Capillarity - Permeability - Evaluation of Capillary Character in Petroleum Reservoir Rock

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 16
- File Size:
- 943 KB
- Publication Date:
- Jan 1, 1949
Abstract
Improved apparatus, methods, and experimental techniques for determining the capillary pressure-saturation relation are described in detail. In this connection a new multi-core procedure has been developed which simplifies the experimental work in the study of relatively homogeneous reservoirs. The basic theory concerning the Leverett capillary pressure function has been extended and has been given some practical application. Some discussion is presented to indicate the relationship of relative permeability to capillary pressure, and to provide a new description of capillary pressure phenomena by introducing the concept of the psi function. INTRODUCTION For the purposes of this paper the capillary character of a porous medium will be defined to express the basic properties of the system, which produce observed results of fluid behavior. These basic properties may be classified in the following manner, according to their relationship to: (a) The geometrical configuration of the interstitial spaces. This involves consideration of the packing of the particles, producing points of grain contact, and variations in pore size distribution. The packing itself is often modified by the secondary processes of mineralization which introduces factors of cementation, and of solution action which causes alteration of pore structure. (b) The physical and chemical nature of the interstitial surfaces. This involves consideration of the presence of interstitial clay coatings, the existence of non-uniform wetting surfaces; or, more generally, a consideration of the tendency towards variable interaction between the interstitial surfaces and the fluid phases saturating the interstitial spaces. (c) The physical and chemical properties of the fluid phases in contact with the interstitial surfaces. This involves consideration of the factors of surface, interfacial and adhesion tensions; contact angles; viscosity; density difference between immiscible fluid phases; and other fluid properties. Fine grained, granular, porous materials such as found in petroleum reser~oir rock possess characteristics which are expressible by (1) permeability, (2) porosity, and (3) the capillary pressure-saturation behavior of immiscible fluids in this medium. These three measurable macroscopic properties depend upon the microscopic properties enumerated above in a manner which defines the capillary character. Systems of capillary tubes or regularly packed spheres may be thought of as ideal and numerous references can be cited in which exact mathematical formulations are developed to show the relationships governing the static distribution and dynamic motion of fluids in their interstitial spaces. The capillary character of non-ideal porous systems such as reservoir rock also is basic in determining the behavior of fluids contained therein; although, in general, the connection is not mathematically derivable but must be approached through indirect experimental measurement. This paper gives consideration to the evaluation of petroleum reservoir rock capillary character. The methods employed may be applied to the solution of problems in other fields, and the conclusions reached should contribute to the basic capillary theory of any porous system containing fluid phases. In this paper, a modification of the core analysis method of capillary pressure is employed and it is intended to show that the capillary character of reservoir rock can be expressed in terms of experimental quantities. A very general method of interpretation correlating the capillary pressure tests with fundamental characteristics such as rock texture, surface areas, permeability, occasionally clay content and cementation is introduced. Eventually an attempt is made for establishing a method of deriving relative permeability to the wetting phase from capillary pressure data. The experimental evaluation of capillary character must be approached in a statistical manner if reservoir properties are to be inferred from data on small cores. This is implied by the heterogeneous character of most petroleum reservoirs, and suggests that considerable intelligence should be applied in core sampling. Finally, this paper supports the view that once the capillary character of a given type of reservoir rock has been established by core analysis, fluid behavior can then be inferred in other similar rock. Although no great progress has been made in establishing what variation can be tolerated without altering the basic fluid behavior properties, evidence will be presented to indicate that certain reservoir formations are sufficiently homogenous with respect to capillary character that the data obtained on one core will be useful in predicting the properties of other cores of similar origin. Tests have shown that cores under consideration can vary widely with respect to porosity and permeability and still be considered similar in capillary character. EXPERIMENTAL METHODS AND TECHNIQUES Various types of displacement cell apparatus for capillary pressure experiments have been described in the literature. Bruce and Welge; Thornton and Marshall; McCullough, Albaugh and Jones3; Hassler and Brunner; Lever-
Citation
APA:
(1949) Capillarity - Permeability - Evaluation of Capillary Character in Petroleum Reservoir RockMLA: Capillarity - Permeability - Evaluation of Capillary Character in Petroleum Reservoir Rock. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949.