Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Natural Gas Technology - Evaluation of Underground Gas-Storage Conditions In Aquifers Through Investigations of Groundwater HydrologyBy P. A. Witherspoon, R. W. Donovan, T. D. Mueller
The use of petroleum-barren aquifers for underground storage has become extremely important to the natural-gas industry. A critical problem in assessing the feasibility of a specific aquifer for such use is the permeability determination of the caprock over the proposed storage project. The approach used here is to conduct both static and dynamic field tests on the aquifer being analyzed. Valuable information on the possibility of communication between the storage aquifer and any other aquifers above can be obtained by measuring hydrostatic water levels and water analyses. Significant differences in such data give evidence of the lack of communication between the intended storage reservoir and other horizons. The dynamic approach requires that one well be pumped in the storage aquifer, and changes in fluid levels recorded in both the aquifer and its caprock. The interpretation of the data from such pumping tests involves the solution of nonsteady radial flow in an infinite aquifer and the influence on such flow of a leaky caprock. A finite-difference model has been used to investigate this problem, and the transient behavior has been solved numerically with a digital computer. It has been found that the pressure transients in the storage aquifer are not affected significantly by moderate caprock leakage. The pressure behavior of the caprock is a much better indicator of the degree of leakage, and generalized solutions for this behavior are included. Field data are presented to demonstrate both the static and dynamic approach. If is concluded that appropriate investigation of the groundwater hydrology in an aquifer-type gas-storage project can provide much valuable information for determining the effectiveness of the caprock to hold gas. INTRODUCTION Underground storage of natural gas in the United States has been developing at a rapid rate over the past few years. In 1955, the total gas-storage capacity was about 1.6 trillion cu ft; by 1961, this figure was almost 3.2 trillion cu ft, an increase of 100 per cent in six years.' This trend un- doubtedly will continue because the economics favor the development of gas storage, as opposed to the construction of new pipelines, to meet the inherent cyclic demand for fuel in the metropolitan areas of this country.' About 15 per cent of the current underground gas storage has been developed in petroleum-barren aquifers, i.e., geological domes or anticlines in which no commercial quantities of oil or gas had been produced prior to the storage operations. The necessity for using barren aquifers outside many metropolitan areas of this country has been due to the lack of depleted oil or gas fields that were near enough and large enough to meet the demands of such consuming areas. Pipeline companies have developed aquifer storage along their transmission lines to meet the fluctuating needs of their complex systems. Considerable thought has also been given to the problem of storing gas in a structureless aquifer, both in this country' and in the Soviet Union outside the city of Leningrad.'," Conditions such as these have led to the development of aquifer gas-storage projects in many parts of the U. S. Most of these developments have centered in the Mid-Continent area, and the greatest amount of activity has been concentrated in Illinois.6 Thus, the use of petroleum-barren aquifers for gas-storage purposes has become extremely important to the natural-gas industry. There are three basic problems in developing aquifer-type storage: (1) finding an adequate geologic structure, (2) finding a suitable storage reservoir within the structure and (3) determining the tightness of the caprock over the intended storage zone. The first two problems can be solved by applying conventional methods of exploration geology, but once these problems are solved, the question arises as to why no oil or gas is present in an otherwise favorable setting. Two situations are possible: (1) an adequate source bed was never present, or (2) a source bed was present but the petroleum seeped away because of a leaky caprock. Determining the tightness of the caprock is one of the most critical problems in assessing the feasibility of a specific aquifer for storage purposes. In attacking this problem, one usually takes cores of the caprock and subjects them to a rigorous investigation. Such core data are desirable, but they only detail the matrix properties and cannot be expected to reveal the gross characteristics of the caprock. Several gas-storage projects in the U. S. have had considerable leakage where
-
Institute of Metals Division - The Effect of Stress on X-Ray Line ProfilesBy R. I. Garrod, R. A. Coyle
