Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Iron and Steel Division - Discussion: End-Point Temperature Control of the Basic Oxygen FurnaceBy W. J. Slatosky
W. 0. Philbrook (Cairiegie Institute of Technologyogv—Mr. Slatosky has presented an interesting and constructive paper that represents another step along the way of converting steelmaking from an art to a science. I am confident that his computer will be practical and successful and that with a very few months of experience it will provide a significantly better degree of control than his record of 65 pct of heats within range obtained with the slide-rule calculator . A paper such as this, with a lot of symbols and condensed mathematics, is difficult to comprehend quickly. Since I have had an opportunity to study it carefully, perhaps my evaluation of its validity and accomplishments will save time for others. Mr. Slatosky has correctly used standard principles of stoichiometry and heat balances, which are available to anybody, but he has also brought to them two original contributions: 1) He has developed from operating data some empirical relations for predicting the final FeO content of the slag (at 0.5 pct C end-point) as a function of slag basicity, lance height, and scrap, ore, and scale in the charge. This improves the accuracy of prediction of temperature or scrap requirement compared with assuming an arbitrary, constant FeO content at the end of each heat. There is no assurance yet that exactly the same relations will hold for other furnaces or practices, but similar correlations can be expected. 2) He has combined calculations that are ordinarily carried out laboriously as a number of individual steps into a single, simple linear equation that can readily be fed into a machine. This involved a tremendous amount of painstaking detail work as well as the imagination to see the possibility and work out the steps. While his particular Eqs. [3] and [6] are valid only for the furnace design, charge weight, and blowing time used at Aliquippa Works, only a few numerical values have to be changed to adapt it for other conditions. In order to arrive at a useable solution, Mr. Slatosky had to make some basic assumptions about the process that are similar to those used by others. He neglected variation in some process variables and assumed an arbitrary average value for waste gas analysis and temperature for want of more exact information at the present time. All of these judgments are clearly stated. In addition, some thermody-namic data presently available are not adequate for the job, notably in relation to heats of formation and sensible heat in slag, and some expedient has to be adopted to get around the difficulty. Other people might prefer slightly different judgments about these details and hence obtain somewhat different numerical solutions. This is not of serious importance, however, because the errors accumulate in the "heat loss" term and are largely self-compensating for a constant heat time. Although the extended Eq. l(a) in Appendix I was set up as a rate equation originally, for convenience in using an analogue computer as stated in the paper, the time dependence was removed by later mathematical manipulations and assumptions about the process. The final result is an integration of element and energy balances from initial to final states; this procedure is as legitimate here as in any other form of heat-balance calculation. The formal handling of stoichiometry and thermochemistry appears to be correct, and it is assumed that any arithmetical errors would have come to light in applying the calculations to furnace practice. Mr. Slatosky's approach is not necessarily unique, in that other people might start with apparently different equations or prefer another form of final equation for another type of computer. However, he has presented an accomplished result that appears to be a theoretically sound and practically useful way of applying scientific principles and rapid computation for better control of steelmaking. His success will undoubtedly encourage himself and others to improve on the mathematical model and its use as better informatioq becomes available. John F. Elliott (Massachusetts Institute of Teck-t2ology)-The last comment by Mr. Richards that a calculator is quite unnecessary for an L-D operation ?-equi??es a rebuttal. The L-D furnace is a very high capacity process which places a premium on close control. When one is making steel at rates between 100 and 200 tons per hr, one cannot afford the luxury of an extra 5 or 10 min at the end of a heat correcting for an error that should never have been made in the first place. Mr. Slatosky's paper is a very sound application of the simple principles of stoichiometry and the energy balance. It is a satisfactory and valuable start, but only the start of the development of methods of control for this process. An analysis of the process shows that it should be very suitable to control by a computer. This is especially the case when various grades of steel are to be made. In fact, it would seem that the organizations who are planning new and bigger installations of L-D vessels should consider carefully the advantages that would stem from computer control of a vessel with the operator present to do little more
Jan 1, 1962
-
Horizonta1 Drilling Technology for Advance DegasificationBy W. N. Poundstone, P. C. Thakur
Introduction Horizontal drilling in coal mines is a relatively new technology. The earliest recorded drilling in the United States was done in 1958 at the Humphrey mine of Consolidation Coal Co. for degasification of coal seams. Spindler and Poundstone experimented with vertical and horizontal holes for several years. They concluded in 1960 that horizontal drilling in advance of underground mining appeared to offer the most promising prospect (for degasification) but effective and extensive application would be dependent upon the ability to drill long holes, possibly 300 to 600 m, with reasonably precise directional control and within practical cost limits (Spindler and Poundstone, 1960). Mining Research Division of Conoco Inc., the parent company of Consolidation Coal Co., began a research program in the early 1970s to achieve the above objective. The technology needed to drill nearly 300 m in advance of working faces was developed by 1975 and experiments on advance degasification with such deep holes began in 1976. Preliminary results of this research have already been published (Thakur and Davis, 1977). To date nearly 4.5 km of horizontal holes have been drilled for advance degasification and earlier results were reconfirmed. In summary, these are: • The greatest impact of these boreholes was felt in the face area where methane concentrations were reduced to nearly 0.3% in course of two to three months from original values of nearly 0.95%. • The methane concentration in the section return reduced to 50% of its original value immediately after the boreholes were completed, indicating a capture ratio of 50%. • The total methane emission in the section (rib and face emission plus the borehole production) did not increase but rather gradually declined with time. • Initial production from 300 m deep boreholes in the Pittsburgh seam varied from 3 m3/min to 6 m3/min but then slowly declined as workings advanced inby of the drill site (well head) exposing a larger surface area parallel to the borehole. Encouraged by these results, it was decided to design a horizontal drilling system that would be mobile and compatible with other face equipment. A mobile horizontal drill can be divided into three subsystems: the drill rig, the drill bit guidance system, and borehole surveying instruments. The drill rig provides the thrust and torque necessary to drill 75- to 100-mm diam holes up to 600 m deep and contains the mud circulation and gas cuttings separation systems. The drill bit guidance system guides the bit up, down, left, or right as desired. Borehole surveying instruments measure the pitch, roll, and azimuth of the borehole assembly. Additionally, it also indicates the thickness of coal between the borehole and the roof or floor of the coal seam. Thus, it becomes a powerful tool for locating the presence of faults, clay veins, sand channels, and the thickness of coal seam in advance of mining. In recent years, many other potential uses of horizontal boreholes have come to light, such as in situ gasification, longwall blasting, improved auger mining, and oil and gas production from shallow deposits. The purpose of this paper is to describe the hardware and procedure for drilling deep horizontal holes. The Drilling Rig [Figures 1 and 2] show the two components of the mobile drilling rig: the drill unit and the auxiliary unit. The equipment (except for the chassis) was designed by Conoco Inc. and fabricated by J. H. Fletcher and Co. of Huntington, WV. The drill unit. It is mounted on a four-wheel drive chassis driven by two Staffa hydraulic motors with chains. The tires are 369 X 457 mm in size and provide a ground clearance of 305 mm. The prime mover is a 30-kw explosion-proof electric motor which is used only for tramming. Once the unit is Crammed to the drill site, electric power is disconnected and hydraulic power from the auxiliary unit is turned on. Four floor jacks are used to level the machine and raise the drill head to the desired level. Two 5-t telescopic hydraulic props, one on each side, anchor the drill unit to the roof. The drill unit houses the feed carriage, the drilling console, 300 m of 3-m-long NQ, drill rods, and the electric cable reel for instruments. The feed carriage is mounted more or less centrally, has a feed of 3.3 m, and can swing laterally by ± 17°. It can also sump forward by 1.2 m. The drill head has a "through" chuck such that drill pipes can be fed from the side or back end. General specifications of the feed carriage are: [ ] The auxiliary unit. The chassis for the auxiliary unit is identical to the drill unit but the prime movers are two 30-kW explosion proof electric motors. It is equipped with a methane detector- activated switch so that power will be cut off at a preset methane concentration in the air. No anchoring props are needed for this unit. The auxiliary unit houses the hydraulic power pack, the water (mud) circulating pump, control boxes for electric motors, a trailing cable spool, and a steel tank which serves for water storage and closed-loop separation of drill cuttings and gas.
