Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Iron and Steel Division - Activity of Silica in CaO-Al2O3 Slags at 1600° and 1700°CBy F. C. Langenberg, J. Chipman
New data on the distribution of silicon between slag and carbon-saturated iron at 1600oand 1700oC are presented which, in combination with previously published data, permit the determination of silica activities over a broad range of compositions in the CaO-Al2O3-SiO2 system. The distribution of silicon between graphite-saturated Fe-Si-C alloys and blast furnace-type slags in equilibrium with CO has been described in previous publications.1"3 In this past work the silica-silicon relation was established at temperatures of 1425" to 1700°C for slags containing up to 20 pct Al2O3. This paper presents the results of additional studies at 1600" and 1700° C which extend the silicon distribution data at these temperatures for CaO-A1203-SiO2 slags over a range from zero pct A12O3 to saturation with A12O3, or CaO.2A12O3. The upper limit of SiO, is set by the occurrence of Sic as a stable phase when the metal contains 23.0 or 23.7 pct Si at 1600" or 1700°C, respectively. The activity of silica over the expanded range is determined directly from the distribution data.3 Recently, 4-7 other investigators have studied the activities of SiO, and CaO, principally in the binary system, using different methods and obtaining somewhat different results. EXPERIMENTAL STUDY The experimental apparatus and procedure have been fully described in previous publications.1, 3 Six new series of experimental heats have been made, four at 1600° and two at 1700°C. Master slags of several fixed CaO/A12O3 ratios were pre-melted in graphite crucibles, and these were used with additions of silica to prepare the initial slag for each experiment. Slag and metal were stirred at 100 rpm and CO was passed through the furnace at 150 cc per min. The initial sample was taken 1 hr after addition of slag at 1600°C or 1/2 hr after addition at 1700°C. The run was normally continued for 8 hr at 1600°C or 7 hr at 1700°C, and the final sample was taken at the end of this period. Changes in Si and SiO2 content indicate the direction of approach to equilibrium, and in a series of runs where the approach is from both sides this permits approximate location of the equilibrium line. Fig. 1 shows the results of such a series of 15 runs at 1600°C for slags of CaO/Al2O3 = 1.50 by weight. Figs. 2 and 3 record other series at 1600°C and Fig. 5 a series at 1700°C with fixed CaO/Al2O3 ratios. The results of the experiments at 162003°C have been reported in part in a preliminary note.3 In the experiments recorded in Figs. 4 and 6, the slags were saturated with A12O3 (or with CaO.2A12O3 within its field of stability) by suspending a pure alumina tube in the melt during the course of the run. The final slag analyses were used to establish the liquidus boundaries8 in the stability fields of CaO.2Al,O3 and of A120,. ACTIVITY OF SILICA The free-energy change in the reaction has been calculated by Fulton and chipman2 from recent and trustworthy data including heats of formation, entropies, and heat capacities. The more recent determination by Olette of the high-temperature enthalpy of liquid silicon is in satisfactory agreement with the values used and therefore requires no revision of the result which is expressed in the equation: SiO, (crist) + 2C (graph) = Si + 2CO(g.) [1] &F° = + 161,500 - 87.4T The standard state for silica is taken as pure cristobalite and that of Si as the pure liquid metal. Since the melts were made under 1 atm of CO and were graphite-saturated, the equilibrium constant for Eq. [I] reduces to K1 = asi /asio2 The value of this constant is 1.77 at 1600°C and 16.2 at 1700°C. Through K1, the activity of silica in the slag is directly related to the activity of silicon in the equilibrium metal.
Jan 1, 1960
-
Institute of Metals Division - Determination of Boundary Stresses during the Compression of Cylindrical Powder CompactBy M. E. Shank, J. Wulff
At the present time, the designer of dies for metal powder pressing is handicapped by relative ignorance of stress distribution and frictional effects at the interior surface of the die. Unckell was the first to develop a method for the study of wall friction. He used three Brinell balls on which the die rested during pressing. The total frictional wall force was determined by the size of impression these balls left on a soft metal plate. Since the method does not give radial pressures, or distribution of such pressures, coefficients of friction could not be determined. Although Unckel measured density distribution, he was not able to determine radial or shear stresses. Shaler2 has proposed theoretical expressions for the stress and density distribution within cylindrical compacts during pressing, in accordance with the experimental results of Kamm, Steinberg, and Wulff.3 By application of Siebel's method,4 Kamm et a13 plotted stress trajectories for two compacts. From the stress trajectories they calculated coefficients of friction from point to point along the die wall. As pointed out by Shaler in the discussion of Ref. 3, these values are based on progressive point-to-point calculations on finite size grid squares across the compact. In the region of the die wall such calculated values may therefore have considerable cumulative error. The purpose of the present paper is to develop an experimental method by which the nonhydrostatic pressures and shears acting on the interior wall of a cylindrical die can be measured. Such measurements can then he correlated with existing data to aid in the explanation of the pressing process. The method used is based on the elastic: properties of the thick-walled tube used as the die. The principle of super-position of force systems on an elastic body is assumed to hold. Electric strain gauges were mounted in adjacent positions on the exterior die wall in order to get an exact measurement of the variation of tangential strain over the length of the die during pressing. While in this paper, measurements in terms of only tangential strains are considered, it is well to note that similar calculations may be set up for axial strains. The latter are not preferred, since they tend to be smaller than the tangential strains and therefore permit less sensitive measurements. Discussion in this work is restricted to compacts pressed from both ends, since the elastic deformation of the die is then more amenable to analysis. Before choosing the electric strain gauge method, a more direct line of attack was considered and discarded. The discarded idea was the insertion of a pressure gauge through a hole in the die wall.* The gauge would have been in the form of a small piston. If pressure were exerted against such a gauge, it would move outward along a radius of the die. One disadvantage of the scheme is its inability to measure shears along the die wall. Another more serious disadvantage is the disturbance caused by the device itself. It would serve to change the forces it was designed to measure. No matter how small the movement of the gauge, when pressure is applied a discontinuity would exist in the wall surface at that point. Due to the stress concentration caused by the hole, abnormal deflections of the die wall would occur around the gauge. During pressing, powder would be forced into the resulting depression. The depression would then become larger with increasing compacting pressure. Powder, not being a fluid, is capable of supporting shear. The ease with which it would flow into the die wall depression to further move the piston is an indication, not of the radial pressure at that point, but of the state of shear retarding the movement. Thus the "pressure" gauge is really a criterion of flowability, and of the capability of the powder to support shear. For these reasons, it was decided that the electric strain method, herein employed, was more reliable, if more indirect. The gauges and lead wires, mounted on the external die wall do not in any way affect the behavior of the metal powder or the die during pressing. Theory of the Method THE EFFECT OF RADIAL PRESSURE ON THE DIE WALL Effect of a Single Small Band of Hydrostatic Pressure Consider a die which is a thick-walled cylinder of outer radius R. and inner radius Ri. If over a small finite length L there is a normal pressure P, a tangential strain distribution at the outer wall results. This is shown schematically in Fig 1. The exact shape of the curve may he predicted by an extension of the theory of a semi-infinite beam on an elastic foundation.6 This
Jan 1, 1950
-
Capillarity - Permeability - Evaluation of Capillary Character in Petroleum Reservoir RockBy Walter Rose, W. A. Bruce
Improved apparatus, methods, and experimental techniques for determining the capillary pressure-saturation relation are described in detail. In this connection a new multi-core procedure has been developed which simplifies the experimental work in the study of relatively homogeneous reservoirs. The basic theory concerning the Leverett capillary pressure function has been extended and has been given some practical application. Some discussion is presented to indicate the relationship of relative permeability to capillary pressure, and to provide a new description of capillary pressure phenomena by introducing the concept of the psi function. INTRODUCTION For the purposes of this paper the capillary character of a porous medium will be defined to express the basic properties of the system, which produce observed results of fluid behavior. These basic properties may be classified in the following manner, according to their relationship to: (a) The geometrical configuration of the interstitial spaces. This involves consideration of the packing of the particles, producing points of grain contact, and variations in pore size distribution. The packing itself is often modified by the secondary processes of mineralization which introduces factors of cementation, and of solution action which causes alteration of pore structure. (b) The physical and chemical nature of the interstitial surfaces. This involves consideration of the presence of interstitial clay coatings, the existence of non-uniform wetting surfaces; or, more generally, a consideration of the tendency towards variable interaction between the interstitial surfaces and the fluid phases saturating the interstitial spaces. (c) The physical and chemical properties of the fluid phases in contact with the interstitial surfaces. This involves consideration of the factors of surface, interfacial and adhesion tensions; contact angles; viscosity; density difference between immiscible fluid phases; and other fluid properties. Fine grained, granular, porous