Institute of Metals Division - Deformation of Oriented MnS Inclusions in Low-Carbon Steel

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1223 KB
- Publication Date:
- Jan 1, 1965
Abstract
Small MnS inclusions with known crystallographic orientations were placed inside powder compacts of low-carbon steel. After the metal was axially campressed with negligible end friction, the deformstions for the metal and the inclusions were compared. The MnS inclusions deformed more when the [100] direction was aligned with the compression axis than when the [111] direction was parallel to this axis. The deformations of the inclusions in the two principal radial directions were equal for each of the above orientations. Inclusions with [110] compression alignments did not deform with radial symmetry. The relative deformation of the inclusion and metal was closely dependent upon the relatiue hardness of the two phases. The relative deformation of the two phases was not sensitive to the rate of deformation. RECENT studies by the authors1.' suggested that the plastic deformation of MnS in steel would probably be highly sensitive to the orientation of the inclusions and to the temperature of the metal. This paper reports an investigation of these factors upon MnS behavior within steel. Manganese sulfide (MnS) possesses an NaCl-type structure and typically has extensive (l10) {110} slip as a separate (noninclusion) crystal.' A secondary slip system, ( l 10) { l l l}, has also been observed where the major slip system is restricted. In general, MnS inclusions must be rated as a highly deformable second phase.3 The amount of sulfide deformation varies, however, with several composition and processing factors. Some of these have been only partially assigned. For example, it is known that minor amounts (<0.01 pct) of silicon within free-machining steels will increase the amount of MnS deformation,4 but the mechanism of the added deformation can only be surmised at the present. Manganese sulfide and steel have sufficiently comparable deformation characteristics so that slip which is started in steel may be continued through the sulfide inclusions and back into the steel if the crystal orientations are favorable.5 A more detailed discussion of previous work on the plastic deformation of NaC1-type crystals and on the plastic deformation of inclusions within a metal is given in Chao's work.6 EXPERIMENTAL PROCEDURE The manganese sulfide which was used in this study was prepared by previously described methods.' Single crystals of MnS, both as cleavage cubes and as spheres, were oriented within steel powder compacts so that the desired crystal directions were parallel to the direction of axial compression. A four-stage hydrostatic compaction procedure was used and involved the following steps. In the first stage part of the powder was placed in a metal die 1 in. in diameter with a thick (1 in. OD, 5/8 in. ID) rubber liner which had one end plugged. The steel powder was hand-rammed, making it as dense as possible before placing a carefully sized MnS crystal (either as a sphere or as a cube) near the center. The crystal was oriented with the chosen direction vertical; viz., [001], [011], or [111], with the aid of a X10 microscope. A pair of tungsten wire threads 0.020 in. in diameter was inserted along the side of this ('core compact" to locate the desired plane after the compression tests. After the crystal was positioned in the center of the die, more powder was added and carefully rammed by hand. The die was then capped with a rubber plug of the same hardness and thickness as that of the liner. The whole assembly as shown in Fig. 1 was compacted by a ram load of 54,000 lb (about 70,000 psi). In the second stage a smaller, 3/4-in, rubber-lined die was used to give a stress of approximately 120,000 psi. The above process was repeated with the initial compact serving as a core for a larger compact. The final product after sintering was a cylinder 1 cm long and 1 cm in diameter, having a density of 7.54 g per cu cm. This was close to the theoretical density since the metal contained a non-metallic phase. There was no evidence of MnS deformation during the hydrostatic compaction or subsequent sintering. Elevated-temperature hardness data were obtained by procedures previously described.2 Compression tests for inclusion deformation utilized the cylinders which were described above. The critical problem in these tests was the lubri-
Citation
APA:
(1965) Institute of Metals Division - Deformation of Oriented MnS Inclusions in Low-Carbon SteelMLA: Institute of Metals Division - Deformation of Oriented MnS Inclusions in Low-Carbon Steel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.