Jan 1, 1981
-
Institute of Metals Division - Rate of Formation of Isothermal Martensite in Fe-Ni-Mn AlloyBy R. E. Cech, J. H. Hollomon
KURDJUMOV and Maksimova reported experiments with manganese steels and high carbon steels' and with an Fe-Ni-Mn alloy' in which mar-tensite was formed isothermally over a range of temperatures. They found in some cases that mar-tensite formation could be suppressed by rapid quenching to liquid nitrogen temperature. From their microstructural observations of martensite formed isothermally, they concluded that the rate controlling step is nucleation rather than growth. Kulin and Cohen,3 in an attempt to reproduce these experiments, found that with a steel having the same composition as that reported by Kurd-jumov and Maksimova, the transformation to martensite was essentially complete above the temperature range of Kurdjumov and Maksimova's isotherms. The possible reasons for this disagreement were not considered. Recent papers by Das Gupta and Lement4 and Kulin and Speich5 report the formation of isothermal martensite in a high chromium steel and in an Fe-Cr-Ni alloy, but neither paper can be considered a verification of the original Kurdjumov and Maksimova results. Further, in neither case were the authors able to suppress the formation of martensite entirely. Because of the important bearing the Kurdjumov and Maksimova results have to an understanding of the mechanism of martensite reactions it was felt that an experimental investigation directly concerned with checking the validity of their results was in order. This paper describes the results obtained on the isothermal transformation over the temperature range from —79" to —196°C of an alloy of iron, nickel, and manganese. Experimental Apparatus A 15 lb heat of an alloy containing 73.3 pct Fe, 23.0 pct Ni, and 3.7 pct Mn was melted by induction and cast under argon. The ingot was forged to 1-in. bar and a portion rolled to 1/16x1 1/2-in. strip. This strip was pack-homogenized 300 hr at 1100" in a helium-filled sealed iron tube. The composition after homogenization was 73.2 pct Fe, 22.94 pct Ni, 3.73 pct Mn, 0.05 pct C, and 0.015 pct N. The strips were cut to 1/2-in. width for dilatometer and metal-lographic specimens. Only the center portion of the 11/2-in. strip was used in the present investigation. The dilatometer employed was similar in design to one described by Flinn, Cook, and Fellows." A concentric fused auartz rod and tube assembly with hooks for holding the specimen was mounted so as to transmit the specimen dilation to a 1/10,000 in., 1/10 in. travel dial gage. The dilatometer proper was mounted by means of extension arms to a counterweighted sliding member on a vertical standard. This method of mounting permitted rapid transfer of the dilatometer from the austenitizing furnace to the quenching bath and low temperature chamber. A small electrical vibrator on the dilatometer kept frictional effects of the quartz members at a minimum. The austenitizing unit was a vertical, molybdenum-wound, hydrogen atmosphere furnace maintained at a constant temperature ±3°C by means of constant power input. A 12-in. stainless steel jacketed copper liner having 1/2-in wall thickness acted to equalize the temperature in the hot zone of the furnace. This liner, closed at the bottom end and open at the top to permit entrance of the dilatometer and specimen, was kept filled with dry nitrogen gas. A chromel-alumel thermocouple was placed inside the tube to determine the temperature. The 4-in. dilatometer specimens in the chamber varied less than 1/2° across the specimen length except for a 1 1/20 drop at the end nearest the open end of the furnace. The low temperature isothermal holding bath was a double Dewar arrangement similar to one described by Turnbull7. The outer bath was filled with a refrigerant at a temperature lower than the desired holding temperature. The inner bath was filled with Freon "11" or "12" or a mixture of both, depending upon the holding temperature. This inner bath which tended to be cooled by the outer bath was kept at a constant temperature by introducing a small amount of heat with a manually controlled electric heater. Stirring was accomplished by bubbling dry air through the bath. A Leeds and North-rup type K potentiometer was used to measure the inner bath temperature as indicated by a five element copper-constantan thermopile. The bath temperature was maintained within ±0.2°C of the desired temperature by occasionally adjusting the heater current so as to keep the Leeds and Northrup galvanometer at zero deflection with a constant setting of the potentiometer. Isothermal tests were usually continued for 300 to 400 min and another reading made at approximately 1000 min if the bath, unattended overnight, had not deviated in temperature more than 5°C. Transformation curves are drawn dashed (Fig. 1) through the time region where temperature was not controlled precisely. Experimental Procedure Dilatometer specimens of 1/2x1/16-in. strip were cut to 41/2-in. length and holes were drilled for the quartz hooks with proper spacing to give a 4-in. measured length. A thermocouple consisting of 0.012-in. diameter chrome1 and alumel wires was spot welded to the specimen and threaded between the dilatometer rods to binding posts near the dial
Jan 1, 1954
-
Part V – May 1969 - Papers - Dissolution of Alumina in Carbon-Saturated Liquid IronBy Kun Li, Alex Simkovich
The rate of dissolution of alumina in carbon-saturated liquid iron has been studied experimentally in a system where alumina was in the form of a cylindrical rod immersed in an iron bath contained in a graphite crucible. Data obtained consisted of the concentrations of aluminum in the melt as a function of time. In the case of static experiments, the data are shown to agree with theoretical prdictions based on the diffusion of aluminum.. The rate of dissolution was greatly increased by the rotation of the alumina rod. It is concluded that the diffusion of aluminum from the alumina/metal interface is the rate-controlling step. In the past, thermodynamic investigations of systems encountered in ferrous process metallurgy have received widespread attention. More recently, considerable work has been devoted to the study of kinetics associated with these systems in an effort to determine their rate controlling mechanisms. The alumina-iron system is of great importance in ferrous metallurgy. Yet information concerning kinetics of reaction in this system is seriously limited. The present study was made in order to establish the rate-controlling step for dissolution of solid alumina in liquid iron. LITERATURE REVIEW A number of papers concerning dissolution of solid metals in liquid metals have been reported in the literat~re. Generally, for these simple systems, dissolution is controlled by mass transfer of the dissolving species. Complex systems involving dissolution of solid metal carbides and oxides in liquid metals and slags have been studied to a much lesser extent. Skolnick5,6 reported on the reaction between liquid cobalt and poly-crystalline cylinders of tungsten carbide, in which the cylinders were dissolved while being rotated about their longitudinal axes at various speeds and temperatures. As a result of unexpected preferential grain boundary attack by the liquid cobalt, large errors in the measured dissolution rates occurred because of loss of tungsten carbide grains to the liquid cobalt. Nevertheless, it was possible to establish that the liquid Co-W carbide reaction was not controlled by mass transfer. In a similar approach, cooper7 was able to show that artificial sapphire rods, (alumina single crystals) dissolving in lime-alumina-silica slags obeyed a mechanism of mass transfer control. Here, again, the rods were rotated at various speeds and temperatures, and the process was followed as a function of these variables. Forster and Knacke8 took a practical approach to reaction between slags and refractories. By blowing argon through refractory cylinders of silica, silli-manite, or dolomite and directing the gas to rise along the slag-refractory interface, it was possible to increase the rate of mass transfer. Although the method was admittedly crude, it nevertheless permitted an evaluation of the relative stabilities of refractories with respect to slag attack. Data were interpreted on the basis of mass transfer control. EXPERIMENTAL TECHNIQUE Apparatus. An illustration of the apparatus used in this study is shown in Fig. 1. The furnace consisted of a Morganite recrystallized alumina tube wound with a molybdenum coil. A secondary molybdenum heater was mounted around the upper half of the primary coil to aid in controlling the thermal gradient within the furnace. The primary heater tube was 3 in. in ID and 30 in. long. A reducing mixture of 95 pct N and 5 pct H was maintained around the heating elements. Thermal insulation was provided by alumina powder. The chamber within the primary combustion tube contained a boron nitride block near the top to assist in controlling the thermal gradient to the furnace and also to provide a bearing surface for the rotating graphite shaft. The outside diameter of the graphite shaft was $ in. A separate threaded graphite specimen holder was screwed into the end of the shaft. The holder contained a tapered hole drilled into the end to guide the oxide specimens as they were pressed into it for mounting. Additional guidance for the rotating graphite shaft was furnished by a water-cooled bronze bushing attached to the top of the furnace. A steel clamp was fastened to the upper end of the graphite shaft and rested on a thrust bearing; the shaft and clamp were driven by a dc motor through a set of gears. Two O-rings located immediately above the bronze bushing maintained a gas-tight seal about the graphite shaft. The lower half of the alumina tube housed the crucible and charge, which were placed on a 3/4-in. diam movable alumina support tube. With this arrangement, charges could be inserted into or removed from the furnace while the hot zone was maintained at or above 1000°C. To control the temperature of the furnace, the thermocouple was mounted inside the support tube and in contact with the crucible bottom. Stray electric fields in the furnace were of sufficient intensity to cause erratic indications by the thermocouple. By enclosing the thermocouple protection tube in a molybdenum sheath and grounding this shield, the problem was eliminated. Output of the thermocouple went to an automatic continuous balance controller. Procedure. A typical run was as follows. First, electrolytic iron was premelted in graphite crucibles and cast into graphite molds with the same configura-
Jan 1, 1970
-
Coal - Drilling and Blasting Methods in Anthracite Open-Pit MinesBy C. T. Butler, W. W. Kay, R. D. Boddorff, R. L Ash
DRILLING and blasting in anthracite open-pit mines is a continuous problem to contractors and explosive engineers because of the diverse conditions caused by the nature of the geological formations, the extensive mining of the portions of coal beds near the surface, and the proximity of many strip pits to populated areas. Pennsylvania anthracite occurs in four separate long and narrow fields totaling only 480 sq miles. The coal measures are rock strata and coal beds that are considerably folded and faulted. The crests of the anticlines are eroded extensively. The beds outcrop on the mountain sides and dip under the valleys. At first only the upper portions of the syn-clines could be stripped. Now stripping to increasingly greater depths is economically possible, as is indicated by the fact that the proportion of freshly mined anthracite produced by strip mining has increased from 3.7 pct of the total tonnage in 1930 to 29.6 pct in 1950. Much of the rock overlying the deeper beds now being stripped is so extensively broken that considerable difficulty is experienced in drilling satisfactory blast holes and in using explosives in such manner as to insure a uniformly broken material easily removed by the excavating machinery. Such breaking of rock strata has occurred because the bed now being stripped has been mined extensively in former years by underground methods, and tops of gangways and chambers have subsequently failed. Draglines are used to uncover coal where the overburden can be moved with little or no re-handling. These machines range in size from those having a 2 cu yd capacity bucket on a 60-ft boom to those handling a 25 cu yd bucket on a 200-ft boom. Draglines are also used to strip to the bottom of the coal basins if the depth and the distance between the crops are not too great. For this type of operation blast holes are drilled full depth to the bed. These holes are commonly 30 to 90 ft deep; however, in exceptional cases, holes may be as shallow as 12 ft or as deep as 130 ft. Drilling is normally done for blasts of 12,000 to 60,000 cu yd of overburden, 30,000 cu yd being considered an average blast if vibration is not the controlling factor. Where the stripping of wide basins or the exposure of a moderately pitching vein makes the use of draglines impractical, dipper front shovels equipped with 4 to 6 cu yd buckets load into trucks. Overburden is removed in benches of 25 to 30 ft with blast holes drilled 4 or 5 ft deeper than the planned floor of the bench. For shovels under 5 cu yd bucket capacity the volume blasted varies from 8000 to 12,000 cu yd, whereas a volume of 30,000 to 50,000 cu yd of overburden is frequently blasted at one time for the larger shovels where vibration is not an important factor. During the past decade the churn drill, generally the Model 42-T Bucyrus-Erie blast hole drill equipped for drilling 9-in. diam holes, has become the most common blast hole drilling machine. Electricity powers half the churn drills in use and is preferred on the large strippings where electric shovels are operated and the working area is concentrated. On these operations the cost of additional electricity for the drills is less than the cost of fuel to operate diesel units because of the existing large demand load of the excavating equipment. Moreover, electric motors start more easily in cold weather and generally are less expensive to maintain. Diesel driven units are employed where a higher degree of mobility is required. The average drilling speed is 8 ft per hr, although in softer rocks a rate of 15 ft per hr is attained. Where rock is hard and strata is badly broken, drill speeds may be less than 2 ft per hr. Low drilling production results under these circumstances when loose material falling from the upper portion of the drill holes causes drill stems to be jammed. Rock formations vary so greatly in the region that a 9-in. diam churn drill bit may become dull after drilling only 2 ft or may drill satisfactorily for 56 ft; however, an average of 35 ft is usual in sandstone of medium hardness. Dull bits are hoisted to flat bed trucks by the sand line of the drill and are usually sharpened in the contractor's bit shop adjacent to the job. Care is generally taken to cover the thread end of the bit with a cap. To facilitate handling of bits around the drill, a heavy thread protector having an eye top is becoming more popular than the flat-top rubber or metal cap furnished with new bits. The 9-in. diam blast holes for a 25 to 30 ft bench are normally on 18x18 ft to 20x20 ft spacings, depending on the character of the overburden, although in broken ground 15x18 ft centers may be used to obtain better breakage and a more even bottom for the bench. The patterns of holes for shots