The shapes and positions of X-ray reflections from specimens of copper, steel, and aluminum alloy haue been examined in the elastic and plastic ranges both while the specimen was under stress and in the unloaded condition. For the aluminum alloy the shape was unaltered by the application of stress either within the elastic limit or in the plastic range provided that no additional plastic strain was induced. In copper the broadening accompanying plastic deformation was very slightly reduced when the specimen was unloaded. A similay but more marked elastic component of broadening was also found for steel, but in this case below the yield stress. Line profiles corrected for instrumental and particle-size broadening indicate very large internal stresses in local regions of the plastically deformed metals. The results are discussed in terms of a recent suggestion that the heterogeneous dislocation distribution between the cells and their boundary walls plays a major role in the peak shifts and broadening of the X-ray reflections. STUDIES of the X-ray line profiles from strained polycrystalline aggregates concentrate usually on one or the other of two main parameters: a) the displacement of the peak of the intensity contour from its position for a strain-free aggregate, or b) the shape of the profile. From peak shifts data can be obtained either on the relation in both the elastic and plastic ranges between applied external stress and average lattice strains in a given (hkl) direction, or, alternatively, on the residual lattice strains which are present after a plastically deformed specimen is unloaded.' On the other hand, the shapes of the broadened profiles from cold-worked metals can be analyzed to separate the broadening produced by small particle size and by heterogeneous lattice strains.' In this paper the terms "size broadening" and "strain broadening'' are used in the general sense adopted by warren.' In the past, apart from two early qualitative observation, it has been customary to examine only the movements of the peaks of the profiles while the specimen is actually under load, since the line broadening induced by plastic strain remains after removal of the external stress. Consideration of the implications of existing data of this type suggests, however, that fruitful additional information on a number of fundamental aspects might be gained by careful examination of whether the X-ray line profile is in fact different in the loaded and unloaded states of the specimen. By taking advantage of the sensitivity and convenience of modern diffractometer techniques it is possible to explore with relative ease the magnitude and importance of any elastic effects which may be superimposed upon the well-known permanent changes in profile. The main aim of the work to be described was thus to investigate this point for typical metals and alloys. For this purpose annealed specimens were extended first elastically and then plastically and the positions and shapes of X-ray reflections were recorded. Initially it was anticipated that prime interest would center on observations within the plastic range; it has been found, however, that small changes in profile sometimes occur both before and after the nominal elastic limit of the material is reached. It is shown that the results obtained have important implications in relation to the structural changes and processes associated with deformation. I) EXPERIMENTAL To enable the diffraction lines to be recorded while the specimen was under uniaxial-tensile stress, a small hydraulic testing machine was designed and constructed for direct attachment to the goniometer of a Philips diffractometer. The specimens, which were machined from 1/2-in.-diam rod and had a central rectangular section 3/8 by 1/16 in. over a gage length of 1 in., were held in the machine by split collets mounted in grooves in the cylindrical ends of each specimen. No special precautions were taken to ensure precise axiality of loading. Constant oil pressure was maintained by a lever and weights system and transmitted to the loading rig by flexible pipe. The actual load on the specimen was measured by a load cell in the machine to an accuracy of * 1 pct. To enable smooth X-ray profiles to be obtained the specimen and machine were oscillated continuously during recording through *7-1/2 deg about the normal half-angle position of the goniometer. The three materials chosen for the investigations were high-purity copper as representative of a ductile fcc metal, a low-carbon steel for a bcc metal, and an aluminum alloy as a material in which the proof stress/ultimate strength ratio is high. Details are as follows. a) Copper. 99.999 pct purity. After machining the specimen surface was polished mechanically and
Jan 1, 1964
-
Minerals Beneficiation - The Mechanism of Fracture PropagationBy E. F. Poncelet