materials such as found in petroleum reser~oir rock possess characteristics which are expressible by (1) permeability, (2) porosity, and (3) the capillary pressure-saturation behavior of immiscible fluids in this medium. These three measurable macroscopic properties depend upon the microscopic properties enumerated above in a manner which defines the capillary character. Systems of capillary tubes or regularly packed spheres may be thought of as ideal and numerous references can be cited in which exact mathematical formulations are developed to show the relationships governing the static distribution and dynamic motion of fluids in their interstitial spaces. The capillary character of non-ideal porous systems such as reservoir rock also is basic in determining the behavior of fluids contained therein; although, in general, the connection is not mathematically derivable but must be approached through indirect experimental measurement. This paper gives consideration to the evaluation of petroleum reservoir rock capillary character. The methods employed may be applied to the solution of problems in other fields, and the conclusions reached should contribute to the basic capillary theory of any porous system containing fluid phases. In this paper, a modification of the core analysis method of capillary pressure is employed and it is intended to show that the capillary character of reservoir rock can be expressed in terms of experimental quantities. A very general method of interpretation correlating the capillary pressure tests with fundamental characteristics such as rock texture, surface areas, permeability, occasionally clay content and cementation is introduced. Eventually an attempt is made for establishing a method of deriving relative permeability to the wetting phase from capillary pressure data. The experimental evaluation of capillary character must be approached in a statistical manner if reservoir properties are to be inferred from data on small cores. This is implied by the heterogeneous character of most petroleum reservoirs, and suggests that considerable intelligence should be applied in core sampling. Finally, this paper supports the view that once the capillary character of a given type of reservoir rock has been established by core analysis, fluid behavior can then be inferred in other similar rock. Although no great progress has been made in establishing what variation can be tolerated without altering the basic fluid behavior properties, evidence will be presented to indicate that certain reservoir formations are sufficiently homogenous with respect to capillary character that the data obtained on one core will be useful in predicting the properties of other cores of similar origin. Tests have shown that cores under consideration can vary widely with respect to porosity and permeability and still be considered similar in capillary character. EXPERIMENTAL METHODS AND TECHNIQUES Various types of displacement cell apparatus for capillary pressure experiments have been described in the literature. Bruce and Welge; Thornton and Marshall; McCullough, Albaugh and Jones3; Hassler and Brunner; Lever-
Jan 1, 1949
-
Industrial Minerals - Saskatchewan Potash DepositsBy M. A. Goudie
The deposits occur in a large salt basin of Middle Devonian age. The potash, the final deposit in the salt basin, results from several interrupted cycles of evaporation and dessication. The deposits are extensive, and, at first glance, relatively undisturbed. With more and more wells being drilled, it has now become evident that salt solution has played a large part in changing the original deposits, resulting in some cases in partial to complete removal of the potash and the underlying halite. The most dominant factor in the removal of salt by solution appears to have been tectonic movement and consequent faulting, probably of relatively minor dimensions but of major importance. Evidence which indicates the tilting of the evaporite basin to the north and northwest is shown by the changing pattern of the basin during succeeding eras of potash deposition. The potash minerals of most importance economically are sylvite and carnallite. Reserve calculations indicate that 6.4 billion tons of recoverable high grade potash in K2O equivalent exist in the basin. The Devonian salt basin, which contains the Saskatchewan potash deposits, extends from just east of the foothills in Alberta, north as far as the Peace River area, across Saskatchewan and into Manitoba as far east as Range 10 west of the First Meridian and south into Montana and North Dakota (Fig. 1). The basin is closed everywhere except to the northwest. The known potash deposits are confined almost entirely to the Province of Saskatchewan, with the exception of a small area in western Manitoba bordering the Saskatchewan boundary. The following discussion will concern only the Saskatchewan part of the basin. The evaporite series in the basin is defined as the Prairie Evaporite Formation of the Elk Point Group, of Middle Devonian age. Recent work done by potassium-argon dating methods has indicated an Upper Middle Devonian (Givetian) age of from 285 to 347 million years for the potash. The Elk Point Group consists in ascending order of the Ashern, Winnipegosis, and Prairie Evaporite Formations. The Ashern formation, with an average thickness of 30 ft, sometimes called the Third Red Bed, consists of dolomitic shales and shaly dolomites. The Winnipegosis, is a reef-type dolomite, usually with good porosity, and in many cases oil-staining, although to date no production has been obtained. The thickness varies from 50 to 250 ft. The Prairie Evaporite formation, varying from 0 to 600 ft in thickness, consists of halite with interbedded anhydrite and shale, with considerable amounts of potassium salts in the upper part of the formation. The potassium salts are chiefly chlorides, although very minor occurrences of sulfates have been re- ported. The anhydrite beds do not appear to be continuous, although generally one or two bands of anhydrite underlie the lowest potash zone and are used as marker horizons. The shale occurs as seams interbedded with the salts, as large irregular inclusions in the salts and as very fine particles in intimate mixture with the salts. The Prairie Evaporite Formation is overlain by the Second Red Bed member, the Dawson Bay Formation and the First Red Bed Member of the Manitoba Group, listed in ascending order. The Red Beds are shales which vary in color from red to green, maroon, grey, grey-black, and reddish purples. They serve as marker horizons for coring the potash. The Second Red Bed averages 14 ft in thickness, the First Red Bed 35 ft. The Dawson Bay Formation, which everywhere overlies the First Red Bed and the Prairie Evaporite Formation in the area under discussion, is a reef type of carbonate, in some places limestone, in others limestone and dolomite, with vugular to pinpoint porosity averaging 130 ft in thickness. In some parts of the area, it has a salt section near the top of the formation, usually with interbedded shales and limestones. In other parts of the area, it is waterbearing and the salt is absent. Detailed mapping has indicated that the areas in which the Dawson Bay is water-bearing are areas which have been disturbed by faulting. Where the Dawson Bay is salt-bearing, the porosity has been plugged by salt. The total thickness of the salt varies from between 600 to 700 ft in the center of the basin to zero at the northern edge of the basin (Fig. 2).* The salt-free area in the center of the Province is believed to have resulted from removal of salt by solution. Evidence from several wells suggests that salt removal has been a continuing process from the time of deposition to the present day. One well drilled between the Quill Lakes for potash information encountered
Jan 1, 1961
-
Institute of Metals Division - Divorced EutecticsBy L. F. Mondolfo, W. T. Collins
A study of the relationship between undercooling for nucleation and structure in Sn-Cu alloys with 0.1 to 5 pct Cu has shown that in hypereutectic allojls the halo of tin that surrounds the primary crystals of Cu3Sn5 is larger, the larger the undercooling for nucleation o,f the tin. This increase of halo size results in a decrease of coupled eutectic, and, in alloys far from the eulectic composition, may produce its complete disappeavance, with the formation of a divorced eutectic structure. This was confirnred by the excrrnination of other alloys in which divorced eutectic slructuves are formed, and leads to the conclusion that they ave only an extrenle case of halo forrtzalion , which results when the two phases freeze one at a time and solidification of the first is completed Defove the second starts. It was also found that under proper conditions of nucleation all types of eutectic structures can be formed in the sartte system , and therefore divorced eutectics, like normal and anomalous, are not characteristic of the syslett~, but are mainly controlled by nucleatiorz. Dizlovced eutectics are formed when the phase that tutcleates the eulectic vequires a large undevcooling for ils nucleation and when the cotnpositiorz of the alloy is far from the eutectic., on the side of the primary phase that does not nucleate the other phase. It is recommended that the tevm "divorced" be used in preference to degenerate because it is more desct-iptice of the morphology and mode of forinalion of the structures. ThE variety of structures found in eutectic alloys has been extensively investigated and classified. The most accepted classification is the one by ~cheil,' in which three different types of eutectic were distinguished: 1) normal, 2) anomalous, 3) degenerate (divorced). ATornlal eutectics are typified by the simultaneous growth of the two phases ("coupling") by which the two phases appear as interpenetrating crystals. The presence of a crystallization front, in which the two phases grow side by side, creates the eutectic grains, with the boundaries where the fronts meet. The presence of eutectic grains is the .distinguishing feature of a normal eutectic, according to Scheil. Straumanis and Brakss2 examined the Cd-Zn system and showed that there was a crystallographic relationship between the phases. Later, others4 also investigated additional systems and found definite crystallographic relationships in the coupled eutectics. The anornalous eutectic shows much less coupling than the normal; the two phases are intimately mixed but 'grow without a uniform crystallization front—a consistent crystallographic relationship— and the eutectic grain is conspicuously absent. As in the normal eutectics faster rates of growth result in a finer structure, but there is not the typical uniform