Jan 1, 1953
-
Coal - Drilling and Blasting Methods in Anthracite Open-Pit MinesBy R. D. Boddorff, R. L. Ash, C. T. Butler, W. W. Kay
DRILLING and blasting in anthracite open-pit mines is a continuous problem to contractors and explosive engineers because of the diverse conditions caused by the nature of the geological formations, the extensive mining of the portions of coal beds near the surface, and the proximity of many strip pits to populated areas. Pennsylvania anthracite occurs in four separate long and narrow fields totaling only 480 sq miles. The coal measures are rock strata and coal beds that are considerably folded and faulted. The crests of the anticlines are eroded extensively. The beds outcrop on the mountain sides and dip under the valleys. At first only the upper portions of the syn-clines could be stripped. Now stripping to increasingly greater depths is economically possible, as is indicated by the fact that the proportion of freshly mined anthracite produced by strip mining has increased from 3.7 pct of the total tonnage in 1930 to 29.6 pct in 1950. Much of the rock overlying the deeper beds now being stripped is so extensively broken that considerable difficulty is experienced in drilling satisfactory blast holes and in using explosives in such manner as to insure a uniformly broken material easily removed by the excavating machinery. Such breaking of rock strata has occurred because the bed now being stripped has been mined extensively in former years by underground methods, and tops of gangways and chambers have subsequently failed. Draglines are used to uncover coal where the overburden can be moved with little or no re-handling. These machines range in size from those having a 2 cu yd capacity bucket on a 60-ft boom to those handling a 25 cu yd bucket on a 200-ft boom. Draglines are also used to strip to the bottom of the coal basins if the depth and the distance between the crops are not too great. For this type of operation blast holes are drilled full depth to the bed. These holes are commonly 30 to 90 ft deep; however, in exceptional cases, holes may be as shallow as 12 ft or as deep as 130 ft. Drilling is normally done for blasts of 12,000 to 60,000 cu yd of overburden, 30,000 cu yd being considered an average blast if vibration is not the controlling factor. Where the stripping of wide basins or the exposure of a moderately pitching vein makes the use of draglines impractical, dipper front shovels equipped with 4 to 6 cu yd buckets load into trucks. Overburden is removed in benches of 25 to 30 ft with blast holes drilled 4 or 5 ft deeper than the planned floor of the bench. For shovels under 5 cu yd bucket capacity the volume blasted varies from 8000 to 12,000 cu yd, whereas a volume of 30,000 to 50,000 cu yd of overburden is frequently blasted at one time for the larger shovels where vibration is not an important factor. During the past decade the churn drill, generally the Model 42-T Bucyrus-Erie blast hole drill equipped for drilling 9-in. diam holes, has become the most common blast hole drilling machine. Electricity powers half the churn drills in use and is preferred on the large strippings where electric shovels are operated and the working area is concentrated. On these operations the cost of additional electricity for the drills is less than the cost of fuel to operate diesel units because of the existing large demand load of the excavating equipment. Moreover, electric motors start more easily in cold weather and generally are less expensive to maintain. Diesel driven units are employed where a higher degree of mobility is required. The average drilling speed is 8 ft per hr, although in softer rocks a rate of 15 ft per hr is attained. Where rock is hard and strata is badly broken, drill speeds may be less than 2 ft per hr. Low drilling production results under these circumstances when loose material falling from the upper portion of the drill holes causes drill stems to be jammed. Rock formations vary so greatly in the region that a 9-in. diam churn drill bit may become dull after drilling only 2 ft or may drill satisfactorily for 56 ft; however, an average of 35 ft is usual in sandstone of medium hardness. Dull bits are hoisted to flat bed trucks by the sand line of the drill and are usually sharpened in the contractor's bit shop adjacent to the job. Care is generally taken to cover the thread end of the bit with a cap. To facilitate handling of bits around the drill, a heavy thread protector having an eye top is becoming more popular than the flat-top rubber or metal cap furnished with new bits. The 9-in. diam blast holes for a 25 to 30 ft bench are normally on 18x18 ft to 20x20 ft spacings, depending on the character of the overburden, although in broken ground 15x18 ft centers may be used to obtain better breakage and a more even bottom for the bench. The patterns of holes for shots
Jan 1, 1953
-
Drilling And Blasting Methods In Anthracite Open-Pit MinesBy R. D. Boddorff, R. L. Ash, C. T. Butler, W. W. Kay
DRILLING and blasting in anthracite open-pit mines is a continuous problem to contractors and explosive engineers because of the diverse conditions caused by the nature of the geological formations, the extensive mining of the portions of coal beds near the surface, and the proximity of many strip pits to populated areas. Pennsylvania anthracite occurs in four separate long and narrow fields totaling only 480 sq miles. The coal measures are rock strata and coal beds that are considerably folded and faulted. The crests of the anticlines are eroded extensively. The beds outcrop on the mountain sides and dip under the valleys. At first only the upper portions of the synclines could be stripped. Now stripping to increasingly greater depths is economically possible, as is indicated by the fact that the proportion of freshly mined anthracite produced by strip mining has increased from 3.7 pct of the total tonnage in 1930 to 29.6 pct in 1950. Much of the rock overlying the deeper beds now being stripped is so extensively broken that considerable difficulty is experienced in drilling satisfactory blast holes and in using explosives in such manner as to insure a uniformly broken material easily removed by the excavating machinery. Such breaking of rock strata has occurred because the bed now being stripped has been mined extensively in former years by underground methods, and tops of gangways and chambers have subsequently failed. Draglines are used to uncover coal where the overburden can be moved with little or no rehandling. These machines range in size from those having a 2 cu yd capacity bucket on a 60-ft boom to those handling a 25 cu yd bucket on a 200-ft boom. Draglines are also used to strip to the bottom of the coal basins if the depth and the distance between the crops are not too great. For this type of operation blast holes are drilled full depth to the bed. These holes are commonly 30 to 90 ft deep; however, in exceptional cases, holes may be as shallow as 12 ft or as deep as 130 ft. Drilling is normally done for blasts of 12,000 to 60,000 cu yd of overburden, 30,000 cu yd being considered an average blast if vibration is not the controlling factor. Where the stripping of wide basins or the exposure of a moderately pitching vein makes the use of draglines impractical, dipper front shovels equipped with 4 to 6 1/2 cu yd buckets load into trucks. Overburden is removed in benches of 25 to 30 ft with blast holes drilled 4 or 5 ft deeper than the planned floor of the bench. For shovels under 5 cu yd bucket capacity the volume blasted varies from 8000 to 12,000 cu yd, whereas a volume of 30,000 to 50,000 cu yd of overburden is frequently blasted at one time for the larger shovels where vibration is not an important factor. During the past decade the churn drill, generally the Model 42-T Bucyrus-Erie blast hole drill equipped for drilling 9-in. diam holes, has become the most common blast hole drilling machine. Electricity powers half the churn drills in use and is preferred on the large strippings where electric shovels are operated and the working area is concentrated. On these operations the cost of additional electricity for the drills is less than the cost of fuel to operate diesel units because of the existing large demand load of the excavating equipment. Moreover, electric motors start more easily in cold weather and generally are less expensive to maintain. Diesel driven units are employed where a higher degree of mobility. is required. The average drilling speed is 8 ft per hr, although in softer rocks a rate of 15 ft per hr is attained. Where rock is hard and strata is badly broken, drill speeds may ' be less than 2 ft per hr. Low drilling production results under these circumstances when loose material falling from the upper portion of the drill holes causes drill stems to be jammed. Rock formations vary so greatly in the region that a 9-in. diam churn drill bit may become dull after drilling only 2 ft or may drill satisfactorily for 56 ft; however, an average of 35 ft is usual in sandstone of medium hardness. Dull bits are hoisted to flat bed trucks by the sand line of the drill and are usually sharpened in the contractor's bit shop adjacent to the job. Care is generally taken to cover the thread end of the bit with a cap. To facilitate handling of bits around the drill, a heavy thread protector having an eye top is becoming more popular than the flat-top rubber or metal cap furnished with new bits. The 9-in. diam blast holes for a 25 to 30 ft bench are normally on 18x18 ft to 20x20 ft spacings, depending on the character of the overburden, although in broken ground 15x18 ft centers may be used to obtain better breakage and a more even bottom for the bench. The patterns of holes for shots
Jan 1, 1952
-
Part XII – December 1968 – Papers - Sulfur Solubility and Internal Sulfidation of Iron-Titanium AlloysBy J. H. Swisher
The rate of internal sulfidation of austenitic Fe-Ti alloys in H2S-H2 gas mixtures is controlled primarily by sulfur diffusion, with counterdiffusion of titanium playing a minor role. At temperatures below 1100°C, enhanced diffusion along grain boundaries becomes important. The rate of internal sulfidation at 1300°C is approximately equal to the rate computed from the sulfur diffusion coefficient. The diffusion coefficient of titanium in y iron has been determined from electron microprobe traces in the base alloy near the subscale interface. The solubility of sulfur in Fe-Ti alloys has been measured in the temperature range from 1150° to 1300°C. The equilibrium sulfur content is found to increase with titanium content, due to the large effect of titanium on the activity coefficient of sulfur. The Ti-S interaction becomes stronger as the temperature decreases. TITANIUM as an alloying element in stainless steels is an effective scavenger for interstitial impurities, carbon in particular. Titanium is known to form stable sulfides; however extensive thermodynamic data on the Ti-S system are not available. Schindlerova and Buzek1 have shown that the Ti-S interaction in liquid iron is moderately strong. There have been no previous studies of the Ti-S interaction in solid iron. Internal sulfidation of Fe-Mn alloys was the subject of a recent investigation by Herrnstein.2 He found the rate of internal sulfidation to be an order of magnitude greater than predicted from available solubility and diffusivity data. A satisfactory explanation for the discrepancy could not be given. In the present study, the solubility of sulfur in austenitic Fe-Ti alloys was measured using a standard gas equilibration technique. Fe-Ti alloy specimens were also internally sulfidized. The rate of internal sulfidation was measured as a function of temperature and alloy composition. Supplementary electron micro-probe measurements were made to provide additional information on the nature of the internal sulfidation process. EXPERIMENTAL The starting materials were alloys containing 0.12, 0.24, 0.38, and 0.54 wt pct Ti. The alloys were made in an induction furnace by adding titanium to electrolytic iron that previously had been vacuum-carbon-deoxidized. The major impurity in the alloys as determined by chemical analysis was carbon. The carbon content of the alloys averaged about 100 ppm; metallic impurities were presented in concentrations of 50 ppm or less. Specimens were made in the form of flat plates, 0.03 by 2 by 4 cm for the equilibrium measurements and 0.5 by 1.5 by 3 cm for the rate measurements. The experiments were performed in a vertical resistance furnace wound with molybdenum wire and containing a recrystallized alumina reaction tube. In the gas train, flow rates of the reacting gases were measured using capillary flow meters. The source of H2S was a mixture of approximately 2 pct H2S in H2, which was obtained in cylinders from the Matheson Co. A chemical analysis was provided with each cylinder. The H2-H2S mixture was diluted with additional hydrogen to obtain the desired ratio of H2S to H2, and the resulting mixture was diluted with 30 pct Ar to minimize thermal segregation of H2S in the furnace. Argon was purified by passage over copper chips at 350°C and subsequently over anhydrone. Hydrogen was purified by passage over platinized asbestos at 450°C and then over anhydrone. The H2-H2S mixture was purified by passage over platinized asbestos and then over Pas. The samples used in the solubility measurements were analyzed for sulfur by combustion and iodometric titration. The subscale thickness in the internally sulfidized samples was measured on a polished cross section, using a microscope with a micrometer stage. Electron microprobe traces for titanium in solution were made on several samples that had been internally sulfidized. A Cambridge microanalyzer was used, and the known titanium content at the center of the specimen was used as a calibration standard. The procedure for the microprobe measurements will be described further when the results are presented. RESULTS AND DISCUSSION Equilibrium Data. Fig. 1 shows the sulfur concentration as a function of gas composition for three alloys equilibrated at 1300°C. The dashed line is based on data published by Turkdogan, Ignatowicz, and pearson3 for pure iron. The breaks in the curves are the saturation points for the alloys. The fact that the initial slope decreases with increasing titanium content indicates that titanium interacts strongly with sulfur in solution. To obtain information on the composition of the precipitating sulfide phase, the measurements described in Fig. 1 were extended to higher sulfur partial pressures. These results are shown in Fig. 2. (The initial portions of the curves are reproduced from Fig. 1.) The highest PH2s /pH2 ratio used is believed to be below the ratio required for the formation of a liquid sulfide phase. Time series experiments were used to study the approach to equilibrium in the samples. It was found that equilibrium with the gas phase was reached in less than 4 hr at 1300°C.