Forty years ago A. A. Griffith developed a theory explaining why brittle materials displayed such low tensile strengths.' He based his views on two points. First, he found himself compelled to assume that all brittle materials are replete with flaws, cracks, and other defects that act, although quite invisible, as large stress raisers. Second, he applied the "theorem of minimum potential energy," which says that the total potential energy of a system must pass from the unbroken to the broken condition by a process involving a continuous decrease in potential energy. By this means he satisfactorily accounted for the noted low strength of such solids and also for the wide spread obtained in experimental measurement of these strengths. So successful has the theory been that it is favored by some to this day. Unfortunately this theory is of limited use beyond the explanation of these two noted phenomena and it is keenly felt that a better theoretical insight into the physics of the fracturing process is needed as the volume of experimental evidence accumulates. The author proposes in the following to build on the fundamentally sound concepts of Griffith and, with the help of increased theoretical knowledge over that available to Griffith, develop a mechanism for frac-ture which will provide far greater understanding of the experimental evidence accumulated to date than is possible from the original Griffith idea. THE GRlFFlTH THEORY Very little progress indeed can be made without accepting the first postulate of Griffith which supposes all brittle solids to be full of microcracks. It would be difficult indeed to find a better mechanism for the small strength of such brittle materials, in conjunction with the fact that the energy that must be expended for comminution is by no means small. The postulate of the existence of the microcracks permits the breakup of the various bonds a few at a time by concentrating the stress at the tip of the progressing crack, while the total energy expended is the same as if they all had been ruptured simultaneously. The only flaw in the argument is that no reasonable explanation has been proposed to account for the genesis of such cracks. Indeed their very presence is in violation of the Griffith second postulate, the potential energy theorem. This theorem is straightforward for isothermal processes, and, in spite of Griffith, there is some doubt that treating the problem isothermally is legitimate. The surface energy of bodies is a free energy, not a potential energy as stated by Griffith, and the production of new surface free energies is not necessarily an isothermal process. There is ample evidence to the contrary. Generally speaking, if heating a body increases its surface area, then, by virtue of Le Chatelier's principle, any increase of that area by other means will tend to lower its surface temperature. Lord Kelvin calculated the actual cooling that resulted in drawing out a film of liquid.2 R. A. Houston calculated the surface cooling that resulted in stretching a metal wire.3 These calculations were made by applying the Carnot cycle to the process and evaluating the thermodynamics thereof. IRREVERSIBILITY OF THE FRACTURING PROCESS While Griffith was very careful not to say so, the impression gained from studying his papers is that he considered the fracturing process as reversible, that is, a succession of quasi-equilibrium states. There is ample evidence that it is not. The indication that the new surfaces produced by the propagation of a crack are cooler than the original body points to an irreversible heat flow from the interior to the new surfaces to equalize the temperatures. If the process be reversible, any crack accidentally formed should immediately close up as, in the absence of any strain energy, the potential energy would thereby be lowered. The fact that they do not, constitutes a paradox. Such paradoxes are nothing new where certain phenomena that propagate from minuscule nuclei are assumed to be reversible. Such is, for instance, the condensation of a pure saturated vapor that is suddenly chilled by adiabatic expansion. At the beginning the tiny droplets that are formed should be only a few angstroms in size, but the vapor pressure at such droplets is so high that they should evaporate at once. A similar situation arises if a saturated pure solution becomes super-saturated upon cooling; the first tiny crystal nuclei should dissolve as fast as
Jan 1, 1964
-
Technical Papers and Notes - Institute of Metals Division - Hydrogen Embrittlement of Vanadium By Catalytic Decomposition of Water with ManganeseBy P. D. Zemany, G. W. Sear, B. W. Roberts
Vanadium metal is embrittled by hydrogen at a temperature as low as 250°C when held in the presence of manganese metal and water vapor in a rough vacuum. It is established that the property changes are caused by the catalytic decomposition of water vapor at the vanadium surface and the diffusion into and solution in the vanadium of the resultant hydrogen. It is found that manganese is a necessary component of the catalyst. The manganese is transported in the vapor phase by an unknown molecule. A deuterium tracer experiment demonstates the role of water vapor in the embrittle-ment process. VANADIUM metal foils were observed to become embrittled' at a temperature of about 300 °C when held in the presence of manganese metal and a small amount of moist air, This paper describes the investigation to find the embrittling agent and an understanding of the relatively low temperature reactions that are involved. Experimental The vanadium