spacing of normal eutectics. The degenerate eutectic shows no coupling; in fact the two phases attempt to minimize their area of contact and to form separate crystals. It has been suggested5" that slow cooling may favor this type of structure. Scheil believes that normal eutectics are formed when the two solid phases are present in more or less equal proportions, whereas both anomalous and degenerate eutectics form when one of the phases is present only in small amounts. spengler7 extended much farther this qualitative relationship between the eutectic type and the ratio of the two phases, and added a relationship to the melting point of the constituents. On this basis he proposed two equations for determining into which of Scheil's classifications an alloy belongs. The first equation is: where TI is the melting temperature of the lower-melting component, Tp of the higher-melting component, and Te the eutectic temperature. The second equations is: where is the volume percent of the lower-melting phase and $2 of the higher-melting phase at the eutectic composition. If 0 and/or 4 are in the range 0.1 to 1, a normal eutectic is formed; if in the range 0.01 to 0.1, anomalous; if less than 0.01, degenerate. Although the examples given by Spengler show a good agreement with the formulas, chadwick found that the Zn-Sn eutectic is normal to all growth rates, even though the volume ratio is 12/1, and Davies9 reports that the A1-AlgCo2 eutectic is normal, with a volume ratio of more than 30/1. Many more discrepancies of this type can also be found. Neither Scheil nor most of the other investigators have considered nucleation as a factor in the formation of divorced eutectics. Daviesg states that divorced eutectics form when neither phase acts as
Jan 1, 1965
-
Institute of Metals Division - The Orientation Distribution of Surface-Energy-Induced {100} Secondary Grains in 3 Pct Si-Fe SheetsBy J. J. Kramer, K. Foster
The orientation distribution of surface-energy -induced secondary recrystallized grains was determined. This work was conducted on thin sheets of a 3 pct Si-Fe alloy annealed under environmental conditions that furor grouth of grains with a (100) plane in the surface of the sheet. The texture was found to be extremely sharp and almost independent of sheet thickness. The distribution varied exponentially with the angular deviation from the {100} plane. It was possible to relate the distribution to the nu-cleation rate of the secondary rains as influenced by the surface-energy difference. THE role of surface energy in the secondary grain growth of cube-oriented grains (grains with a (100) plane in the plane of the sheet) in thin Si-Fe sheets has been previously discussed.1-4 In high-purity sheet material normal grain growth usually occurs until the grains have extended through the sheet. Further grain growth is inhibited by the thermal grooving of the boundaries at the sheet surface. However, additional growth of cube grains can occur by a secondary grain growth process under conditions where the (100) plane has a lower surface energy than other orientations. Apparently for these alloys, cusps exist in the polar plot5 of surface free energy with the lowest cusp energy occurring at the (100) orientations. This has been reported to be the result of preferential adsorption of sulfur on the (100) planes.6 As a result of this process, a distribution of orientations could arise from two possible mechanisms. First, when a cusp is present in the polar plot of surface free energy, there are orientations inside the cusp that have a lower surface energy than elsewhere on the polar plot. Also, at sufficiently high temperatures, flat surfaces whose orientations are inside or just outside the cusp (depending on its shape) can often thermally etch, yielding a microscopically stepped surface of even lower surface energy. As a result, grains oriented close to cube would also have a lower surface free energy, either because of the cusp shape or by thermal etching, and could possibly grow as secondary grains by the surface-energy phenomenon. One should thus observe a distribution in the surface orientation of the cube grains comprising the secondary structure. It is the purpose of this paper to investigate this orientation distribution experimentally and to discuss the factors involved in its formation. For this purpose, the surface orientations of a large number of secondary grains in various sheet thickness were determined by means of the Laue back-reflection X-ray technique. PROCEDURE A vacuum-melted 3 pct Si-Fe alloy containing a nominal impurity content of 0.005 wt pct was processed into strip. A single cold-rolling step of 90 pct reduction was used for each strip regardless of the final sheet thickness. Final strip thicknesses of 0.60, 0.30, 0.15, and 0.075 mm were used. Care was taken to insure that the final strip surface was smooth and flat. All strips of a given thickness were annealed together at 1200°C in dry hydrogen (dew point -70°C) to develop the desired secondary structure and to insure identical environmental annealing conditions. The annealing time was selected to develop a complete secondary structure in the thinner sheets but to permit the thicker sheets (0.60 mm) to have residual primary grains remaining. This was necessary to determine whether growth impingement could lead to one secondary grain consuming another at a greater angular deviation. For the X-ray determination of the surface orientation of the secondary grains, a special specimen holder was used. The camera and holder arrangement could be aligned by X-raying a grain in three positions rotated 180 deg to each other. Thus, with a small beam X-ray focus (1 mm), the surface orientation of any grain could be determined to within one-half a degree. The surface orientations of one hundred cube secondary grains were determined for each sheet thickness. The criteria of a secondary grain were its size relative to the sheet thickness and the number of sides of the grain observed in the sheet surface. (A primary recrystallized grain extending through a sheet will generally have six edges visible in the plane of the sheet, whereas a secondary grain will have many more when growing entirely into primary grains.) Grains were selected as randomly as possible by X-raying every secondary grain found along a line drawn on the strip. No attempt was made to determine the exact orientation of the planes of the surface, as many strips from randomly selected sheets were used. On1y the angular deviation of the surface plane from {100} was measured. In order to assess the volume distribution in the
Jan 1, 1965
-
Part IV – April 1969 - Papers - A Numerical Method To Describe the Diffusion-Controlled Growth of Particles When the Diffusion Coefficient Is Composition-DependentBy C. Atkinson
A method is described for the numerical solution of the diffusion equation with a composition-dependent diffusion coefficient and applied to the radial growth of a cylinder; the radial growth of a sphere, and the symmetric growth of an ellipsoid. Sample applications of the method are made to the growth of particles of proeutectoid ferrite into austenite. RECENTLY' we described a method for numerical solution of the diffusion equation with a composition-dependent diffusion coefficient for the case of the growth of a planar interface. In this paper we extend this method to describe the radial growth of a cylinder, the radial growth of a sphere, and the symmetric growth of an ellipsoid. In the latter case, limiting values of the axial ratios of the ellipsoid reduces the problem to one of a cylinder, a sphere, or a plane depending on the axial ratio. A check on these limiting values is made in the results section. In all of these cases we consider growth from zero size. A natural consequence of this assumption as applied to the sphere, for example, is that the radius of the sphere is proportional to the square root of the time. This is consistent with the condition that the radius is zero initially, i.e., grows from zero size. It may be argued that it is more realistic to consider particles which grow from a nucleus of finite initial size; even in this case the analysis of this paper is likely to be applicable. This can be seen if a comparison is made of the work of Cable and Evans,2 who consider a sphere of initially finite size growing by diffusion in a matrix with a constant diffusion coefficient, with the results of Scriven3 for growth from zero size. This comparison shows that the rates of growth in each case differ trivially by the time the particle has grown to about five times its initial size." This investigation is a generalization of those of Zener,4 Ham,5 and Horvay and cahn6 to the situation often encountered experimentally, in which the diffusion coefficient varies with concentration. First let us consider each of the cases separately. I) GROWTH OF SPHERICAL PARTICLES FROM ZERO SIZE In this case the differential equation in the matrix depends only on R, the radius in spherical coordinates, and can be written: ? 1 <^\ ^13D . , dt U\dRz + R 3Rj + dR dR [ J where C is the composition, t is the time, and D is the diffusion coefficient which depends on c. The boundary conditions will be: c = c, at the moving interface in the matrix, c = c, at infinity in the matrix (and at t = 0, everywhere in the matrix), c = X, is the composition in the spherical particle. Each of the above compositions is assumed constant. In addition there is the flu condition at the moving interface which can be written: , dR0 ~/3c dt \dR/H =Ra where R,, which is a function of t, is the position of the moving interface. We make the substitution q = RI~ in [I] reducing this equation to: & - m - *ws) »i where we have written D = D,F(c) or simply D,F, and Do = D(c,). Thus F[c(q0)] = 1 where q, = ~,/a is the value of the dimensionless parameter q evaluated at the interface. Multiplying Eq. [2] by dq/dc and integrating, we find: where the lower limit of the integral has been chosen so that dc/dq — 0 as c — c,, thereby satisfying the boundary condition at infinity. We require, then, to solve Eq. [3] subject to the condition c = c, when q = q, (this follows from putting R = R, at the interface) together with the flux condition which can be rewritten in terms of q as: Eqs. [3] and [4] together with the condition c = c, at q = q0 enable us to find 77, and the concentration profile c = c(q). Numerical Method. We treat Eq. [3] in the same way as we did the corresponding equation for the planar interface problem' i.e., by dividing the interval c, to c, into n equal steps so that: cr = ca -rbc [5] where r takes the values 0, 1, ... n and we call no,, q1, ... nn the values of n corresponding to the compositions c,, c,, ... c,.