Jan 1, 1969
-
Part VII – July 1968 - Papers - Morphological Study of the Aging of a Zn-1 Pct Cu AlloyBy H. T. Shore, J. M. Schultz
A number of experimental rnethods—X-ray powder diffractometry, Laue photography, X-ray small-angle scattering, and transmission electron microscopy and dijfraction—have been utilized to examine the morphology associated with precipitation from the terminal, g, solid solution of a Zn-1 pct Cu alloy. A significant age hardening was observed in a 1 pct Cu alloy. X-ray and electron diffraction results showed that the structural inhomogeneities associated with the hardening were isotructural with the matrix. The average size and shape of the inhomogeneities were deduced from the electron microscopy and X-ray small-angle scattering. The preprecipitates are hexagonal platelets some 300? in diam. and some twelve unit cells thick. The orientation of the platelets was deduced from Laue photographs and electron diffraction. The platelet plane is (0001). When a large amount of pre-precipitation is present in a localized volume the new lattice is often disoriented by a rotation about (0001) of of the matrix. WhILE dilute Zn-Cu alloys have been commercially important for some 50 years, relatively very little is known metallographically about this material. The "Zilloys", zinc with about 1 wt pct Cu and sometimes a small addition of magnesium, are used to produce rolled zinc which is harder and stronger than that produced by other rollable zinc alloys.' According to the phase diagrams of the zinc-rich side of the Cu-Zn system, such dilute Zn-Cu alloys should age-harden;2-5 the solubility of copper in zinc, g-phase, at 424°C is 2.68 pct, while at 0°C it is only to 0.3 pct. However, the published literature on the aging of this system appears to be limited to a documentation of the contraction of 1, 2, and 3 pct Cu alloys aging at 95°c,6 and an attempt to measure changes in lattice parameters during aging.' In the latter work, no lattice parameter changes were detected, although a broadening of the highest-angle lines was detected and considerable diffuse scattering was observed. Micro-structural investigations have been limited to the latest stage of aging, wherein Widmanstatten precipitates are formed.3,47 These alloys are of interest for still another reason. The two most zinc-rich phases in the Cu-Zn system, 77 and E, are both hcp. Moreover, the change in a, between 17 and t for a 1 wt pct Cu alloy is onlv 3.64 -,~ct: the change in Co is 12.0 ict. It would be anticipated that precipitation in such a material might occur through metastable phases or G.P. zones with epitaxy along mutual 0001 planes. The goals of the present work are aimed at partially filling the void of knowledge concerning the early stages of precipitation from the g phase. In particular, we have attempted to document the magnitude of the age hardening of this system and to determine the size, shape, and orientation within the matrix of the elements of precipitation in an early stage of condensation. EXPERIMENTAL A) Specimen Preparation. Specimens were prepared In two somewhat different ways, one method being used for X-ray Laue and diffractometer measurements, optical microscopy, and Rockwell hardness measurements and the other used for electron microscopy and X-ray small-angle scattering. In the first case zinc and copper in the proper proportions to yield a 1 wt pct Cu alloy were melted together in a closed graphite crucible. Castings so made were free of apparent segregation or oxidation. The castings were then solution-annealed at 400°C for several days and then quenched in water to room temperature. Filings of portions of the specimens were made for use as X-ray powder diffractometry specimens. The electron microscope material was made as follows. Castings were made under vacuum with copper powder placed inside a hollow zinc cylinder to insure good contact of the materials. These 1 wt pct Cu pieces were then rolled to 0.1 mm with an intermediate anneal in vacuo. The rolled sheets so formed were then annealed for about 6 hr at 225°C. Finally the specimens were electropolished slowly until thin enough for transmission electron microscopy. The polishing is discussed in greater detail in the Results section. B) Measurements. X-ray measurements of three types were performed. A G.E. XRD-5 diffractometer was used to examine powders of the alloy for identification of second-phase material. A Kratky small-angle camera, also operating from a G.E. tube, was used to investigate the sizes of small precipitate particles. In both cases, nickel-filtered copper radiation was utilized. Finally, individual grains of the large-grained castings were examined in the back-reflection Laue geometry. Electron microscope studies were carried out with a J.E.O.L. Model 6A instrument. RESULTS A) Hardness Measurements. Hardness measurements performed at room temperature on the large-grained polycrystalline specimens showed a hardening which was essentially complete in 3 hr. Fig. 1 shows a typical plot of hardness vs aging time. The relative magnitude of the ultimate hardening varied from run to run between 150 and 200 pct of the value for the material immediately after quenching from the solution anneal. Most probably the variations reflect small changes in the time taken to remove the specimen from the vacuum furnace after the solution anneal.
Jan 1, 1969
-
Part IX – September 1968 - Papers - The Structure of the Zn-Mg2Zn11 EutecticBy R. R. Jones, R. W. Kraft
Zn-Mg2Znn eutectic alloys nzay freeze willr either rodlike or lanzellar rnorphology. Alloys with slighlly more than /he eutectic arrzount of rnagnesillrn usually contain three-cnned dendrjles of MgzZnll in a eutec-lic ttlulris. All three morphologies haue the same cryslallographic orientution relationship: (0UOl) zn - 11 (111) Mg2Znll and (2310)Zn 11(101) Mg2Znll, but u3ith different prej-erred groulth direclions. The lurnellae lo rods transifion in con/rolled ingols qf euleclic cotnposition occurs because lhe large kinelic undercooling due to MgzZnll minirrzizes /he ejj-ecl of the solid-solid inlerface energy. The eutectic morphology is influenced by the presence of lhree-nned dendrites 0-f MgzZn11 which may conlrol /he rricroslrccture by acting as nuclealion sites. In recent years there has been much interest in eutectic solidification and several theories have been proposed. One of the confusing factors is the existence of various morphologies in which the solidified phases may form. The lamellar microstructure seems to be most common in metal eutectics, and it has been claimed' that all regular eutectics should be lamellar if sufficiently pure. However, there still remain eutectic alloys which are not lamellar or which change their morphology as a function of growth conditions. The eutectic between zinc and the intermetallic phase Mg2Znll was chosen for this investigation because it has been found to solidify in more than one morphology. The diagram in anssen' locates the eutectic point at 3.0 wt pct Mg and 367°C. lliott gives 364°C as the eutectic temperature, leaving the phase compositions unaltered. Since the growth conditions determine the micro-structure of the solidified alloy, the factors controlling the transition from one morphology to another could be studied. The lamellae to rods transition is of particular interest. PROCEDURE Alloys were prepared from carefully weighed portions of 99.999 pct Zn and 99.97 pct Mg by melting in Pyrex containers under argon and casting into graphite boats. The resulting ingots were remelted under argon and solidified unidirectionally in a horizontal tube furnace at growth rates ranging from 2.0 to more than 50 cm per hr under a temperature gradient, measured over a 5-cm length, of 9" to 14°C per cm. The solid-liquid interface appeared to be planar at all growth rates although no attempt was made to confirm this by decantation or quenching. A few ingots were allowed to freeze uncontrolled. Most alloys were of the nominal eutectic composition, 3.0 wt pct Mg according to Hansen2 and lliott, but some contained as much as 3.35 wt pct Mg. Chemical analyses were not run since metallographic examination confirmed that the desired composition was achieved. Specimens were cut from the middle portion of the ingot normal to the growth axis, polished mechanically, and etched with 2 pct Nital. Suitable areas were selected for the determination of crystallographic orientation relationships by a tiontechniqueof described previously by one of the authors.4 The (2310) planes of zinc and the (8701, {944}? (1032) planes of Mg2Znll were found suitable for orientation determination; experimental error was on the order of 2 or 3 deg. RESULTS Three different morphologies were found in the unidirectionally solidified alloys: lamellar eutectic, rod-like eutectic, and a structure whose most predominant characteristic was the presence of three-vaned (cellular) dendrites of Mg2Znll. These dendrites were only found in alloys with more than the eutectic amount of magnesium. In some ingots fine hexagonal needles of Mg2Znll surrounding a core of MgZn2 were observed. They were probably due to incomplete alloying and seemed to have no effect on the eutectic morphology. In addition hexagonal spirals like those discussed by Fullman and wood5 and Hunt and acksonh ere observed in some ingots frozen without directional control. Both MgZZn,, and MgZnz were detected by X-ray diffraction in these alloys. Since the morphology could not be grown unidirectionally and no characteristic orientation relationship between the phases was found, further study was limited to the lamellar: rodlike, and three-vaned dendrite morphologies. Alloys of Eutectic Composition, No Dendrites. The mcrostructures of allovs with no three-vaned dendrites were either lamellar or rodlike depending on the growth rate. At rates below 10 cm per hr the morphology was lamellar, consisting of two sets of parallel plates intersecting at about 54 deg like the Mg-MgzSn eutectic described by raft.7 At growth rates faster than 14 cm per hr the microstructure showed rods of zinc in a matrix of MgnZnll, while intermediate rates yielded mixtures of rods and lamellae in small groups. The lamellar "grains" were often several millimeters in cross section, but contained small irregular areas which divided each grain into perfect islands 100 or 200 p in diam. Lamellae were parallel to each other throughout the grain in spite of these defects in the structure, Fig. 1. Rods, on the other hand, could only be produced in small groups arranged like fish scales and separated by irregular areas of appreciable thickness, Fig. 2. Alloys Not of Eutectic Composition, With Dendrites. In alloys with 3.1 to 3.35 wt pct ME,-. three-vaned dendrites bf MgzZnll were usually found surrounded by eutectic. At growth rates slower than about 10 cm per hr the dendrites were separated from each other by small areas of both lamellar and rod eutectic, Fig. 3.
