Iron and Steel Division - Discussion: End-Point Temperature Control of the Basic Oxygen Furnace

The American Institute of Mining, Metallurgical, and Petroleum Engineers
W. J. Slatosky
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
666 KB
Publication Date:
Jan 1, 1962

Abstract

W. 0. Philbrook (Cairiegie Institute of Technologyogv—Mr. Slatosky has presented an interesting and constructive paper that represents another step along the way of converting steelmaking from an art to a science. I am confident that his computer will be practical and successful and that with a very few months of experience it will provide a significantly better degree of control than his record of 65 pct of heats within range obtained with the slide-rule calculator . A paper such as this, with a lot of symbols and condensed mathematics, is difficult to comprehend quickly. Since I have had an opportunity to study it carefully, perhaps my evaluation of its validity and accomplishments will save time for others. Mr. Slatosky has correctly used standard principles of stoichiometry and heat balances, which are available to anybody, but he has also brought to them two original contributions: 1) He has developed from operating data some empirical relations for predicting the final FeO content of the slag (at 0.5 pct C end-point) as a function of slag basicity, lance height, and scrap, ore, and scale in the charge. This improves the accuracy of prediction of temperature or scrap requirement compared with assuming an arbitrary, constant FeO content at the end of each heat. There is no assurance yet that exactly the same relations will hold for other furnaces or practices, but similar correlations can be expected. 2) He has combined calculations that are ordinarily carried out laboriously as a number of individual steps into a single, simple linear equation that can readily be fed into a machine. This involved a tremendous amount of painstaking detail work as well as the imagination to see the possibility and work out the steps. While his particular Eqs. [3] and [6] are valid only for the furnace design, charge weight, and blowing time used at Aliquippa Works, only a few numerical values have to be changed to adapt it for other conditions. In order to arrive at a useable solution, Mr. Slatosky had to make some basic assumptions about the process that are similar to those used by others. He neglected variation in some process variables and assumed an arbitrary average value for waste gas analysis and temperature for want of more exact information at the present time. All of these judgments are clearly stated. In addition, some thermody-namic data presently available are not adequate for the job, notably in relation to heats of formation and sensible heat in slag, and some expedient has to be adopted to get around the difficulty. Other people might prefer slightly different judgments about these details and hence obtain somewhat different numerical solutions. This is not of serious importance, however, because the errors accumulate in the "heat loss" term and are largely self-compensating for a constant heat time. Although the extended Eq. l(a) in Appendix I was set up as a rate equation originally, for convenience in using an analogue computer as stated in the paper, the time dependence was removed by later mathematical manipulations and assumptions about the process. The final result is an integration of element and energy balances from initial to final states; this procedure is as legitimate here as in any other form of heat-balance calculation. The formal handling of stoichiometry and thermochemistry appears to be correct, and it is assumed that any arithmetical errors would have come to light in applying the calculations to furnace practice. Mr. Slatosky's approach is not necessarily unique, in that other people might start with apparently different equations or prefer another form of final equation for another type of computer. However, he has presented an accomplished result that appears to be a theoretically sound and practically useful way of applying scientific principles and rapid computation for better control of steelmaking. His success will undoubtedly encourage himself and others to improve on the mathematical model and its use as better informatioq becomes available. John F. Elliott (Massachusetts Institute of Teck-t2ology)-The last comment by Mr. Richards that a calculator is quite unnecessary for an L-D operation ?-equi??es a rebuttal. The L-D furnace is a very high capacity process which places a premium on close control. When one is making steel at rates between 100 and 200 tons per hr, one cannot afford the luxury of an extra 5 or 10 min at the end of a heat correcting for an error that should never have been made in the first place. Mr. Slatosky's paper is a very sound application of the simple principles of stoichiometry and the energy balance. It is a satisfactory and valuable start, but only the start of the development of methods of control for this process. An analysis of the process shows that it should be very suitable to control by a computer. This is especially the case when various grades of steel are to be made. In fact, it would seem that the organizations who are planning new and bigger installations of L-D vessels should consider carefully the advantages that would stem from computer control of a vessel with the operator present to do little more
Citation

APA: W. J. Slatosky  (1962)  Iron and Steel Division - Discussion: End-Point Temperature Control of the Basic Oxygen Furnace

MLA: W. J. Slatosky Iron and Steel Division - Discussion: End-Point Temperature Control of the Basic Oxygen Furnace. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account