Jan 1, 1970
-
Institute of Metals Division - A Study of the Aluminum-Lithium System Between Aluminum and Al-LiBy E. J. Rapperport, E. D. Levine
The boundaries of the (a +ß) field in the Al-Li system were determined between 150°and 550°C utilizing quantitative metallography and lattice-parameter measurements. The solubility of lithium in aluminum decreases from 12.0at. pct Li at 550°C to 5.5 at. pct Li at 150°C. P Al-Li is saturated with aluminum at 45.8 at. pct Li and has this boundary value constant over the temperature range 150°to 550°C. THE solid solubility of lithium in aluminum has been determined by several investigators, 1-6 but, as shown in Fig. 1, there is little agreement among the various determinations. The earliest investiga-tions'-' are suspect because of the use of impure materials. Although high-purity materials were employed in more recent work,4'5 the experimental techniques may have led to contamination of the specimens. Probably the best work has been that of Costas and Marshall,6 who obtained close agreement between results obtained by two independent phase-boundary techniques: electrical resistivity and mi-crohardness. No detailed studies of the solubility of aluminum in the bcc ß phase, Al-Li, have been reported. Cursory investigations1,2,6 have indicated only that the (a+ß) -p boundary lies between 40 and 50 at. pct Li and is relatively independent of temperature. The present work was undertaken in order to provide an independent check on Costas and Marshall's determination of the solubility of lithium in aluminum, to extend knowledge of this solubility limit to temperatures below 225°C, and to make an accurate determination of the solubility of aluminum in Al-Li. EXPEFUMENTAL Alloy Preparation. In view of the difficulties encountered in previous investigations of the A1-Li system, close attention was paid to the use of methods of alloy preparation and treatment that would minimize contamination. Aluminum sheet (99.99 + pct Al) was vacuum-induction melted in a beryllia crucible to remove hydrogen. Lithium (99.9 pct Li) was charged with pre-melted aluminum into a beryllia crucible, in a helium-filled drybox. The crucible was sealed in a Vycor tube and transferred from the drybox to an induction furnace. Melting of alloys was performed by induction heating in a helium atmosphere. Solidification was accomplished by means of a suction apparatus, shown in Fig. 2, in which the alloy was forced by changes of pressure into a 3/16-in. inside diam closed-end beryllia tube. This technique produced rapid solidification of a small portion of the melt, resulting in alloys with a high degree of homogeneity. Typical lithium distributions are presented in Table I. Transverse sections 1/8 in. long were cut from the alloy rods, and each section was split in half longitudinally. One half of each section was analyzed for lithium, and the opposing halves were employed for phase-boundary determinations. Lithium contents were determined by flame photometry with an accuracy of 1 pct of the amount of lithium present. Thermal Treatments. Homogenization and equilibration heat treatments were performed in electrical-resistance furnaces with temperatures controlled to ± 2OC. Calibrated chromel-alumel thermocouples were employed to measure temperature. Homogenization was performed in helium-filled l?yrex tubes for 1 hr at 565°C. The encapsulated specimens were then transferred directly to furnaces maintained at lower temperatures for equilibration. Equilibration times were 2 hr at 550°C, 8 hr at 450°C, 27 hr at 350°c, 90 hr at 250°c, and 285 hr at 150"~. These times were chosen on the basis of conditions employed by previous investigators. Alloys were quenched from the equilibration temperatures by breaking the capsules into a silicone oil bath. By performing all possible operations either in sealed capsules or in a helium-filled drybox, the specimens were given minimum exposure to the atmosphere. Quantitative Metallography. Metallography of Al-Li alloys is difficult because of the atmospheric reactivity of the ß phase. It was found possible, however, to prepare surfaces of good metallographic quality by preventing contact with moisture during preparation. Grinding through 4/0 paper was performed in the drybox. The specimens were then transferred under kerosene to the polishing wheel. Three polishing stages were employed: 25-p alundum with kerosene lubricant on billiard cloth, 1-µ diamond paste on Microcloth, and 1/4-p diamond paste on Microcloth. Between stages the samples were cleaned by rinsing in trichloroethylene and buffing
Jan 1, 1963
-
Producing-Equipment, Methods and Materials - Permeability Reduction Through Changes in pH and SalinityBy N. Mungan
Formation damage, i.e.. reduclion in permeability, has been generally attribuled to clay minerals which expand or disperse upon contact with water that is less saline than the connate water. Luboratory, studies show that penneahility reduction can also occur in formalions containing only nonexpandable clays such as illite or kaolinite, and can be caused also by changes in pH. Furthermore, pH changes can damage even formations that are essentially free of clays. It is suggested that permeability reduction is due to the small passages being blocked by particles, which may be dispersed clays, cemenlion material or other fine parricles. These particles are dislodged by dispersion of clays due to changes in salinity or by dissolution of calcareous cement by acids, or of silicaceous cement by alkaline solutions. In working with reservoir cores, it was found that extracted cores damaged more easily and extensively than nonextracted cores. The extent of damage depended also on tenlperatltre. INTRODUCTION Permeability is an important property of porous media and has been the subject of many studies by engineers and geologists. Many of these studies are conccrned with formation damage, i.e., reduction in permeability, resulting from exposure of oil-producing formations to water substantially less saline than the connate water. This effect causes understandable concern since during drilling, completion and production phases formations are often exposed to fresh water. The damage resulting from contact with relatively fresh water has been attributed to expansion and dispersion oF clay minerals. During laboratory investigation of the use of NaOH as a wettability reversal agent to increase oil recovery from oil-wet reservoirs, several cores used in the displacement studies suffered loss in permeability. Despite the traditional usage of NaOH for conditioning aqueous mud systems, the role of the caustic filtrate in wellbore damage seems to have been overlooked. Browning2 as recently reported on the effects of NaOH in dispersing clay minerals but he was concerned only with complications that may arise in drilling massive shale beds. The following study was made to examine the role of pH and salinity changes in core damage. Where cores from reservoirs were used, tests were performed with extracted and nonextracted cores both at room and reser- voir temperatures, since it was felt that the test environment and core condition may affect the results. Because of its limited coverage and exploratory nature, this study is not intended to provide answers to field formation damage problems. It is hoped that it will encourage research into new aspects of the permeability reduction problems, particularly those allied to new recovery and production processes. PROCEDURE In all permeability tests, fluids were pumped through the cores at a constant volumetric rate. Only deaerated fluids and reagent grade chemicals were used. The fluids were passed through two ultrafine filters before injection to remove any entrained particles. The cores, with the exception of the unconsolidated cores, were mounted in Hassler holders. Water was used to transmit pressure to the sleeve. The inlet endpiece had two entry ports which permitted scavenging one fluid with another to avoid any mixing in the small holdup volume. The cores were flushed with CO2 gas, evacuated for 5 to 6 hours and saturated with the first liquid at a pressure of 1,000 psi for 24 hours to eliminate any free gas from the cores. Pressure differences up to 20 psi were measured by transducers, calibrated in inches of water and continuously recorded. For greater pressure drops, gauges were used. All reservoir cores were cleaned with a light refined mineral oil, then with heptane, and finally dried with CO2. Compatibility tests showed that no precipitates formed when mineral oil and the crudes were mixed. Some cores were extracted in Dean-Stark-type solvent extractors using xylene and trichloroethane and dried in a vacuum oven at 450F. Each test consisted of a sequence of water, test solution, and again water flow. RESULTS AND DISCUSSION STUDIES IN BEREA CORES Salinity Contrast Berea cores 2-in. in diameter and 12-in. long were cut from sandstone quarried in Cleveland, Ohio. The clay minerals were identified by X-ray diffraction to be chlorite, kaolinite, illite and incerlayered illite. Flow of fresh water or 30,000 ppm brinc does not cause any permeability reduction (Fig. 1). However, after injection of brine the core is readily damaged by fresh water. Damage starts almost instantly as the fresh water injection is begun, and at a cumulative injection of 1.2 PV fresh water, the permeability has dropped from 190 to 0.9 md. Upon continued injection, the effluent contains clay minerals dislodged from the core. The final core per-
Jan 1, 1966
-
Part IX – September 1968 - Papers - Critical Current of Superconducting Nb (Cb)-Zr-Ti Alloys in High Magnetic FieldBy M. Kitada, U. Kawabe, F. Ishida, T. Doi
The relations between micros tructures and critical current density in transverse magnetic field were experimentally investigated due to each transformation of the 0 to 0' + P" phases at 700' C for superconductmainly examined using replication electron microscopy. The ß' or a precipitates were found to pin down magnetic flux lines in these alloys. The effects of precipitation upon the critical current density were discussed in relation with the size, spacing, and characler of these precipitates. HIGH magnetic field superconductors, such as Nb-Zr, Nb-Ti, and Nb-Zr-Ti alloys, have been recently put to extensive practical use as winding materials for superconducting magnets.13 The critical current density of these hard superconductors under an applied magnetic field is an important characteristic for magnet materials and is very sensitive to metallurgical structure. It is generally known that the critical current density is increased by introducing dislocations and precipitates into a superconductor; that is, dislocations and precipitates are presumed to be barriers that hinder quantized flux lines from moving.4'5 Theoretical6'7 and experimental analyses of the motion of flux lines and the interaction between flux lines and various defects have already been reported by many authors. Metallographic analysis of high magnetic field superconductors such as Nb-Zr and Nb-Ti is difficult, so that no quantitative relationship between microstruc-ture and critical current density has been established yet. In this paper, the effect of precipitation on the critical current density in magnetic field was investigated for two superconducting alloys, Nb-40Zr-10Ti and Nb-5Zr-60Ti. In these alloys the resistive critical field H, at 4.2oK was about 100 kG and the critical current density Jc at 80 kG was of the order of 104 amp per sq cm.13-l5 The superconducting properties were examined in relation to the microstructural changes due to transformation of i) the ß to ß' + ß" phases at 700°C for Nb-40Zr-10Ti alloy and ii) the ß to a + ß phases at 500°C for Nb-5Zr-6OTi alloy. The effect of size, spacing, and character of precipitates on flux line pinning was in particular examined. The microstructures were studied by means of residual resistivity, microhardness, and tensile strength measurements as well as by X-ray diffraction, optical, and replication electron microscopies. I) EXPERIMENTAL PROCEDURE Pure niobium, zirconium, and titanium, in the form of rods 0.8 cm in diam, served as raw materials. Results of chemical analyses of these rods are given in Table I. Ingots of the alloys, 0.4 cm in diam and 3 cm in length, were prepared by means of levitation melting, utilizing a copper mold in an argon-gas atmosphere. Samples from the ingot then were cold-worked by grooved mill to 0.2 cm in diam, heat-treated homogeneously (in the ß phase region) for 5 hr at 1100° in a vacuum of 1 x 106 Torr, and finally cold-drawn to 0.025 cm in diam. For heat treatments, samples were wrapped in niobium foil and sealed in an argon-gas atmosphere in fused quartz capsules. Water quenching was done after each heat treatment. Subsequently H-J, were performed at 4.2° by slowly transporting the current through the samples 4 cm long, under transverse magnetic field, until the least detectable resistive terminal voltage was observed. The resistive critical field H, was taken as the field at which 100 pv appeared at 4.2°K across a sample 3 cm in length, with a current of 5 ma. The critical temperature T, was measured by means of a conventional four-probe resistivity technique and taken as the temperature at which the sample resistance reached one-half of full restoration of the normal-state resistance with a current l ma flowing through a sample 2 cm in length. Precipitates were observed by means of optical microscopy and carbon replication electron microscopy. The etching solution consisted of 5 ml HF, 10 ml H2SO4 10 ml H2O2, and 50 ml H2O, and shadowed carbon replicas were examined in a itachi HU-11 electron microscope operated at 50 kv. X-ray diffraction photographs were taken by a 11.46-cm-diam Debye-Scher-rer camera using copper Ka radiation. The micro-hardness was measured under a load of 200 g using