Jan 1, 1969
-
Part IX – September 1968 - Papers - Enhanced Ductility in Binary Chromium AlloysBy William D. Klopp, Joseph R. Stephens
A substantial reduction in the 300°F ductile-to-brittle transition temperature for unalloyed chromium was achieved in alloys from systems which resemble the Cr-Re system. These alloy systems include Cr-Ru, Cr-Co, and Cr-Fe. Transition temperatures ranged from -300° F for Cr-35 at. pct Re to -75°F for 0-50 at. pct Fe. The ductile alloys have high grain gvowth rates at elevated temperatures. Also, Cr-24 at. pct Ru exhibited enhanced tensile ductility at elevated temperatures, characteristic of superplas-ticity. It is concluded that phase relations play an importarlt role in the rhenium ductilizing effect. The ductile alloys have compositions near the solubility limit in systems with a high terminal solubility and which contain an intermediate o phase. The importance of enhanced high-temperature ductility to the rhenium ductilizing effect is not well understood although both may have common basic features. CHROMIUM alloys are currently being investigated for advanced air-breathing engine applications, primarily as turbine buckets and/or stator vanes. The inherent advantages of chromium as a high-temperature structural material are well-known1 and include its high melting point relative to superalloys, moderately high modulus of elasticity, low density, good thermal shock resistance, and superior oxidation resistance as compared to the other refractory metals. Additionally, it is capable of being strengthened by conventional alloying techniques. The major disadvantage of chromium is its poor ductility at ambient temperatures, a problem which it shares with the other two Group VI-A metals, molybdenum and tungsten. For chromium, the problem is further amplified by its susceptibility to nitrogen em-brittlement during high-temperature air exposure. In cases of severe nitrogen embrittlement, the ductile-to-brittle transition temperature might exceed the steady-state operating temperature of the component. The low ductility of chromium would make stator vanes and turbine buckets prone to foreign object damage. The present work was directed towards improvement of the ductility of chromium through alloying, with the anticipation that any improvements so obtained might be additive to strengthening improvements achieved through different types of alloying. The alloying additions for ductility were selected on the basis of the similarity of their phase relations with chromium to that of Cr-Re. The reduction in the ductile-to-brittle transition temperatures of the Group VI-A metals as a result of alloying with 25 to 35 pct Re is well established.a4 the temperature range -300" to 750° F. This phenomenon is commonly referred to as the '<rhenium ductilizing effect"; this term is also used to describe systems in which the ductilizing element is not rhenium. Other alloy systems which have recently been shown to exhibit the rhenium ductilizing effect include Cr-Co and c-Ru.= In order to explore the generality of this effect, alloys were selected from systems having phase relations similar to that of Cr-Re, primarily a high solubility in chromium and an intermediate o phase. The following compositions were prepared: Cr-35 and -40Re; Cr-10, -15, -18, -21, -24, and -27 pct Ru; Cr-25 and -30 pct Co; Cr-30, -40, and -50 pct Fe; Cr-45, -55, and -65 pct Mn. Seven other systems were also studied which partially resemble Cr-Re. These systems have extensive chromium solid solutions or a complex intermediate phase, not necessarily o. The compositions evaluated include the following: Cr-20 pct Ti; Cr-15, -30, and -45 pct V; Cr-2.5 pct Cb; Cr-2.5 pct Ta; Cr-20 pct Ni; Cr-6, -9, -12, and -15 pct 0s; Cr-10 pct Ir. The compositions of alloys in these systems were chosen near the solubility limit for the chromium-base solid solutions, since in the Group VI-A Re systems, the saturated alloys are the most ductile. These alloys were evaluated on the basis of hardness, fabricability, and ductile-to-brittle transition temperatures. In addition to the studies of alloying effects on ductility, an exploratory investigation was conducted on mechanical properties at high temperatures in Cr-Ru alloys EXPERIMENTAL PROCEDURE High-purity chromium prepared by the iodide deposition process was employed for all studies. An analysis of this chromium is given in Table I. Alloying elements were obtained in the following forms: Commercially pure powder — iridium, osmium, rhenium, and ruthenium. Arc-melted ingot — titanium and vanadium. Electrolytic flake — iron, manganese, and nickel. Sheet rolled from electron-bearn-melted ingot — columbium and tantalum. Electron-beam-melted ingot — cobalt. Sheet rolled from arc-melted ingot — rhenium. All alloys were initially consolidated by triple arc melting into 60-g button ingots on a water-cooled hearth using a nonconsumable tungsten electrode. The melting atmosphere was Ti-gettered Ar at a pressure of 20 torr. The ingots were drop cast into rectangular slabs and fabricated by heating at 1470" to 2800° F in argon followed by rolling in air. Bend specimens measuring 0.3 by 0.9 in. were cut from the 0.035-in. sheet parallel to the rolling direction. The specimens were annealed for 1 hr in argon, furnace cooled or water quenched, and electropolished prior to testing. Three-point loading bend tests were conducted at a crosshead speed of l-in. per min over
Jan 1, 1969
-
Part III – March 1969 - Papers- A Multi-Wafer Growth System for the Epitaxial Deposition of GaAs and GaAs1-xPxBy John W. Burd
A system is described for the simultaneous deposition of epitaxial layers on as many as eight substrates. A high degree of uniformity of both physical and electrical characteristics is achieved in the films. Variation of film thicknesses is consistently less than ±10pct within a wafer and from wafer to wafer within a run with the variation typically on the order of 55 pct. Composition variation of GaAs1-x PX layers within a wafer and from wafer to wafer within a run is consistently less than 51 pct. Electrical evaluation of the films by several techniques indicates excellent doping uniformity within a wafer and from wafer to wafer within a run. Mobilities for lightly doped GaAs films at 300°K are consistently >6000 cm2 v-1 sec-1 and mobilities > 7000 cm2 v- 1 sec-1 are regularly attainable. Techniques for the preparation of material with carrier concentrations from 1 x 1015cm-3 to 1 x 1019 cm-3 n-type and 5 x 1016 to 5 x 1018 cm-3 p-type are discussed. METHODS for the preparation of 111-V compounds by vapor phase reactions have been extensively reported in the literature.1-6 Almost all of the apparatus described for these various methods are suitable for processing one or at the most a very limited number of wafers simultaneously. With the recent rapid advances in the use of vapor grown GaAs for microwave oscillators and GaAs1-xPx as visible light emitters the requirements for these materials are steadily increasing. In order to satisfy these requirements it is necessary to move from a laboratory scale apparatus to one which is capable of processing a large number of wafers simultaneously. Desirable features would be a high degree of uniformity among the wafers and good reproducibility from run to run. The apparatus to be described fulfills these requirements very well. DISCUSSION The various methods reported in the literature can be classified under three headings: 1) closed tube, 2) open tube, and 3) the close-spaced method. Of these three the open-tube method is the most amenable for scale-up to a manufacturing process. It is the most versatile and the various operating conditions can be more precisely controlled than with the other two methods. A number of chemical reactions may be used to achieve vapor-phase growth of 111-V compounds. Sev-era1 of the more generally used reactions are shown in Fig. 1. All of these reactions have the following points in common: 1) generation of a volatile group III(Ga) species by the reaction of the transport agent (halide or HC1) with either Ga or GaAs, 2) introduction of the Group V(As and/or PI component, 3) a method of adding dopant, if desired, and 4) a region in which deposition from the vapor will occur and form as a single crystal epitaxial film on the substrates. The laboratory scale reactors permit the hot re-actant gases to flow into the relatively cooler deposition zone and pass successively over the several substrates which are arrayed along the long axis of the tube parallel to the gas flow. With this arrangement the composition of the reactant stream is continually changing as solid material is deposited on each successive substrate. As a result of this changing gas composition the reaction driving force also changes from substrate to substrate and the degree of uniformity of layer thickness, doping level, and so forth, is poor. This effect can be partially overcome by imposing a controlled temperature gradient along the deposition region to compensate for change in gas composition. However, even when this is done variations in layer thickness on the order of 30 to 40 pct are common and as high as 50 pct are frequently experienced between adjacent wafers in the tube. To expand this arrangement to a large number of wafers would only increase the nonuniformity from the first to last wafer in the line. From the above discussion the two undesirable features of changing gas composition and temperature gradient become evident. A reactor system which eliminates or minimizes these undesirable features is one in which the apparatus is mounted vertically as shown schematically in Fig. 2. The vertical mounting permits the disposition of a number of substrates on a suitable support so that all wafers are at the same vertical height in the furnace and hence at essentially the same temperature. By using only a single row of wafers the reactant gas mixture passes over only one substrate in its path through the reactor. Thus the two undesirable features of changing gas composition and temperature gradient are minimized. An additional design feature which further minimizes temperature variations is rotation of the substrate holder. Rotation serves to integrate any radial temperature gradient existing around the resistance heated furnace. A photograph of a reactor assembly at the completion of a run is shown in Fig. 3. MATERIAL PREPARATION Apparatus. Although any of the several chemical systems shown in Fig. 1 are adaptable for use in this apparatus the one generally used is System 2, the hydride synthesis system. This system has been de-
Jan 1, 1970
-
Technical Notes - Extent of Strain of Primary Glide Planes in Extended Single Crystalline Alpha BrassBy R. Maddin
IN analyzing the relation between the orientation of new grains and that of the deformed matrix of axially extended and recrystallized single crystals of face-centered cubic metals, a two-stage rotation process" is generally used where the first rotation is made in order to account for an "adjustment of orientation to the environment of strain."' It has been argued that in spite of the difference of orientation, which may amount to as much as 12" (in a brass),' between the octahedral plane as observed in the parent lattice and in the recrystallized grain, it is believed to be a common plane in the sense that it constituted the nucleus in the parent strained crystal from which the new grain grew.' A possible source of the deviation in orientations of a common pole in the new grain and that of the deformed single crystal matrix from which it has grown may be found in the distribution of strain resulting from the plastic deformation. It might be expected in view of the incongruent nature of shear' that the perfection of the octahedral plane along which glide has occurred is disrupted and that this disruption constitutes the strain from which nuclei of new grains can grow during recrystallization. Evidence for the existence of strain along glide planes was first detected by Taylor" in 1927 and substantiated by Collins and Mathewson' in 1940. In their investigations, however, the deformed single crystalline specimens (aluminum) were cut mechanically along the glide planes followed by mechanical polishing. X-ray exposures (glancing angle) of only 8 min with filtered radiation were used. It was later shown' that this type of surface preparation did not remove with all certainty the mechanically disturbed surface. It was felt that a re-investigation of this phenomenon using more refined techniques might reveal a more correct extent of the strain resulting from the deformation which might correlate the deviation of the common pole of the recrystallized grain with the acting slip plane of the matrix crystal. In accordance with these thoughts, a single crystal of a brass (70/30 nominal composition) M in. in diam x 5 in. long, tapered as in previous experiments,' was extended and carefully documented with respect to elongation and shear. Disks about % in. thick paralle'l to the primary slip planes were cut from the specimen by means of an etch cutter." These disks represented volumes of the specimen which had been extended 0, 5, 10, 15, and 20 pct. Copper Ka monochromatic radiation was obtained by reflecting 35,000 v copper radiation from the c-cleavage face of a pentaerythritol crystal. The monochromatic radiation was collimated and led on to the disk set at the proper 0 angle for reflection from the primary (111) planes. The monochromatic beam was aligned in a plane containing the active slip direction. Following a 10 hr exposure at the theoretical Bragg angle, the disk was reset at 0 + 1°, 0 — 1", 0 + 2", 0 — 2", etc., until no Bragg reflection was obtained. The disk was then rotated 90" about its polar axis, and the same X-ray procedure was used. The results are shown in Table I. It may be seen from the results in Table I that the plastic deformation (20 pct elongation) produces fragments of the glide plane which are rotated or tilted as much as 25 " from the normal position on a purely block slip model. In addition to the large variation in 0 angle in the slip direction, there is a variation in 0 as much as 20" in the direction at right angles to the direction of slip, i.e., <110>. In view of the results shown, it may now be argued that the strain distribution finds its origin in the incongruent nature of the slip process.' The use of the two-stage rotation process seems valid in attempting to explain the relation between the orientation of recrystallized grains and the matrix from which they have grown. Acknowledgment This work was sponsored by the ONR under Contract Number N6 onr 234-21 ONR 031-383. The author would like to thank N. K. Chen for reading and correcting the manuscript. References 'R. Maddin, C. H. Mathewson, and W. R. Hibbard, Jr.: The Origin of Annealing Twins. Trans. AIME (1949) 185, p. 655; Journal of Metals (September 1949). 'J. A. Collins and C. H. Mathewson: Plastic Deformation and Recrystallization of Aluminum Single Crystals. Trans. AIME (1940) 137, p. 150. eN. K. Chen and C. H. Mathewson: Recrystallization of Aluminum Single Crystals After Plastic Extension. Unpublished. 4 C. H. Mathewson: Structural Premises of Strain Hardening and Recrystallization. Trans. A.S.M. (1944) 38. :'C. H. Mathewson: Critical Shear Stress and Incongruent Shear in Plastic Deformation. Trans. Conn. Acad. of Arts and Science, (1951) 38, p. 213. "G. I. Taylor: Resistance to Shear in Metal Crystals, Cohesion and Related Problems. Faraday Soc. (1927) 121. 'R. Maddin and W. R. Hibbard, Jr.: Some Observations in the Structure of Alpha Brass After Cutting and Polishing. Trans. AIME (1949) 185, p. 700; Journal of Metals (October 1949). 'R. Maddin and W. R. Asher: Apparatus for Cutting Metals Strain-Free. Review of Scientific Instruments (1950) 21, p. 881.