metal foil used was prepared by cold-rolling and pack-rolling 32 mil sheet" in a series of steps down to 1 mil foil. The original observation was confirmed by sealing vanadium foils of 3 x 10 sq cm into individual Pyrex tubes with manganese powder† and a con- trol tube containing only the vanadium foil. These tubes were evacuated to 10 -5 mm Hg without baking and sealed. After heat treatment for 200 hr at 300°C, the control foil showed no change in duetility, whereas the foil contained in the manganese— containing tube was embrittled. The visual appearance of each was unchanged. A series of Pyrex sample tubes, about 2.5 cm diam and 25 cm long, were prepared, each containing a 3 x 10 sq cm piece of foil and 5 g manganese powder at the lower end of the tube. By reducing the time of anneal and the temperature of these samples, it was found that embrittlement could be created at 250°C in a time as short as 1 hr. Since the vanadium metal used here has been drastically cold-worked by rolling, it is assumed that it contains a maximum number of dislocations. To check the possible necessity of dislocations in this low temperature reaction, a vanadium foil sample was annealed in Vycor for 2 hr at 800°C to re crystallize and reduce the dislocation concentration. Metallographic examination showed grains which were not visible before annealing. The embrittlement procedure was carried out at 300°C and 3 hr. Upon checking the foil no embrittlement was observed. Further experiments demonstrated that about 6 hr at 300°C are required to create embrittlement in the foil. This delay in the onset of embrittlement in the vanadium foil suggests but does not prove that dislocation channels play a role in the embrittlement phenomena. If manganese metal is necessary for this low temperature embrittlement, do other elements in the transition metals group yield the same result? To check this qualitatively, a group of elements of similar atomic radii were obtained and sealed as before into Pyrex tubes with a sheet of vanadium foil. These tubes were annealed at 250°C for 6 hr and included (with radii)-2 A1 (1.4A), As (1.25A), Be (1.2A), Co (1.25A), Cr (1.45A), Cu (1.25A), Fe (1.25A), Ga (1.2A), Ge (1.25L%), Mn (1.3A), Ni (1.25A), Si (1.2A), Ti (1.45A), Zn (1.3A), air, H,O, 10 cm Hg of dry hydrogen, and MnO, powder. Upon testing the above sample foils for brittleness, only the manganese-containing tube yielded a brittle foil. Manganese Transport—To eliminate contact of manganese metal powder and vanadium foil, sample tubes were prepared with fritted glass barriers. The embrittlement reaction was still found to occur. Thus, the mode of transfer of manganese is certainly vapor transport. A vanadium foil was embrittled by this mechanism in an evacuated Pyrex tube for 8 hr at 300°C. By means of X-ray fluorescence analysis,' the amount of manganese added to the surface was established at 5 ±2 x 10 -6 g per sq cm. Since the average rate of manganese deposition is known, an effective average pressure of an assumed carrier compound can be computed. ___ P = M/T v2p mkT
Jan 1, 1959
-
Industrial Minerals - Natural Abrasives in CanadaBy T. H. Janes
NATURAL abrasives of some type are found in all countries of the world. In order of their hardness the principal natural abrasives are diamond, corundum, emery, and garnet, which are termed high grade, and the various forms of silica, including pumice, pumicite, ground feldspar, china clay and, most important, sandstone. The properties qualifying materials for use as abrasives are hardness, toughness, grain shape and size, character of fracture, and purity or uniformity. For manufacture of bonded grain abrasives such as grinding wheels, the stability of the abrasive and its bonding characteristics are also important. No single property is paramount for all uses. Extreme hardness and toughness are needed for some applications, as in diamonds for drill bits, while for other purposes the capacity of the abrasive to break down slowly under use and to develop fresh cutting edges is of greatest importance, as with garnet for sandpaper. In dentifrices, soaps, and metal polishes, of course, hardness and toughness are objectionable. First among the natural abrasives, industrial diamonds are essentially of three types: l—bort, which includes off-color, flawed, or broken fragments unsuitable for gems; 2—carbonado, or black diamond, a very hard and extremely tough aggregate of very small diamond crystals; and 3—ballas, a very hard, tough globular mass of diamond crystals radiating from a common center. Bort comes from all diamond-producing centers, carbonados only from Brazil, and ballas chiefly from Brazil, although a few of this last group come from South Africa. By far the largest producer of industrial diamonds is the Belgian Congo; the Gold Coast, Angola, the Union of South Africa, and Sierra Leone supply most of the remainder. There is no production in Canada, which imports $6 to $9 million worth of industrial diamonds annually. Industrial diamonds find innumerable uses in modern industry. They are used for diamond drill bits for the mining industry; in