Jan 1, 1969
-
Part I – January 1969 - Papers - Experimental Analysis of Deformation Twin Behavior in Embrittled Iron-Chromium Alloys: Part IIIBy M. J. Marcinkowski, D. B. Crittenden, A. S. Sastri
A study co.mbining stress-strain .measurements in conjunction with transmission electron microscoPy has been made with near equiatomic Fe-Cr alloys which were aged for various times at 500°C. Associated with this aging is a marked increase in deformation twinning. The outstanding feature of these twins is that they generate stress fields sufficiently great so as to give rise to spontaneous dislocation loop nucleation nearly normal to the propagating twin. This observation is in agreement with the theoretically predicted elongation of the stress field of a dislocation Perpendicular to its direction of motion as it moves near the speed of sound. Dislocation loop nucleation is more difficult in the longer aged alloys so that this energy absorption mechanism is not effective in hindering twin propagation. Since crack nucleation can readily occur near the tip of a twin, the aged alloys become extremely brittle when deformed in tension. Iron-chromium alloys in the vicinity of the equiatomic compositions become severely embrittled when aged at about 500°C. Fisher et 01.' have shown that this embrittlement is related to the decomposition of the original random Fe-Cr solid solution into a chromium-rich and an iron-rich phase. In addition, Mar-cinkowski et a1.' have shown that twinning becomes an increasingly more important mode of deformation as the aging time is increased. These results have been recently corroborated by the transmission electron microscopy study of Mima and amauchi . The Fe-Cr alloy thus seems ideal for verifying the predictions made in Parts I4 and 115 of this investigation where the behavior of large static or blocked twins and those of large dynamic or propagating twins, respectively, were investigated numerically. It was thus decided to measure the stress-strain curves generated by embrittled alloys that were aged for various times and to examine sections by transmission electron microscopy. EXPERIMENTAL PROCEDURE Electrolytic iron and electrolytic chromium were vacuum-melted and poured into ingot form. The composition of the resulting alloy was found to contain 46.0 wt pct Cr (47.8 at. pct), the remainder being iron. The resulting ingot was swaged above 850°C into 0.250-and 0.400-in.-diam rounds. Compression samples of 0.250 in. diam and 0.400 in. long were cut from the smaller-diameter rounds. These samples were then sealed in evacuated quartz tubes and annealed for 30 min at 1150°C to produce a uniform and equiaxed grain size of mean diameter equal to 1.73 mm. They in turn were rapidly quenched from 850°C so as to preserve the condition of random solid-solution characteristic of the elevated temperature. The samples were then aged for various times up to 300 hr at 500°C in a massive Pb-Bi alloy bath. The samples were next polished and tested in compression at room temperature as described in Ref. 6 using an Instron tensile testing machine. The strain rate used was 0.05 in. per in. per min. The remaining larger round was converted into compression specimens of 0.325 in. diam and 0.500 in. long. This larger diameter enabled wafers of sufficient size to be prepared for examination by trans-mission electron microscopy techniques after subjecting them to a suitable strain. Foil preparation is described in some detail in Ref. 6. All foils were examined in a type HU-11A Hitachi electron microscope operating at 100 kv. RESULTS AND DISCUSSION Fig. 1 shows the effect of aging at 500°C on the room-temperature stress-strain curves of the FeCr alloys. For greater clarity the origin of each curve has been displaced upward. The same origin has been used for both the 0 and the 0.1 curves. It is apparent that with increased aging times a sharp drop in load is observed at the yield stress which becomes more pronounced as aging proceeds. A loud sonic burst accompanies this drop and subsequent metallographic examination shows the sample to contain numerous twins. For intermediate aging times, a number of smaller twin bursts follow the initial large one. The total plastic strain associated with the twinning mode of deformation can be obtained by adding up the contributions AE~ from all i twin bursts, i.e., £,¦££,-, in the manner illustrated schematically in Fig. 2. The contraction of the specimen, as measured from the strip chart of the Instron, after suitably correcting for the elasticity of the machine, was converted into true strain using the assumption that there was no volume change and that the sample remained cylindrical. The dashed lines are all drawn parallel to the
Jan 1, 1970
-
Institute of Metals Division - Deformation of Oriented MnS Inclusions in Low-Carbon SteelBy H. C. Chao, L. H. Van Vlack
Small MnS inclusions with known crystallographic orientations were placed inside powder compacts of low-carbon steel. After the metal was axially campressed with negligible end friction, the deformstions for the metal and the inclusions were compared. The MnS inclusions deformed more when the [100] direction was aligned with the compression axis than when the [111] direction was parallel to this axis. The deformations of the inclusions in the two principal radial directions were equal for each of the above orientations. Inclusions with [110] compression alignments did not deform with radial symmetry. The relative deformation of the inclusion and metal was closely dependent upon the relatiue hardness of the two phases. The relative deformation of the two phases was not sensitive to the rate of deformation. RECENT studies by the authors1.' suggested that the plastic deformation of MnS in steel would probably be highly sensitive to the orientation of the inclusions and to the temperature of the metal. This paper reports an investigation of these factors upon MnS behavior within steel. Manganese sulfide (MnS) possesses an NaCl-type structure and typically has extensive (l10) {110} slip as a separate (noninclusion) crystal.' A secondary slip system, ( l 10) { l l l}, has also been observed where the major slip system is restricted. In general, MnS inclusions must be rated as a highly deformable second phase.3 The amount of sulfide deformation varies, however, with several composition and processing factors. Some of these have been only partially assigned. For example, it is known that minor amounts (<0.01 pct) of silicon within free-machining steels will increase the amount of MnS deformation,4 but the mechanism of the added deformation can only be surmised at the present. Manganese sulfide and steel have sufficiently comparable deformation characteristics so that slip which is started in steel may be continued through the sulfide inclusions and back into the steel if the crystal orientations are favorable.5 A more detailed discussion of previous work on the plastic deformation of NaC1-type crystals and on the plastic deformation of inclusions within a metal is given in Chao's work.6 EXPERIMENTAL PROCEDURE The manganese sulfide which was used in this study was prepared by previously described methods.' Single crystals of MnS, both as cleavage cubes and as spheres, were oriented within steel powder compacts so that the desired crystal directions were parallel to the direction of axial compression. A four-stage hydrostatic compaction procedure was used and involved the following steps. In the first stage part of the powder was placed in a metal die 1 in. in diameter with a thick (1 in. OD, 5/8 in. ID) rubber liner which had one end plugged. The steel powder was hand-rammed, making it as dense as possible before placing a carefully sized MnS crystal (either as a sphere or as a cube) near the center. The crystal was oriented with the chosen direction vertical; viz., [001], [011], or [111], with the aid of a X10 microscope. A pair of tungsten wire threads 0.020 in. in diameter was inserted along the side of this ('core compact" to locate the desired plane after the compression tests. After the crystal was positioned in the center of the die, more powder was added and carefully rammed by hand. The die was then capped with a rubber plug of the same hardness and thickness as that of the liner. The whole assembly as shown in Fig. 1 was compacted by a ram load of 54,000 lb (about 70,000 psi). In the second stage a smaller, 3/4-in, rubber-lined die was used to give a stress of approximately 120,000 psi. The above process was repeated with the initial compact serving as a core for a larger compact. The final product after sintering was a cylinder 1 cm long and 1 cm in diameter, having a density of 7.54 g per cu cm. This was close to the theoretical density since the metal contained a non-metallic phase. There was no evidence of MnS deformation during the hydrostatic compaction or subsequent sintering. Elevated-temperature hardness data were obtained by procedures previously described.2 Compression tests for inclusion deformation utilized the cylinders which were described above. The critical problem in these tests was the lubri-
Jan 1, 1965
-
Metal Mining - Research on the Cutting Action of the Diamond Drill BitBy E. P. Pfleider, Rolland L. Blake
IT is generally believed that the amount of diamond drilling will increase appreciably in the next decade, as the seaarch for minerals throughout the world becomes more difficult and intense. An attendant problem may be one of short diamond supply, resulting in higher bit and drilling cost. With this background, the U. S. Bureau of Mines' and the School of Mines at the University of Minnesota' have established comprehensive research programs in diamond drilling. One of the several aims is the design of a more efficient bit, which would lower diamond consumption and increase rate of advance, both essential in reducing drilling costs. The objective of the specific research problem" discussed in this paper was an investigation of the cutting action of the cliamonds set in a diamond drill bit, cutting action meaning the manner in which the diamonds cut or. loosen the minerals in the rocks being drilled. In the literature on cutting action such descriptive terms are used .as: grinding, wearing, cutting, breaking, shearing, scraping, melting, and chipping. These actions were seldom described or defined. Grodzinski describes the cutting action of a single diamond in the shaping of certain types of material as "breaking out chips of the material." Brittle mate-. rials break as small separate chips, and tough materials, because of heat generated, give a continuous chip. Deeby said about diamond drills: "When diamonds are forced into the formation and rotated, they either break the bond holding the rock particles together, or they cause conchoidal fracture of the rock itself. The former action occurs when drilling in sandstones, siltstones, shales, etc. and the latter action when drilling in chert, flint, or quartz." He said that diamonds cut on the "grinding principle" but he does not define or elaborate on this action. The cutting action of diamonds on glass was first investigated about 1816 by Dr. W. H. Wol-laston, an English physicist. The best glass-cutting diamonds have a natural or artificially rounded cutting