Jan 1, 1953
-
Industrial Minerals - Economic Aspects of Sulphuric Acid ManufactureBy William P. Jones
THE consumption of sulphuric acid, one of the most important commodities in our modern industrial world, is often used as a barometer for industrial activity. The economics of acid manufacture are largely dependent upon the location of the place of consumption and the availability of raw materials in that locality. Sulphuric acid is made from SO,, oxygen from the air and water. Therefore the sulphur dioxide is the only raw material to be considered in an economic study. SO, can be obtained from almost any material containing inorganic sulphur, such as elemental sulphur, pyrites, coal, sour gas and oil, metallurgical gases, waste gases, or gypsum and anhydrite. Many tons of acid can also be reclaimed by the recovery and concentration of spent acids. The aim of this paper is to present a guide to the economic aspects to be considered when the installation of an acid plant is contemplated. It must be remembered that 1 ton of elemental sulphur produces 3 tons of sulphuric acid and that the shipping of sulphuric acid by tank car is very costly. The size of the plant must also be given careful consideration. For instance, operation of a plant producing 5 tons of acid per day might be warranted in Brazil or Pakistan, whereas economics usually favor buying quantities up to 50 tons per day for use within the United States. Elemental sulphur, when available at the low price of 1M4 per lb delivered at an acid plant, has always been the raw material most frequently used for sulphuric acid. All conditions favor its use at this price. The so-called sulphur shortage has been the subject of so many technical papers, magazine articles, and newspaper items during the past y6ar that it hardly seems necessary to mention it again, but a very brief review of the matter will serve as a foundation for the discussion that follows. There is no shortage of sulphur. Only a shortage of low-cost Frasch-mined brimstone exists today. Other more expensive sulphur-bearing materials are plentiful, both in the United States and abroad. The low cost of Frasch-mined brimstone has discouraged the development of higher cost sources. However, the approaching depletion of Gulf Coast dome deposits and the greatly increased demand for sulphur here and abroad have made it necessary for industry to prepare for conversion to utilize sulphur in other forms. For future planning this situation must be considered permanent and not temporary. This conclusion is based on the fact that although sulphur demand will continue to rise, the production of Frasch-mined sulphur probably will not increase greatly beyond its present level of about 5,000,000 long tons per year. The International Materials Conference in Washington estimates 1952 requirements of the free world at nearly 7 million long tons; and the Defense Production Administration has recently set a new goal for 8,400,000 long tons annual domestic production by 1955. The total sulphur equivalent produced in this country in 1950 was 6 million tons. What, then, are the alternatives for the manufacture of the vital chemical, sulphuric acid? Today about 85 pct of this country's sulphur, and nearly 50 pct of the world supply, comes from our Gulf Coast salt domes and is extracted from the earth by Frasch's hot water process. The Gulf Coast salt dome deposits have been the most important known natural deposits in the world, producing 90 million tons of sulphur during the past 50 years. However, at the present rate of extraction these deposits cannot be expected to last indefinitely. Pyrites Pyrites are, and have been for many years, the source of more than 50 pct of the world's sulphur requirements. The principal use, of course, is in the manufacture of sulphuric acid. The use of pyrites in the United States has diminished greatly because of the availability of low cost native sulphur, but pyrites have continued a major source of sulphur in many other countries. The most available pyrites for use in this country are in the form of lump pyritic ore and in mill tailings from flotation of other minerals such as lead, zinc, copper, gold, and silver. An important factor, when the use of pyrites for acid manufacture is being considered, is the disposal of calcine. A ton of sulphuric acid requires approximately ton of high-grade pyrite and results in 1/2 ton of calcine. If the calcine is a fairly pure oxide, free of harmful impurities, it can be used, after sintering, in an iron blast furnace burden. Its value might be as high as 15d per unit of Fe at the blast furnace; or possibly $10.00 per ton of sinter, if it assays 65 pct Fe. This might result in a credit of $4.00 per ton of acid if the sintering plant and blast furnace are both located adjacent to the acid plant. On the other hand, several factors must be considered before this credit can be realized, i.e., freight to blast furnace, availability of sintering facilities, methods of eliminating impurities, and the removal of valuable metal values. In some locations it would be most economical to dump the calcines.
Jan 1, 1953
-
Part X – October 1969 - Papers - Microyielding in Polycrystalline CopperBy M. Metzger, J. C. Bilello
Microyielding in 99.999 pct Cu occuwed in two distinct parabolic microstages and was substantially indeoendent of grain size at the relatiz~ely large grain sizes stzcdied. The strain recouered on unloading was a significant fraction of the forward strain and was initially higher in a copper-coated single crystal than in poly crystals. Results were interpreted in terms of cooperative yielding and short-range dislocation motion activated otter a range of stresses, and a formalism was given for the first microstage. It was suggested that models involving long-range dislocation motion are more appropriate for impure or alloyed fcc metals. THERE are still many unanswered questions concerning the degree and origin of the grain size dependence of plastic properties. In the microstrain region, a theory of the stress-strain curve proposed by Brown and Lukens,' based on an exhaustion hardening model in which the grain boundaries limit the amount of slip per source, accounted for the variation with grain size of microyielding in iron, zinc, and copper.' This theory assumes N dislocation sources per unit volume whose activation stress varies only with grain orientation. Dislocations pile-up against grain boundaries until the back stress deactivates the source, which leads to a relationship between the axial stress and the strain in the microstrain region given by: where G is the shear modulus, D the grain diameter, a the flow stress, and a, is the stress required to activate a source in the most favorably oriented grain.3 If this or other grain-boundary pile-up models are correct, then the reverse strain on unloading would be much larger for a polycrystalline specimen than for a single crystal. Also, the microplasticity would become insensitive to grain size if this could be made larger than the mean dislocation glide path for a single crystal in the microregion. These questions are examined in the present work on polycrys-talline copper and a single crystal coated to provide a synthetic polycrystal. EXPERIMENTAL PROCEDURE Tensile specimens 3 mm sq were prepared from 99.999 pct Cu after a sequence of rolling and vacuum annealing treatments similar to those recommended by Cook and Richards4-6 to minimize preferred orientation. Grain size variation from 0.05 to 0.38 mm was obtained by a final anneal at temperatures from 310" to 700°C. Dislocation etching7 revealed pits on those few grains within 3 deg of (111). For all grain sizes dislocation densities could be estimated as -107 cm per cu cm with no prominent subboundaries. The single crystals, of the same cross section, were grown by the Bridgman technique with axes 8 deg from [Oll] and one face 2 deg from (111). An anneal at 1050°C produced dislocation densities of 2 x 106 cm per cu cm and subboundaries -1 mm apart in these single crystals. A Pb-Sn-Ag creep resistant solder was used to mount the specimens, with a 19 mm effective gage length, into aligned sleeve grips fitted to receive the strain gages. All specimens were chemically polished and rinsed8 to remove surface films just prior to testing. The synthetic polycrystal was made by electroplating a single crystal with 1 µ of polycrystalline copper from a cyanide bath. Mechanical testing was carried out on an Instron machine using two matched LVDT tranducers to measure specimen displacement, the temperature and the measuring circuit being sufficiently stable to yield a strain sensitivity of 5 x 107. At the crosshead speeds employed, plastic strain rates were, above strains of 10¯4, about 10¯5 per sec for polycrystalline specimens and 10-4 per sec for the single crystals. Plastic strain rates were an order of magnitude lower at strains near l0- '. A few checks at strain rates tenfold higher were made for reassurance that the initial yielding of polycrystalline copper was not strongly strain-rate dependent. Test procedures followed the general framework outlined by Roberts and Brown.9,10 An alignment preload of 8 g per sq mm for polycrystals, and 2 to 4 g per sq mm for single crystals, was used for all tests. These gave no detectable permanent strain within the sensitivity of the present experiments; although at these stress levels, small permanent strains are detectable in copper with methods of higher sensitivity.11 12 stress and strain data are reported in terms of axial components. RESULTS General. The initial yielding is shown in the stress vs strain data of Fig. 1. For polycrystals, cycle lc, the loading line bent over gradually without a well-defined proportional limit, and almost all of the plastic prestrain appeared as permanent strain at the end of the cycle. The unloading curve was accurately linear over most of its length with a distinct break indicating the onset of a significant nonelastic reverse strain at the stress o u, indicated by the arrows. The yielding in subsequent cycles, Id and le, had the same general character. The single crystal behavior, shown to a different scale at the right of Fig. 1, was different in that initially the nonlinear reverse strain was unexpectedly much greater than for polycrystals. It should be noted that these soft crystals had a small elastic
Jan 1, 1970
-
