APA: Robert A. Burmeister Voyle R. McFarland David A. Stevenson  (1964)  Institute of Metals Division - Distribution of Lead between Phases in the Silver-Antimony-Tellurium System

MLA: Robert A. Burmeister Voyle R. McFarland David A. Stevenson Institute of Metals Division - Distribution of Lead between Phases in the Silver-Antimony-Tellurium System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account