edge. This edge first indents the glass and then slightly separates the particles, forming a shallow and nearly invisible fissure. Since none of the material is removed, this action is one of splitting rather than cutting. No other reports of research work on the cutting action of the diamond were found, and further work was considered justified and advisable. It is impractical, even if possible, to observe directly the cutting action of a diamond drill bit in rock; therefore it was necessary to devise an indirect method. It was believed that a study of the following three observations would lead to a better understanding of the cutting action: 1—the appearance of the minerals or rock surface in the bottom of the hole, 2—the size, shape, and other characteristics of the drill cuttings, and 3—the condition of the diamonds in the bit. The cutting action in a particular rock probably varies with bit pressure and speed. If the bit were slowly lifted off the rock, the effect of decreasing pressure might obliterate those bottom hole characteristics that are specific at the test pressure. Likewise, if the drill were stopped with the bit still in contact with the bottom of the hole, then decreasing speed effects would tend to obliterate the characteristics at the set test conditions. Therefore, in order to preserve those cutting effects impressed on the rock at test conditions, it seemed necessary to lift the bit off the bottom of the hole almost instantaneously once drilling conditions, i.e., revolutions per minute, pressure, and water flow became constant. In addition to observing the cuttings, the bit, and the bottom of hole, it seemed desirable to collect some quantitative data for purposes of correlation with the observations and for a record of bit performance. Consequently such data as revolutions per minute, force applied, and rate of advance of the bit were recorded. Six rock types, listed in Table I, were chosen for the tests. It was felt that these rocks had most of the variable characteristics of texture, bonding, and mineral hardness met in the common rocks generally being drilled. The sandstone was so poorly cemented as to be friable, even though most of the cement was silica. The limestone, though well cemented, was quite porous. Originally it was planned to conduct the tesk work with a full-scale drill unit, using EX bits, 7/8-in. core, 11/4-in. OD. The drill worked well, but was too cumbersome for rapid, accurate drilling of many short holes (1 ½-in.) in varied rock types. A new
Jan 1, 1954
-
Part X – October 1969 - Papers - Intergranular Corrosion of Austenitic Stainless SteelsBy K. T. Aust
It is proposed that the intergranular corrosion of austenitic stainless steels is associated with the presence of continuous grain houndary paths of either second phase, or solute segregate resulting from solute-vacancy interactions. Experimental observations of structural changes and crrosion behavior of different types of austenitic stainless steel provide support for this poposal. On the basis of this model, it is shown that the intergranular -corrosion susceptibility of austenitic stainless steels in nitric-dic hromate solution may be substantially reduced either by suitable heat treatments or by impurity control. AUSTENITIC stainless steels, such as Type 304, generally have excellent corrosion resistant properties when properly solution heat-treated and used at temperatures where carbide precipitation is slow. However, several corrosion environments have been found which produce intergranular corrosion of solu-tion-treated stainless steels, that is, those steels with no detectable carbide precipitation.''2 Of the various corrosion environments, the most widely used test solution has been the boiling nitric-dichromate solution. In these acid solutions, stainless steels have been found to be susceptible to intergranular attack despite the addition of carbide-forming elements such as titanium or columbium, or despite lowering of the carbon content or use of high-temperature solution treatments. Studies of the electrochemical mechanism of corrosion attack have been made by several worke1s3'4 who found that oxidizing ions such as crt6 depolarize the cathodic reactions and consequently raise the open-circuit potential of stainless steel immersed in nitric acids. As a result of this, the anodic reaction is accelerated. The reason for the localization of anodic activity at the grain boundaries, and resulting intergranular corrosion, has not been conclusively determined. Several workers, e.g., Streicher,3 and Coriou et al.,4 have suggested that the strain energy associated with grain boundaries provides the driving force for the accelerated intergranular corrosion. This argument would predict that alloys of high purity would still be susceptible to intergranular attack. However, work by chaudron5 and by ArmijO,6 has shown that high-purity alloys are immune to attack, in disagreement with this argument. An alternative suggestion is that chemical concentration differences exist between grains and grain boundaries, that is, impurity segregation at boundaries, and that these chemical differences provide the driving force for localized attack. It is this impurity segregation which can lead to accelerated dissolution of grain boundaries when the alloy is exposed to a suitable corrodant. This mechanism would predict the immunity of high-purity alloys to inter-granular attack, which is in agreement with experi-mental observations. In the present paper, some recent studies on inter-granular corrosion of austenitic stainless steels which were conducted by coworkers and myself will be re-tibility A simple model will be described in which it is proposed that the intergranular corrosion of aus-tenitic stainless steel is associated with the presence of continuous grain boundary paths of either second phase or solute-segregated regions.* On the basis of this model, it is suggested that the intergranular corrosion rate can be markedly reduced by the formation of a discontinuous second phase at the grain boundaries if the discontinuous second phase incorporates the major part of the segregating solute, drained from the grain boundary region. Results are presented of corrosion tests and electron microscopic studies of different types of austenitic stainless steel after various heat treatments which provide experimental support for this model. Finally, a solute clustering mechanism, based on a solute-vacancy interaction, is shown to be consistent with the results obtained for inter-granular corrosion of solution-treated austenitic stainless steels. EXPERIMENTAL Corrosion tests using weight loss measurements were made on sheet specimens, which were lightly electropolished, washed, and immersed in boiling (115°C) 5 N HN03 containing 4 g crt+6 per liter added as potassium dichromate. Studies in which the inter-granular penetration depth was measured both by electrical resistance and metallographic methods have shown an empirical correlation between the rate of intergranular penetration and the weight loss per unit time for identically treated specimens of stainless steel." As a result, although all the corrosion data reported here are in terms of simple weight loss measurements, these data are considered to reflect primarily the rate of intergranular dissolution. Fig. 1 shows a typical result of intergranular attack of a solution-treated Type 304 stainless steel after 4 hr in a boiling nitric-dichromate solution. The wide grain boundary grooving at the surface, and the attack at incoherent twin boundaries, are evident; very little corrosion attack is seen at the coherent twin boundaries. INTERGRANULAR CORROSION MODEL
Jan 1, 1970
-
Reservoir Engineering – General - Application of Decline Curves to Gravity-Drainage Reservoirs in the Stripper StageBy C. S. Matthews, H. C. Lefkovits
Drilling progress is often delayed by sticking of the drill string. The development of preventive and remedial methods has been hampered by incomplete understanding of the sticking mechanism. A recent lahorntory investigation hns indicated that one type of sticking may be attributed to the difference in pressure between the borehole and formation. This paper shows, by means of soil mechanics, that the primary cause for differential pressure sticking is cessation of pipe movement, whereas diflerential pressre and stanrtding time determine the severity of the sticking. The analysis stresses the importance of using low-weight muds with low solids content and low water loss to alleviate diflerential pressure sticking and describes why packed hole drilling, long strings of drill collars, and a large deviation from the vertical are conducive to sticking. Finally, preventrve and remedial methods ore evaluated, and a theory is presented on the release of stuck pipe by spotting oil. INTRODUCTION Since drilling with long strings of oversize drill collars has become standard practice in many areas, the incidence and severity of the stuck pipe problem has increased. It has been noticed that in the majority of these cases the sticking could not possibly be attributed to key seating or caving of shales. It appeared that, due to the differential pressure between the mud column and the formation fluid, the collars were pressed into the wall and so became "wall stuck". Points to note about differential pressure sticking are: (1) sticking is restricted to the drill collars, (2) the collars become stuck opposite a permeable formation, (3) the sticking occurs after an interruption of pipe movement, (4) circulation, if interrupted, can be restarted after the sticking is noticed, and (5) no large amounts of cuttings are circulated out after restarting circulation. Helmick and Longleyl investigated pipe sticking by differential pressure in the laboratory and found an empirical relationship between the differential pressure, the sticking time and the required pull-out force. In this paper an explanation of the mechanism is given based on Terzaghi's theory of clay consolidation. A qualitative description is given in the following paragraphs while the derivation of fonnulas is given in Appendices. This paper is a first attempt to explain pressure differential sticking and many points will require additional theoretical and practical investigation before the problem can be fully understood. PRESSURE DIFFERENTIAL STICKING AS A CONSOLIDATION PROBLEM In any borehole, where the mud pressure is higher than that exerted by the formation fluids, a mud cake is formed opposite the permeable sections of the hole and a continuous flow of filtrate takes place from the mud, through the cake and into the formation. This radial flow pattern requires a certain distribution of the hydraulic and the effective (grain-to-grain) stresses inside the mud cake. Any quantitative or qualitative change in the external pressure conditions will produce a change in the flow pattern and, consequently, also in the internal stress distribution inside the cake. In view of the low permeability and the high compressibility of a clay mud cake, the adjustment of the internal stress distribution is slow and is accompanied by a change in volume. Time dependent stresses are thus created which gradually diminish as the new state of equilibrium between internal and external pressures is approached. Some 30 years ago, Terzaghi developed his "Theory of Consolidation" to account for the time-dependent stresses and settling of clay formations under the influence of external loads. He derived a differential equation by which the time-dependent hydraulic stress and the consolidation can be computed for any point inside the layer during the consolidation process. His theory is based on the assumption that the change in stress is solely due to a change in water content and it may only be applied to one-dimensional consolidation phenomena. Other investiga-tors5,10 have expanded his theory to include processes of more than one dimension. The difference between the external pressures on the mud cake before and after sticking is a qualitative one (isolation of part of the cake by the static contact with the drill collars after pipe movement has been stopped)', and the time-dependent stresses thus created may be investigated by means of Terzaghi's theory. By this analysis the changes in the nature of the contact surface between the drill collars and the mud cake during the sticking can be explained; and the friction force between the two may be computed as a function of the sticking time, the borehole dimensions and the mud cake characteristics.