Institute of Metals Division - Secondary Recrystallization to the (100) [001] or (110) [001] Texture in 3 ¼ Pct Silicon-Iron Rolled from Sintered Compacts (TN)By Jean Howard
ThE formation of the (100) [001) texture in 3-1/4 pct Si-Fe strip was first reported by Assmus ef a1.l in 1957. Since then much experimental work has been carried out with a view to establishing the mechanism involved. The papers cited above state that the (100) [001] texture was developed in strip rolled from material melted and cast in vacuum. (The impurity content of the ingot is reported as 0.005 pct.) The present note records that similar results can be obtained in material processed by powder metallurgy. A processing schedule is described.which enables the texture to be formed in strip up to 0.010 in. thick, but there seems no reason why this should not be achieved in thicker strip, provided that large grains are developed after sintering. The materials were prepared from Carbonyl Iron Powder Grade MCP (particle size 5 to 30 p) of the International Nickel Co. (Mond) Ltd. The powder contains about 0.15 pct 0, 0.01 pct C, 0.004 pct N, <0.002 pct S, $0.005 pct Mg and Si, and 0.4 pct Ni— that is, it is substantially free from metallic impurities other than nickel, which is thought to be unimportant in the present work. The silicon powder was 99.9 pct purity, or material of transistor quality (ground in pestle and mortar). The mixed powders (3-1/4 pct Si to 96-3/4 pct Fe) are heated in hydrogen at 350" and 650°C to deoxidize the iron before sintering loose at temperatures between 1350" and 1460°C (depending upon the ultimate thickness of strip required) for up to 24 hr. The object of the high-temperature sinter is to develop a large grain size at this stage. Alternatively, the loose sintering can be done at a lower temperature followed by rolling or pressing and then annealing at temperatures between 1350" and 1460°C. Both methods produce large grains, which remain large throughout the process. The compact is then hot-rolled to approximately 1/8 in. with high-temperature interstage anneals if necessary. This step is taken to avoid intercrystalline cracking which would occur if the material of such large grain size were cold-worked. The bar is then annealed at 1050°C and reduced to its final thickness by approximately 50-pct reductions and 1050°C interstage anneals. Throughout the process the dew point of the hydrogen furnace atmosphere is maintained at about -40°C. Samples were annealed in hydrogen at various temperatures and times. Secondary recrystalliza-tion to (100) [001] was developed on the thinner material (i.e., up to 0.002 in.) by annealing in hydrogen at 1050" to 1200°C with a dew point of - 40°C or in vacuum (10-5 Torr) at 1050°C. With the thicker materials (i.e., up to 0.010 in.) the best results were obtained by annealing in hydrogen at 1200°C with a dew point of - 55°C. Complete secondary recrystal-lization to (100) [001] textures was obtained. Above these temperatures secondary recrystallization to (110) [001] tended to develop. The final annealing of samples was normally carried out with the samples placed between recrystal-lized alumina plates, but some experiments were performed with the samples suspended so that their surfaces were not in contact with anything except hydrogen, and these were equally successful in developing secondary crystals. An approximate determination of the proportion of material (before secondary recrystallization took place) having crystals with the (100) or (110) planes in or near the rolling plane showed that 11 pct of the sample had (100) and 16 pct (110). The method used for the determination is described below. A sample was annealed at a temperature just below the secondary recrystallization temperature and etched to reveal the (100) planes. The approximate area covered by crystals having (100) or (110) in or very near the surface was measured on the screen of a Vickers projection microscope. This was repeated for twenty positions chosen at random and a mean of the results calculated. The main hindrance to developing the secondary crystals in the thicker materials was the difficulty of obtaining a large enough initial primary grain size before secondary recrystallization. This was overcome by increasing the particle size of the silicon powder used. During the course of the work, it had been observed that the larger the grain size after sintering the more likely it was that the material would be successful in developing secondary crystals at a later stage. An experiment was therefore carried out to determine whether the material with the larger grain was more successful in developing secondary crystals due to the large grain produced at the sintering state per se or whether it was due to the greater reduction of silica brought about when the sintering temperature was raised in order to increase the grain size. A comparison was made between two compacts, one of which was made with silicon powder of 60 to 100 mesh, the other with silicon powder which was finer than 200 mesh. F?r this experiment, use was made of a phenomenon previously observed that the larger the particle size of the silicon powder employed in making a compact, the larger is the grain size of the compact. The silicon powder was ground
Jan 1, 1964
-
Industrial Minerals - Economic Aspects of Sulphuric Acid ManufactureBy William P. Jones
THE consumption of sulphuric acid, one of the most important commodities in our modern industrial world, is often used as a barometer for industrial activity. The economics of acid manufacture are largely dependent upon the location of the place of consumption and the availability of raw materials in that locality. Sulphuric acid is made from SO,, oxygen from the air and water. Therefore the sulphur dioxide is the only raw material to be considered in an economic study. SO, can be obtained from almost any material containing inorganic sulphur, such as elemental sulphur, pyrites, coal, sour gas and oil, metallurgical gases, waste gases, or gypsum and anhydrite. Many tons of acid can also be reclaimed by the recovery and concentration of spent acids. The aim of this paper is to present a guide to the economic aspects to be considered when the installation of an acid plant is contemplated. It must be remembered that 1 ton of elemental sulphur produces 3 tons of sulphuric acid and that the shipping of sulphuric acid by tank car is very costly. The size of the plant must also be given careful consideration. For instance, operation of a plant producing 5 tons of acid per day might be warranted in Brazil or Pakistan, whereas economics usually favor buying quantities up to 50 tons per day for use within the United States. Elemental sulphur, when available at the low price of 1M4 per lb delivered at an acid plant, has always been the raw material most frequently used for sulphuric acid. All conditions favor its use at this price. The so-called sulphur shortage has been the subject of so many technical papers, magazine articles, and newspaper items during the past y6ar that it hardly seems necessary to mention it again, but a very brief review of the matter will serve as a foundation for the discussion that follows. There is no shortage of sulphur. Only a shortage of low-cost Frasch-mined brimstone exists today. Other more expensive sulphur-bearing materials are plentiful, both in the United States and abroad. The low cost of Frasch-mined brimstone has discouraged the development of higher cost sources. However, the approaching depletion of Gulf Coast dome deposits and the greatly increased demand for sulphur here and abroad have made it necessary for industry to prepare for conversion to utilize sulphur in other forms. For future planning this situation must be considered permanent and not temporary. This conclusion is based on the fact that although sulphur demand will continue to rise, the production of Frasch-mined sulphur probably will not increase greatly beyond its present level of about 5,000,000 long tons per year. The International Materials Conference in Washington estimates 1952 requirements of the free world at nearly 7 million long tons; and the Defense Production Administration has recently set a new goal for 8,400,000 long tons annual domestic production by 1955. The total sulphur equivalent produced in this country in 1950 was 6 million tons. What, then, are the alternatives for the manufacture of the vital chemical, sulphuric acid? Today about 85 pct of this country's sulphur, and nearly 50 pct of the world supply, comes from our Gulf Coast salt domes and is extracted from the earth by Frasch's hot water process. The Gulf Coast salt dome deposits have been the most important known natural deposits in the world, producing 90 million tons of sulphur during the past 50 years. However, at the present rate of extraction these deposits cannot be expected to last indefinitely. Pyrites Pyrites are, and have been for many years, the source of more than 50 pct of the world's sulphur requirements. The principal use, of course, is in the manufacture of sulphuric acid. The use of pyrites in the United States has diminished greatly because of the availability of low cost native sulphur, but pyrites have continued a major source of sulphur in many other countries. The most available pyrites for use in this country are in the form of lump pyritic ore and in mill tailings from flotation of other minerals such as lead, zinc, copper, gold, and silver. An important factor, when the use of pyrites for acid manufacture is being considered, is the disposal of calcine. A ton of sulphuric acid requires approximately ton of high-grade pyrite and results in 1/2 ton of calcine. If the calcine is a fairly pure oxide, free of harmful impurities, it can be used, after sintering, in an iron blast furnace burden. Its value might be as high as 15d per unit of Fe at the blast furnace; or possibly $10.00 per ton of sinter, if it assays 65 pct Fe. This might result in a credit of $4.00 per ton of acid if the sintering plant and blast furnace are both located adjacent to the acid plant. On the other hand, several factors must be considered before this credit can be realized, i.e., freight to blast furnace, availability of sintering facilities, methods of eliminating impurities, and the removal of valuable metal values. In some locations it would be most economical to dump the calcines.