diamond dies for wire drawing; in diamond-tipped tools for truing abrasive wheels and for turning and boring hard rubber, fibers, and plastics; and in diamond-toothed saws for sawing stone, glass, and metals. High-speed tool steels, cemented carbides, and other hard, dense alloys can be cut, sharpened, or shaped efficiently only with diamond-tipped tools and diamond grinding wheels. .. Second only to the diamond in hardness is corundum, an impure form of the ruby and sapphire gems consisting of alumina and oxygen (Al²O³) with impurities such as silica and ferric oxide. Corundum generally crystallizes from magmas rich in alumina and deficient in silica, as in the nepheline syenites of eastern Ontario. Grain corundum is used in the manufacture of grinding wheels; very coarse grain is used in snagging wheels. Both types of wheels are employed in the metal trades, where the hardness of corundum, coupled with its characteristic fracturing into sharp cutting edges, makes it an ideal cutting tool. The finest corundum (flour grades) is used for fine grinding of glass and high-precision lenses. From 1900 to 1921 Canada was the world's leading producer of corundum. Following this period the deposits located in northern Transvaal of the Union of South Africa supplied more and more of the world's requirements, and since 1940 South Africa has provided almost the entire output, which has ranged between 2500 to 7000 tons a year during the last decade. Minor amounts have also been produced in Mozambique, India, and Nyassaland. Opportunities for Mining Corundum Corundum deposits in southeastern Ontario are of three types, which may be described as follows: 1—Scattered, irregularly-shaped deposits of coarse-grained corundum which could be mined by means of small pits. About 10 groups of such deposits are known. Although the tonnage of individual deposits of this type is not great, it has been estimated that several years' ore supply is available for a small tonnage operation. Deposits average about 9 pct corundum. 2—Large irregular deposits of coarse-grained corundum which would require mining by adit with possibly a scavenger operation on the remains of former surface deposits. The Craigmont deposit of this type produced about 20,000 tons of corundum concentrate during operations between 1900 and 1913. Most of the readily available surface ore was removed by operators during that time. Reserves of ore above road level have been estimated to average 7 pct corundum, but none of the so-called reserves have been blocked out, or even indicated, by diamond drilling. From 1944 to 1946, 2025 tons of
Jan 1, 1955
-
Logging and Log Interpretation - Prediction of the Efficiency of a Perforator Down-Hole Bases on Acoustic Logging InformationBy A. A. Venghiattis
A rational approach to the selection of the appropriate perforator to use in each specific zone of an oil well is presented. The criteria presently in use for this choice bear little resemblance with actual down-hole condilions. These environmental conditions affect the elastic properties of rocks. One of these elastic properties, acoustic velocity, is suggested as the leading parameter to adopt for the choice of a perforator because, being currently measured in the natural location of the formation, it takes into account all of the effects of compaction, saturation, temperature, etc., which are overlooked in the laboratory. Equations and curves in relation with this suggestion are given to allow the prediction of the depth of perforation of bullets and shaped charges when an acoustic log has been run in the zone to be perforated. INTRODUCTION When an oil company has to decide on the perforator to choose for a completion job, I wonder if it is really understood that, to date, there is no rational way of selecting the right perforator on the basis of what it will do down-hole. This situation stems from the fact that the many varieties of existing perforators, bullets or shaped charges, are promoted on the basis of their performance in the laboratory, but very little is said on how this performance will be affected by subsurface conditions such as the combination of high overburden pressure and high temperature, for example. The purpose of this paper is to show the limitations of the existing ways of evaluating the performance of perforators, to show that performances obtained in laboratories cannot be extended to down-hole conditions because the elastic properties of rocks are affected by these conditions and, finally, to suggest and justify the use of the acoustic velocity of rocks, as the parameter to utilize for the anticipation of the performance of a perforator in true down-hole environment. EVALUATING THE PERFORMANCE OF A PERFORATOR It is natural, of course, to judge the performance of a perforator from the size of the hole it makes in a predetermined target. Considering that the ultimate target for an oilwell perforator is the oil-bearing formation preceded in most cases by a layer of cement and by the wall of a steel casing, the difficulties begin with the choice of an adequate experimental target material. For obvious