-
Technical Papers and Notes - Institute of Metals Division - Effect of Hydrogen on the Fatigue Properties of Titanium and Ti-8 Pct Mn AlloyBy W. S. Hyler, L. W. Berger, R. I. Jaffee
Hydrogen additions of 390 ppm to A-55 titanium and 368 ppm to Ti-8 pet Mn have no deleterious Hydrogenadditionseffect on the unnotched and notched rotating-beam fatigue properties of these materials. 'These amounts of hydrogen, however, are sufficient to cause severe notch-impact thesematerials.embrittlement in A-55 titanium and pronounced loss of tensile ductility in Ti-8 pet Mn. The lack of embrittling effect in fatigue in the latter alloy is consistent with the postulated strain-aging mechanism of hydrogen embrittlement in a-ß alloys. There is a significant strain-agingincrease in the unnotched endurance limit of A-55 titanium with the addition of hydrogen. This increase may be explained as the result of internal heating effects which would dissolve the hydride and cause solid-solution strengthening. TITANIUM and its alloys may be seriously embrittled by relatively small amounts of hydrogen. The form which this embrittlement takes has been shown to vary with alloy type. The a alloys, for example, suffer most strongly from loss of notch-bend impact toughness' when sufficient hydrogen is added, and this effect has generally been associated with the presence of hydride phase in the micro-structure. In a-ß alloys, on the other hand, hydrogen is most detrimental to tensile ductility in slow-speed tests,2-1 and the embrittlement may be detected in a most convincing manner by means of rupture tests at room temperature. This particular kind of embrittlement has not been associated with a change in microstructure, but has been classified rather generally as associated with a strain-aging type of mechanism.' In the present paper, the effect of an embrittling amount of hydrogen on the rotating-beam fatigue properties of both an a and an a-ß titanium alloy is covered. For this study, annealed commercially pure (A-55) titanium was chosen as an a alloy, and equilibrated and stabilized Ti-8 pet Mn as representative of a typical a-ß alloy. Nominal hydrogen levels of 20 and 400 ppm were evaluated, the latter amount having been shown previously to be severely detrimental to the impact toughness of commercially pure titanium and to cause pronounced strain-aging embrittlement in the Ti-8 pet Mn alloy. The only report of the effect of hydrogen on the fatigue properties of titanium is given by Anderson et al.,° in which a push-pull type of fatigue test was conducted on as-received commercial-purity titanium sheet. Much scatter was found in the results, but generally the presence of hydrides slightly decreased the fatigue strength of unnotched specimens in the longitudinal direction. The results of notched tests were masked too greatly by scatter to be significant. Experimental Procedure Preparation of Materials—Analyses of the A-55 titanium and the Ti-8 pet Mn alloy used in this investigation are given in Table I, which indicates the 8 pet Mn alloy to be more nearly a 6 pet Mn alloy. This alloy will be referred to as Ti-8 pet Mn, however, since this is the commercially designated composition. Both alloys were received in the form of5/8-in. diam rod and, after suitable surface preparation, 5-in. lengths were vacuum annealed at 820°C. Half of the rods for each material were then hydrogenated at 820°C to a nominal hydrogen content of 400 ppm. The hydrogenated and vacuum-annealed A-55 rods were hot swaged at 700°C from 5/8-in. diam to 1/4-in. diam, and then annealed 1 hr at 800°C and air cooled prior to preparation into test specimens. Fabrication of the Ti-8 pet Mn alloy was by hot swaging to 3/8-in. diam at 760" and then 1/4-in. diam at 704°C. This material was then annealed 1 hr at 704", followed by furnace cooling to 593"C, and finally air cooling to room temperature. Evaluation—In order to examine more completely the effects of hydrogen on the particular materials studied, slow-speed tensile and notch-bend impact properties were determined in addition to fatigue data. Tensile specimens were of the standard ASTM type with a reduced section of 1/8-in. diam and a gage length of 1/2 in. A subsize cylindrical Izod specimen was used for impact tests. These specimens had a 45" notch with a 0.005-in. radius and a 0.150-in. root diam, and the stress concentration factor of this notch in bending was Kr = 3. Both the ten-
Jan 1, 1959
-
Part XI – November 1969 - Papers - Some Observations on the Relationship Between the Effects of Pressure Upon the Fracture Mechanisms and the Ductility of Fe-C MaterialsBy George S. Ansell, Thomas E. Davidson
It has been known for a considerable period of time that the ductility of even quite brittle materials can be enhanced if they are deformed under a superposed hydrostatic pressure of sufficient magnitude. The response of ductility to pressure, however, has been shown to vary considerably between materials. Prior work has shown that the effects of pressure upon the tensile ductility of Fe-C materials depend upon the amount, shape and distribution of the brittle cementite phase. In this current investigation, the effects of pressure upon the fracture mechanisms in a series of annealed and spheroidized Fe-C materials were examined. It was observed that the principal effect of pressure is to suppress void growth and coalescence, retard cleavage fracture and to enhance the ductility of cementite platelets in pearlite. Based upon the observed effects of pressure upon the fracture mechanisms, a proposed explanation for the enhancement in ductility by pressure and for the structure sensitivity of the phenomena is presented and discussed. THE effect of superposed pressure upon the tensile ductility of a variety of metals has been well documented.'-'' Some of the results from several investigators are summarized in Fig. 1 where tensile ductility in terms of true strain to fracture (ef) is plotted as a function of the superposed pressure. As can be seen, a pressure of sufficient magnitude can significantly enhance the ductility of metals. However, Fig. 1 also demonstrates that the response of ductility to pressure and the form of the ductility-pressure relationship varies considerably between materials. Several explanations have been offered for the observed enhancement in ductility by a superposed pressure. Although no experimental evidence was provided, Bridgman13 and Bobrowsky10 proposed that the observed effect was due to the prevention or healing of microcracks or holes. Bulychev et a1.14 observed that cracks and voids in initially prestrained copper were healed in the necked region of a tensile specimen upon further straining while under a superposed pressure. Also, pugh5 observed that large cavities were suppressed in copper fractured in tension while under pressure. A second proposal has been forwarded by Beresnev et at al.6 This proposal is based upon the hypothesis that a material fails in a brittle manner because the normal tensile stress reaches a critical value before the shear stress is of sufficient magnitude to cause plastic flow. Since a superposed hydrostatic pressure will increase the ratio of shear to normal tensile stress, a sufficiently high hydrostatic pressure should favor plastic flow while retarding brittle fracture. Galli15 reported that a superposed pressure shifts the ductile-brittle transition temperature of molybdenum. This was explained based upon the reduction of the normal tensile stress by the superposed pressure. Pugh5 explained the occurrence of the observed pressure induced brittle-to-ductile transition in zinc in the same manner. Davidson et al.12 proposed an explanation for the enhancement of ductility by pressure based upon the effects of pressure upon the stress-state-sensitive stages of various fracture propagation mechanisms. Basically, they proposed that pressure will retard cleavage and intergranular fracture by counteracting the required normal tensile stress or will suppress void growth. They observed suppression of intergranular fracture and void growth in magnesium by pressure. Davidson and .Ansell16 reported ductility as a function of pressure for a series of annealed and spheroidized Fe-C alloys. Fig. 2, from this prior work, demonstrates that the effect of pressure upon ductility is structure sensitive in terms of the amount, shape and distribution of the brittle cementite phase. As shown in Fig. 2, in the absence of cementite or when the cementite is in isolated particle form (spheroidized), the ductility-pressure relationship is linear and the slope decreases with increasing carbon content. In the annealed carbon-bearing alloys wherein the cementite is in the form of closely spaced platelets (pearlite) or in the form of a continuous network along prior aus-tenite boundaries (1.1 pct C material), ductility as a function of pressure is nonlinear (polynomial relationship) in which the slope increases with increasing pressure. At the highest pressures studied (22.8 kbars), the slope of the curves for these materials tends to approach those for the spheroidized material of the same carbon content. In this current investigation the change in fracture mechanisms as a function of pressure for the materials shown in Fig. 2 has been examined. The possible connection between the observed effects of pressure upon the fracture mechanisms and the effect of pressure upon ductility is discussed.