Jan 1, 1953
-
Part XI – November 1969 - Papers - Growth Rate of “Fe4N” on Alpha Iron in NH3-H2 Gas Mixtures: Self-Diffusivity of NitrogenBy E. T. Turkdogan, Klaus Schwerdtfeger, P. Grieveson
The rate of growth of "Fe4N" on a iron was measured by nitriding purified iron strips in flowing am -monia -hydrogen gas mixtures at 504" and 554°C. It is shown that a dense nitride layer is formed when a zone -refined iron is used in the experiments. With less pure iron, the nitride layer is found to be porous. Through theoretical treatment, the self-diffusivity of nitrogen is evaluated porn the parabolic rate constant, and found to be essentially independent of nitrogen actirlity, e.g., D* = 3.2 x l0-12 and 7.9x l0-12 sq cm per sec at 504" and 554?C. Some consideration is given to the mechanism of diffusion in the nitride phase. THERE is a great deal of background knowledge on the solubility and diffusivity of nitrogen in iron, and on the thermodynamics and crystallography of several phases in the Fe-N system. Although case-nitrided steels have many applications in practice, no work seems to have been done on the diffusivity of nitrogen in the iron nitride, ?', phase. The only work reported on the related subject of which the authors are aware is an investigation by Prenosil,1 who measured the growth rate of the e phase on iron by nitriding in ammonia-hydrogen gas mixtures. EXPERIMENTS Purified iron plates of approximate dimensions 1 by 0.5 by 0.03 cm were nitrided in flowing mixtures of ammonia and hydrogen, in a vertical furnace fitted with a gas-tight recrystallized alumina tube. After a specified time of reaction, the sample was cooled to room temperature by withdrawal to the water cooled top of the reaction tube. The furnace temperature was controlled electronically in the usual manner within *l°C; the temperature was measured using a calibrated Pt/Pt-10 pct Rh thermocouple. For each experiment the iron strip sample was cleaned with fine emery cloth and degreased with tri-chloroethylene prior to the experiment. The ammonia-hydrogen gas mixtures were prepared from anhydrous ammonia and purified hydrogen using constant pressure-head capillary flowmeters. The gas mixture flowed upward in the furnace with flow rate of 400 cc per min at stp. The composition of the gas mixture was checked by chemical analysis at regular intervals. In most cases, the compositions of the exit gas and metered input gas agreed within about 0.3 pct, indicating that cracking of ammonia did not pose a problem at the temperatures employed. Two series of experiments were carried out using two different types of purified iron samples. In the first series of experiments at 550°C, vacuum carbon deoxidized "Plastiron" was used. The main impurities present in this iron were, in ppm: 4043, 50-Cr, 20-Zr, 40-Mn, 20-P, 20-S, 20-C, 50-0, and 10-N. In these experiments the rate data were obtained by measuring the change in weight of the iron specimen suspended in the hot zone of the furnace by a platinum wire from a silica spring balance. The nitride layer formed in these experiments was found to be porous, particularly near the outer surface. In other experiments, high purity zone-refined iron (prepared in this laboratory) was used. The total impurity content of this iron was 30 ppm of which 20 ppm was Co + Ni, 4 ppm 0, other metallic impurities were less than 1 ppm. The zone-refined iron bar, -2.5 cm diam, was cold rolled to a thickness of about 0.03 cm and the specimens were prepared for the experiment as described earlier. After the nitriding experiment, the sample was copper plated electro-lytically and mounted in plastic for metallographic polishing. After polishing, the thickness of the ?' layer was measured using a metallographic microscope. The nitride layer formed on the zone-refined iron was essentially free of pores. RESULTS The different morphology of the nitride layers grown on "Plastiron" and zone-refined iron is shown in Fig. 1. Both samples were nitrided side by side for 55 hr. The holes in the less pure iron, Fig. l(a), are confined to a region about one half thickness from the outer surface. The dense layer grown on zone-refined iron, Fig. l(b), is thinner than the porous layer on the "Plastiron". The impurities in the iron are believed to be responsible for the formation of a porous nitride layer. The pore formation may be due to the high nitrogen pressures existing within the nitride layer, e.g., the equilibrium nitrogen pressure is 1.2 x l05 atm in the 38.6 pct NH3-61.4 pct H2 and 6.6 x l03 atm at the Fe-Fe4N interface at 554°C and 0.96 atm. It is possible that the oxide inclusions present in the electrolytic iron may facilitate the nuclea-tion of nitrogen gas bubbles within the nitride layer. Support for this reasoning is the fact that pores are only encountered in the outer range of the layer where nitrogen pressures are largest. The photomicrographs in Fig. 2 show the effect of reaction time on the thickness of the dense nitride layer formed on zone-refined iron. These sections are from samples nitrided in a stream of 29 pct NH3-71 pct H2 mixture at 554°C for 22, 70, and 255 hr. In all the sections examined the nitride-iron interface was noted to be rugged. These irregularities are be-
Jan 1, 1970
-
Institute of Metals Division - Kinetics and Mechanism of the Oxidation of MolybdenumBy A. Spilners, M. Simnad
The rates of formation of the different oxides on molybdenum in pure oxygen at 1 atm pressure have been determined in the temperature range 500° to 770°C. The rate of vaporization of MOO, is linear with time, and the energy of activation for its vaporization is 53,000 cal per mol below 650°C and 89,600 cal per mol at temperatures above 650°C. The ratio Mo03(vapor.lzing)/MoOS3(suriace) increases in a complicated manner with time and temperature. There is a maximum in the total rate of oxidation at 6W°C. At temperatures below 600°C, an activation energy of 48,900 cal per mol for the formation of total MOO, on molybdenum has been evaluated. The suboxide Moo2 does not increase beyond a very small critical thickness. At temperatures above 725°C, catastrophic oxidation of an autocatalytic nature was encountered. Pronounced pitting of the metal was found to occur in the temperature range 550° to 650°C. Marker movement experiments indicate that the oxides on molybdenum grow almost entirely by diffusion of oxygen anions. USEFUL life of molybdenum in air at elevated temperatures is limited by the unprotective nature of its oxide which begins to volatilize at moderate temperatures. Although the oxide/metal volume ratio is greater than one, the protective nature of the oxide film is very limited. Gulbransen and Hickman' have shown, by means of electron diffraction studies, that the oxides formed during the oxidation of molybdenum are MOO, and MOO,. The dioxide is the one present next to the metal surface and the trioxide is formed by the oxidation of the dioxide. Molybdenum dioxide is a brownish-black oxide which can be reduced by hydrogen at about 500°C. Molybdenum trioxide has a colorless transparent rhombic crystal structure when sublimed, but on the metal surface it has a yellowish-white fibrous structure. It is reported to be volatile at temperatures above 500" and melts at 795°C. It is soluble in ammonia, which does not affect the dioxide or the metal. In his extensive and classic investigations of the oxidation of metals, Gulbransen2 has studied the formation of thin oxide films on molybdenum in the temperature range 250" to 523°C. These experiments were carried out in a vacuum microbalance, and the effect of pressure (in the range 10-6 yo 76 mm Hg), surface preparation, concentration of inert gas in the lattice, cycling procedures in temperature, and vacuum effect were studied. The oxidation was found to follow the parabolic law from 250" to 450°C and deviations started to occur at 450 °C. The rates of evaporation of a thick oxide film were also studied at temperatures of 474" to 523°C. In vacua of the order of 10- km Hg and at elevated temperatures, an oxidation process was observed, since the oxide that formed at these low pressures consisted of MOO, which has a protective action to further reaction in vacua at temperatures up to 1000°C. Electron diffraction studies showed that, as the film thickened in the low temperature range, MOO8 became predominant on the surface. Above 400°C MOO, was no longer observed, MOO, being the only oxide detected. The failure to detect MOO, on the surface of the film formed at the higher temperatures does not militate against the formation of this oxide, since according to free energy data MOO3, is stable up to much higher temperatures. At the low pressures employed, this oxide would volatilize off as soon as it was formed. Its vapor pressure is relatively high and is given by the equations" log p(mm iig) = -16,140 T-1 -5.53 log T + 30.69 (25°C—melting point) log p(mm He) = -14,560 T-1 -7.04 log T+1 + 34.07 (melting-boiling point). Lustman4 has reported some results on the scaling of molybdenum in air which indicate a discontinuity at the melting point of MOO, (795°C). Above the melting point of MOO,, oxidation is accompanied by loss of weight, since the oxide formed flows off the surface as soon as it is formed.5,6 Qathenau and Meijering7 point out that the eutectic MOO2-MOO3 melts at 778C, and they ascribe the catastrophic oxidation of alloys of high molybdenum content to the formation of low melting point eutectics of MOO3 with the oxides of the melts present. Fontana and Leslie -explain the same phenomenon in terms of the volatility of MOO,, which leads to the formation of a porous scale. Recent unpublished work by Speiser9 n the oxidation of molybdenum in air at temperatures between 480" and 960°C shows that the rate of weight change of molybdenum is controlled by the relationship between the rates of formation and evaporation of MOO,. They have measured the rates of evaporation of Moo3 in air at different temperatures and estimated an activation energy of 46,900 cal. This compares with the value of 50,800 cal per mol obtained by Gulbransen for the rate of sublimation of MOO, into a vacuum.
Jan 1, 1956
-
Part III – March 1968 - Papers - Crystal Growth, Annealing, and Diffusion of Lead-Tin ChalcogenidesBy A. R. Calawa, T. C. Harman, M. Finn, P. Youtz
A study has been made of the growing, annealing, and diffusion parameters in PbSe, Pb1-ySnySe, and Pb1-xSnxTe. Single crystals of these materials have been grown using the Bridgman technique. For all of the above materials the as-grown crystals are p type with high carrier densities. To reduce the carrier concentration and increase the carrier mobility, the samples are annealed either isothermally or by a two-zone method. From isothermal anneals, the liquidus-solidus boundary on the metal-rich side of the stoichiometric composition has been obtained for some alloys of Pb1-xSnxTe and on both the metal- and seleniunz-rich sides for PbSe and alloys of Pbl-ySnySe. In Pbo.935 Sno.065 Se carrier concentrations as low as 5 x1016 Cm-3 and mobilities as high as 44,000 sq cm v-1 sec-1 at 77°K have been obtained. Inter diffusion parameters mere also studied. The ddiffusion experiments mere identical to the isothermal or two-zone annealing experiments except that the samples were removed prior to complete equilibration. The resulting p-n junction depths were determined by sectioning and thermal probing. Inter diffusion coefficients for various temperatures were calculated for both PbSe and Pb0.93Sn0.0,Se. RECENTLY, there has been considerable interest in the PbTe-SnTe and PbSe-SnSe alloys with the rock salt crystal structure. The unusual feature of these systems is the variation of energy gap EG with composition. Several investigations1-3 have shown that EG for the lead chalcogenides decreases as the tin content increases, goes through zero, and then increases again with further increase in tin content. The possibility of obtaining an arbitrary energy gap by selecting the composition is an especially attractive feature of these alloys for applications involving long-wavelength infrared detectors and lasers. In addition, some unusual magneto-optical, galvanomagnetic, and thermomag-netic effects should occur for alloys with low band gaps. If uncompensated low carrier density crystals can be obtained, then a small carrier effective mass, a large dielectric constant, and the resultant high carrier mobility should yield enormous effects at low temperature in a magnetic field. The relative variation of the energy gap with pressure should also be very large for these low gap materials. The primary purpose of this paper is to provide some information concerning the preparation of low carrier concentra- tion, high carrier mobility, and homogeneous single crystals with a predetermined alloy composition. I) DETERMINATION OF ALLOY COMPOSITIONS In all of the work described in this paper, the composition of lead and tin chalcogenides in the alloys was determined by electron microprobe analysis. Separate X-ray spectrometers are used to make simultaneous intensity measurements of the Pb La1 and Sn La1 lines emitted by the sample under excitation by a beam of 25 kev electrons focused to a spot about 2 µm in diam. These intensities are compared to the intensities of the same lines emitted by standards under the same conditions. The standards used are the terminal compounds of each pseudobinary system, i.e., PbTe and SnTe for Pbl-xSnxTe alloys, PbSe and SnSe for Pbl-ySnySe alloys. The composition of the sample is then obtained from theoretical calibration curves which relate the weight fractions of lead and tin in the alloy to the measured ratios of X-ray intensities for the sample and the standards. The lead and tin calibration curves for each alloy system were calculated by using corrections for backscattered electrons,4 ionization,5 and absorption,6 and assuming that the atom fraction of tellurium or selenium in the sample and standards is exactly +. Results obtained by using the microprobe are in good agreement with those obtained by wet chemical analysis. II) CRYSTAL GROWTH FROM THE VAPOR Early work on the vapor growth of PbSe was carried out by Prior.7 He used small chips of Bridgman-grown single crystals as the source material and frequently converted the whole charge of a few grams into one crystal. In the present work, vapor growth occurred using a metal-rich or chalcogenide-rich two-phased alloy powder as the source material. Small, nearly stoichiometric crystals are formed on the walls of the quartz tube. The procedure will now be described in detail. Initially, a 100-g charge containing (metal)o.51(chalco-genide)o 49 proportions or (metal)o.49(chalcogenide)o. 51 proportions of the as-received elements in chunk form are placed in a fused silica ampoule. After the ampoule is loaded, it is evacuated with a diffusion pump and sealed. The sealed ampoule is placed in the center of a vertical resistance furnace. The region containing the ampoule is heated to about 50°C above the liquidus temper-ature for the particular composition used. After about one-half hour at temperature, the elements are reacted and the molten material homogenized. The ampoule is quenched in water. The quenched ingot is crushed to a coarse powder for vapor growth experiments and to a fine powder for the isothermal annealing experiments which are discussed in a later section. Vapor growth experiments were carried out using the powdered, metal-rich or chalcogenide-rich alloys
Jan 1, 1969