Part VI – June 1968 - Papers - Thermodynamic Properties of Interstitial Solutions of Iron-Base Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 531 KB
- Publication Date:
- Jan 1, 1969
Abstract
A geometric model of interstitial solid solutions, which has been used previously as a basis for the prediction of carbon activities in Fe-C austenite, is shown to serve also for the calculation of nitrogen activities in Fe-N austenite. The model has been developed to enable predictions to be made of the activities of an interstitial element in the presence of two host atom species. The activities calculated via the model are shown to be in satisfactory agreement with the measured values in the austenite phase for carbon in Fe-C-Co, Fe-C-Cr, Fe-C-Ni, Fe-C-~n, Fe-C-Si, and Fe-C-V alloys and for nitrogen in Fe-N-Ni alloys. The effect of the second substitu-tional solute on the logarithm of the activity of the interstitial element is expressed as the product of a constant mad the atomic concentration of that solute. The constants so derived we related to the thermo-dynamic interaction coefficients which describe the effect on the activity coefficient of carbon of an added solute element. In recent years the thermodynamic activities of carbon and nitrogen in the single-phase austenite field have been determined for iron binary alloys and for several iron-base ternary alloys. In order to extend the use of these measurements, it is desirable to be able to predict with reasonable accuracy the activities of the interstitials at compositions and temperatures other than those which have been measured experimentally. In all the systems studied to date, the interstitial elements do not conform to ideal behavior. Hence, the available data cannot be extrapolated or interpolated using the simple thermodynamic concepts of solutions. Several models have, therefore, been formulated for the purpose of predicting the activity of an interstitial element in the presence of one species of host atom. These models can be divided into the geometric1"5 and energetic6-' types. The former group is based on the assumption that at low concentrations the activity of the interstitial species is determined by a composition-dependent configurational entropy term and an excess free-energy term which is temperature-dependent but independent of composition. The purpose of this paper is to show that the treatment, based on a geometric model, can be extended to enable predictions to be made of interstitial activities in the presence of two substitutional host atom species. THE CONFIGURATIONAL ENTROPY OF MIXING ICaufman5 has shown that the configurational entropy, S,, for a binary solution comprising of a host atom species, A, and an interstitial species, I, can be expressed as: where NI is the atom fraction of the interstitial species, R is the gas constant, and (2 - 1) is the number of interstitial sites excluded from occupancy by the strain field around each added interstitial atom. The number of interstitial sites per host atom, p, is unityg for the fcc austenite solutions considered here. The configurational entropy of mixing for a ternary solution comprising two substitutional atom species, A and B, and one interstitial species, I, can be derived similarly. Let the number of atoms per mole of each of these species in the solution be represented by «a, ng, and nI. From geometric considerations, it is improbable that the addition of a few atom percent of a second host atom species will change the type of sites (i.e., octahedral) in which the interstitial atom can be accommodated in the austenite lattice. At higher concentrations (determined largely by the relative atomic radii of the atomic species present and any tendency to nonrandom occupancy of the host lattice sites) other types of interstitial sites may become energetically favorable. Restricting consideration to compositions below this limit, for 1 = 1 the number of suitable interstitial sites is given by (n + nB). However, if each interstitial atom excludes from occupancy (Z - 1) additional sites, the total number of sites available for occupation is reduced to (n + ng)/Z. The number of vacant interstitial sites is given by: The total number of recognizable permutations of the atoms must include the recognizable, different configurations of the A and B atoms on the host lattice. Assuming that these arrangements are purely random, and are not affected by the presence of the interstitial species, the total number of recognizable permutations in the ternary alloy is given by: The configurational entropy is obtained by expanding, using Stirling's approximation, and collecting like items, as:
Citation
APA:
(1969) Part VI – June 1968 - Papers - Thermodynamic Properties of Interstitial Solutions of Iron-Base AlloysMLA: Part VI – June 1968 - Papers - Thermodynamic Properties of Interstitial Solutions of Iron-Base Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.