Jan 1, 1970
-
Extractive Metallurgy Division - A Study of the Sulfation of a Concentrate Containing Iron, Nickel, and Copper SulfidesBy M. Shelef, A. W. Fletcher
The effect of alkali sulfates in promoting the sul-fation of nickel and copper in a bulk sulfide flota -tion concentrate by fluidized bed roasting has been studied in the laboratory, and it was shown that the various alkali sulfates promote sulfation to approximately the same extent. The sulfation of a mixture of synthetically prepared iron and nickel oxide and of nickel ferrite has also been studied. Nickel sulfation was promoted by high ratios of Fe:Ni and by the presence of sodium sulfate. THE work described in this paper was a continuation of earlier studies into the role of alkali sulfates in promoting the sulfation roasting of nickel sulfides1,2 in an endeavor to determine how the system was affected by the presence of compounds of iron and copper. The earlier work1 showed that, in the sulfation of NiO at 680°C, the reaction was limited by the formation of an impermeable film of nickel sulfate on the oxide surface. The relative effect of the various alkali sulfates in promoting nickel sulfation varied in the order: Li > Na >Cs > Rb > K A study of alkali sulfate/ nickel sulfate interactions at high temperatures showed that the promoting action was due to the fact that the nickel sulfate product layer sintered and agglomerated only when the more active additives were present. This resulted in the formation of discontinuities in the nickel sulfate layer so that diffusion of the sulfating gases to the NiO surface was no longer impeded and the reaction could proceed to completion. A similar explanation was used for the observation that sodium and lithium sulfates promote the oxidation of NiS to NiO at temperatures below 750°C since small amounts of nickel sulfate were formed during oxidation.2 It was of interest to study the effect of alkali sulfates on the sulfate roasting of a sulfide flotation concentrate which is typical of material treated commercially. In order to control temperature it is essential to roast sulfides in a fluidized bed and this technique was therefore used, although the batchwise operation of a small-scale laboratory reactor does not reproduce all conditions which prevail in full-scale continuous plant. The results obtained are therefore only comparative, and cannot be used for predicting the optimum conditions for metal extraction. The sulfation of synthetically prepared mixed oxides of nickel + copper and nickel + iron and of nickel ferrite was also studied to evaluate the relative effects of alkali sulfates with more complex systems. SULFATION ROASTING OF A SULFIDE FLOTATION CONCENTRATE The bulk sulfide flotation concentrate used in this work contained 7.92 pct Ni, 1.74 pct Cu, 35.66 pct Fe, and 31.28 pct S. The sulfide minerals present in order of abundance were pyrrhotite FeS, pyrite FeS2, pentlandite (FeNi)S, and chalcopyrite CuFeS2. Two samples described as coarse and fine were used. The coarse sample, which was a flotation concentrate (58 pct plus 300 mesh), was ground to 100 pct minus 350 mesh to produce the fine sample. Before roasting, the sample of sulfide concentrate was agglomerated by wetting witli a solution of the alkali sulfate (or water), thoroughly mixing, and drying at 110°C. This gave a cake which was gently crushed and screened, the -18 +100 mesh fraction being used for fluidized bed roasting. A similar-size fraction had been used by the authors in pilot plant work with a 4-in.-diam fluidized bed reactor.' In this work it was found that the molar ratio of additive to the total iron + nickel + copper content of the sulfide sample should be adjusted to a value of approximately 0.06, as this was the optimum amount necessary for nickel sulfation. Experimental. The fluidized bed reactor consisted of a quartz tube approximately 60 cm long and 30 mm in diameter resting in a vertical tube furnace. The sulfide bed (30 g) was supported on a bed of -4 +12 mesh quartz particles 3 cm high, which rested on a sintered quartz disc welded to the tube. The temperature of the furnace was controlled with a variable transformer to give a final bed temperature of 680°C. The bed was fluidized with air or mixtures of air + 10 pct v/v SO2, at a total apparent gas velocity of 60 to 65 cm per sec at 680°C. The SO2 was introduced into the fluidizing air stream only when the oxidation of the sulfides was completed. At the end of the roasting period the calcine was leached with boiling water and the
Jan 1, 1964
-
Capillarity - Permeability - Evaluation of Capillary Character in Petroleum Reservoir RockBy Walter Rose, W. A. Bruce
Improved apparatus, methods, and experimental techniques for determining the capillary pressure-saturation relation are described in detail. In this connection a new multi-core procedure has been developed which simplifies the experimental work in the study of relatively homogeneous reservoirs. The basic theory concerning the Leverett capillary pressure function has been extended and has been given some practical application. Some discussion is presented to indicate the relationship of relative permeability to capillary pressure, and to provide a new description of capillary pressure phenomena by introducing the concept of the psi function. INTRODUCTION For the purposes of this paper the capillary character of a porous medium will be defined to express the basic properties of the system, which produce observed results of fluid behavior. These basic properties may be classified in the following manner, according to their relationship to: (a) The geometrical configuration of the interstitial spaces. This involves consideration of the packing of the particles, producing points of grain contact, and variations in pore size distribution. The packing itself is often modified by the secondary processes of mineralization which introduces factors of cementation, and of solution action which causes alteration of pore structure. (b) The physical and chemical nature of the interstitial surfaces. This involves consideration of the presence of interstitial clay coatings, the existence of non-uniform wetting surfaces; or, more generally, a consideration of the tendency towards variable interaction between the interstitial surfaces and the fluid phases saturating the interstitial spaces. (c) The physical and chemical properties of the fluid phases in contact with the interstitial surfaces. This involves consideration of the factors of surface, interfacial and adhesion tensions; contact angles; viscosity; density difference between immiscible fluid phases; and other fluid properties. Fine grained, granular, porous materials such as found in petroleum reser~oir rock possess characteristics which are expressible by (1) permeability, (2) porosity, and (3) the capillary pressure-saturation behavior of immiscible fluids in this medium. These three measurable macroscopic properties depend upon the microscopic properties enumerated above in a manner which defines the capillary character. Systems of capillary tubes or regularly packed spheres may be thought of as ideal and numerous references can be cited in which exact mathematical formulations are developed to show the relationships governing the static distribution and dynamic motion of fluids in their interstitial spaces. The capillary character of non-ideal porous systems such as reservoir rock also is basic in determining the behavior of fluids contained therein; although, in general, the connection is not mathematically derivable but must be approached through indirect experimental measurement. This paper gives consideration to the evaluation of petroleum reservoir rock capillary character. The methods employed may be applied to the solution of problems in other fields, and the conclusions reached should contribute to the basic capillary theory of any porous system containing fluid phases. In this paper, a modification of the core analysis method of capillary pressure is employed and it is intended to show that the capillary character of reservoir rock can be expressed in terms of experimental quantities. A very general method of interpretation correlating the capillary pressure tests with fundamental characteristics such as rock texture, surface areas, permeability, occasionally clay content and cementation is introduced. Eventually an attempt is made for establishing a method of deriving relative permeability to the wetting phase from capillary pressure data. The experimental evaluation of capillary character must be approached in a statistical manner if reservoir properties are to be inferred from data on small cores. This is implied by the heterogeneous character of most petroleum reservoirs, and suggests that considerable intelligence should be applied in core sampling. Finally, this paper supports the view that once the capillary character of a given type of reservoir rock has been established by core analysis, fluid behavior can then be inferred in other similar rock. Although no great progress has been made in establishing what variation can be tolerated without altering the basic fluid behavior properties, evidence will be presented to indicate that certain reservoir formations are sufficiently homogenous with respect to capillary character that the data obtained on one core will be useful in predicting the properties of other cores of similar origin. Tests have shown that cores under consideration can vary widely with respect to porosity and permeability and still be considered similar in capillary character. EXPERIMENTAL METHODS AND TECHNIQUES Various types of displacement cell apparatus for capillary pressure experiments have been described in the literature. Bruce and Welge; Thornton and Marshall; McCullough, Albaugh and Jones3; Hassler and Brunner; Lever-
Jan 1, 1949
-
Part I – January 1969 - Papers - Mass Spectrometric Determination of Activities in Iron-Aluminum and Silver-Aluminum Liquid AlloysBy G. R. Belton, R. J. Fruehan
The Knudsen cell-mass spectrometer combimtion has been used to study the Fe-Al and Ag-Al liquid alloys. By application of the recently developed integration technique to the measured ion-current ratios, activities have been derived for the Fe-A1 system at 1600° C and for the Ag-Al system at 1340"C. The results are partially represented by the following equations: Internal consistency between the data on silver-rich and iron-rich alloys is demonstrated by application of the literature measurements on the distribution of aluminum between the nearly immiscible liquids iron and silver. The usual restrictions on the ratio of the mean free path of the escaping atoms to the orifice diameter of the Knudsen cell are shown not to be limiting in this technique. DESPITE the importance of a knowledge of the activity of aluminum in understanding deoxidation equilibria in molten steel, no direct studies have been made of activities in liquid Fe-A1 alloys at steel-making temperatures. Lower-temperature direct studies have, however, been carried out on aluminum-rich liquid alloys by Gross, Levi, Dewing, and Eilson' at 1300°C and by Coskun and Elliott' at 1315°C. Apart from phase diagram calculations by Pehlke, other determinations have been indirect and were made by measurement of the distribution of aluminum between iron and silver475 and combination of these data with extrapolated activities in the Ag-A1 system.~-% ecently, however, Woolley and Elliott have made a significant contribution by directly measuring heats of solution in the Fe-A1 system at 1600°C. The present authorslo have recently employed a Knudsen cell-mass spectrometer technique in a study of activities in iron-based liquid alloys. In this technique activities and heats of solution are determined from a series of measurements of the ratio of ion currents of the components; and since ion-current ratios are used, problems caused by changes in instrument sensitivity or cell geometry are overcome. Results obtained for the Fe-Ni system were found to be in excellent agreement with previous work, thus demonstrating the reliability of the method. The present paper describes a similar study of activities in the liquid Fe-A1 and Ag-A1 systems, this latter system being included in order that a meaningful comparison can be made with the above-mentioned indirect studies. INTEGRATION EQUATIONS A detailed derivation of the equations used to determine the thermodynamic properties from the measured ion current ratios has been given elsewhere;'' however it is useful to summarize them here. By the combination of the Gibbs-Duhem equation with the direct proportionality between ion-current ratios and partial pressure ratios, it was shown that for a binary system at constant temperature and pressure: where al is the activity of component 1 with pure substance as the standard state, N, is the atom fraction of component 2 in the solution, and I; and t'2 are ion currents of given isotopes of the components. The activity coefficient is given by: this latter equation being more suitable for graphical integration. Combination of Eq. [l] with the Gibbs-Helmholtz equation gives an expression for the partial molar heat of mixing: EXPERIMENTAL A Bendix Time-of-Flight mass spectrometer model 12! fitted with a 107 ion source and a M-105-G-6 electron multiplier, was used to analyze the vapor effusing from the Knudsen cell. The arrangement of the Knudsen cell assembly was essentially that of the commercial instrument (Bendix model 1030) but with several modifications. Instead of heating with a single tungsten filament, a cylindrical tantalum-mesh heater was employed. Up to 1400°C simple resistance heating was used but above this temperature electron bombardment between the tantalum mesh and the tantalum cell susceptor was necessary. The temperature was measured by means of a Leeds and Northrup disappear ing-filament type optical pyrometer sighted on an essentially black-body hole in the side of the cell. Details of the temperature control, temperature measurement, and in situ calibration of the optical pyrometer can be found elsewhere.I0 In the investigation of the Fe-A1 system the Knudsen cells were constructed of thoria crucibles with fitted thoria lids (Zircoa). The cells employed in investigating the Ag-A1 alloys were made up of high-purity alumina crucibles (Morganite) with lids of recrystal-lized alumina (Lucalox). The cells were 0.370 in.
Jan 1, 1970