reasons of convenience, the first choice that came to the mind of perforator designers was mild steel. This is a reasonable choice for the comparison of two perforators in first approximation. Mild steel is commercially available in a rather consistent state and quality, and is comparatively inexpensive. The trouble with mild steel is that it represents a yardstick very much contracted; minute variations in depth of penetration or hole diameter and shape may be significant though difficult to measure. The penetration of projectiles in steel being a function of the Brinell hardness of the steel (Gabeaud, O'Neill, Grun-wood, Poboril, et al), it is often difficult to decide whether to attribute a small difference in penetration to a variation on the target hardness or to an actual variation on the efficiency of the projectile. Another target material which has been widely used for testing the efficiency of bullets or shaped charges in an effort to represent a formation—a mineral target as opposed to an all-steel target—is cement cast in steel containers. This type of target, although offering a larger scale for measuring penetrations, proved so unreliable because of its poor repeatability that it had to be abandoned by most designers. The drawbacks of these target materials, and particularly their complete lack of similarity with an oil-bearing formation, became so evident that a more realistic target arrangement was sought until a tacit agreement was reached between customers and designers of oilwell perforators on a testing target of the type shown on Fig. 1. This became almost a necessity about seven years ago because of the introduction of a new parameter in the evaluation of the efficiency of a perforator, the well flow index (WFI). The WFI is the ratio (under predetermined and constant conditions of ambiance, pressure and temperature) of the permeability to a ceitain grade of kerosene of the target core (usually Berea sandstone) after verforation. to its vermeabilitv before perforation. The value of this index ;or the present state if the perforation technique varies from 0 to 2.5, the good perforators presently available rating somewhere around 2.0 and the poor ones around 0.8, There is no doubt that, to date, the WFI type of test is by far the most significant one for comparing perforators. It is obvious that a demonstration of a perforator
-
Iron and Steel Division - Phase Equilibria in the System FeO-Fe2O3-SiO2By A. Muan
Liquidus data are presented for mixtures in the ternary system FeO-Fe2O3-SiO2 in equilibrium with a gas phase with O2 pressures ranging from 10-10.9 to 1 atm. Data obtained are combined with previously published data to construct lines of equal 02 pressures and lines of equal CO2/H2 mixing ratios along the liquidus surface. Courses of crystallization of selected mixtures under conditions of constant total composition, constant O2 pressures, and constant CO2/H2 mixing ratios are discussed. PHASE equilibrium studies of silicate systems where iron is one component are complicated by the fact that iron readily occurs in three different states of oxidation: Fe3+, Fe2+, and Fe0. Success or failure in work with iron silicate systems is to a large extent dependent on control of the oxidation state of iron and all investigations therefore must be carried out under carefully controlled atmospheric conditions. Silicate systems containing only strongly electropositive metals (like Na+, Ca2+, Mg", etc.) can, for simplicity, be treated as condensed systems, that is, the gas phase can be neglected and the phase relationships discussed in terms of the phase rule written in the well known simplified form P + F = C + 1. In the case of iron silicate systems, however, the composition of the condensed phases varies with the gas composition, and a complete picture of phase relationships can be obtained only by varying the gas composition over a wide range. In order to understand the phase relationships in the more complicated multicomponent silicate systems with iron oxide as one of the constituents, a knowledge of the ternary system FeO-Fe2O3-SiO2 is essential, since it constitutes a bounding portion of all such systems. It was with this in mind that the present study was undertaken. Previous Work A considerable amount of work has been done on various aspects of the chemistry and metallurgy of systems containing silica and iron oxides. The two bounding binary systems FeO-Fe2O3 and FeO-SiO2" The first attempt to obtain information on phase relationships of iron oxide-SiO, mixtures at different 0, pressures was made by Greig.' Darken" determined the melting points of iron oxide on solid silica under various atmospheric conditions. Darken did not determine experimentally the composition of the melts at liquidus temperatures but discussed very ably the principles involved in applying the phase rule to the system. In a recent study Schuhmann, Powell, and Michal8 determined experimentally the liquidus surface of a portion of the ternary system and combined the new information with data in the literature to construct a phase diagram. Their method was briefly as follows: Homogeneous mixtures with various contents of SiO2, FeO, and Fe2O3 were made up by melting together stock mixtures in various proportions. Samples of the homogeneous mixtures, the compositions of which were determined by chemical analysis, were then heated in platinum crucibles in an inert atmosphere until equilibrium among the condensed phases was achieved. The samples were quenched to room temperature and the phases present determined by microscopic examination. Assuming that no change in composition takes place during the equilibration run in inert atmosphere, the liquidus surface can be determined, but no information is obtained regarding the partial pressures of 0, of the gas phase in equilibrium with the condensed phases. The author's method, to be described in the next section, permitted the location of points at the liquidus surface as well as a calculation of the corresponding partial pressures of O2. Experimental Method General Procedure: The standard quenching technique was adapted for a study under controlled variable atmospheric conditions. Premelted mixtures of silica and iron oxides in platinum envelopes were held at constant temperature under chosen atmospheric conditions until equilibrium was reached among solid, liquid, and gas phases. The sample was then quenched to room temperature, the phases present identified, and, for the most significant runs, the composition was determined by chemical analysis. The corresponding partial pressure of 0, was calculated from known equilibrium constants of the gas reactions occuring in the furnace atmosphere. Materials: Starting materials were oxides of commercially highest available purity; cp silicic acid was dehydrated by heating to 1350°C for 6 hr and cp Fe2O3 was dried at 400° C for the same length of time. Samples of 10 g were made up by mixing
Jan 1, 1956
-
Reservoir Engineering - General - Maximum Reservoir Worth – Proper Well SpacingBy G. T. Davis, C. C. Mattax, M. O. Denekas
The effects of crude oil cornponents on the wellabil-ities of sandstone and limestone were investigated. Fractions containing cornponents differing in molecular weight and molecular structure were obtained from crude oils by distillation, extration and chromatography. Individual fractions were then tested for their effects on rock wettability. Tests indicate that sundstone wetta-bility may he changed by a complex variety of surfactants varying both in molecular structure and molecular weight. Limestone appears to be particularly sensitive to basic, nitrogenous surfactants. INTRODUCTION Investigations in recent years have shown that petroleum reservoir rock wettability can exert a significant influence on the efficiency with which oil can be produced by water flooding. While most reservoirs are presumably water-wet, they niay range in their degree of water-wettability from near-neutral to strongly water-wet.'" Reservoir wettabilities other than strongly water-wet are likely to be induced by adsorption of surface-active components froni the crude oil on the pore walls of reservoir rock.:' Little is known, however, about the nature of the surface-active materials which are likely to be adsorbed by the reservoir rock. Due to the complexity of crude oils. attempts made in the past90 isolate these surface-active components have met with only limited success. It is probable that many different types of surface-active materials arc indigenous to crude oils and that many of these may be adsorbed to varying degrees by reservoir rock. This was cxolored in the studies discussed in this paper. The over-all objective in these studies is to ascertain whether the wettability of a given reservoir can be determined by examining the surfactant content of the reservoir crude. To this end, crude oils were examined to determine the variability of indigeneous surfactants with regard to chemical type and molecular weight. Crude oils were separated by distillation into fractions differing principally in molecular weight, by chroma-tography into fractions containing compounds differing in polarity, and by solvent extraction into nitrogenous and non-nitrogenous fractions. Individual fractions were then tested for their effects on the wettabilities of sandstone or limestone rock samples. EXPERIMENTAL PROCEDURES Fractionation of the Crude Oils Samples of Miocene, Eocene and Jurassic crudes were distilled at temperatures not exceeding 200°C. The final stages of distillation were completed in a molecular still at pressures down to three microns of mercury. Fifteen to 30 fractions were obtained from each crude oil. These cuts were sufficiently broad that separation can be considered to have been effected principally on the basis of the molecular weights of the constituents of the crude oil. A considerable portion (20 to 40 per cent) of the crudes would not distill under these conditions. The residues were recovered and tested with the other fractions. Fractions differing in polarity were separated from a crude of Pennsylvanian age and an extracted sample of Miocene oil by chromatography, using a solid adsorbent. Since surfactants are, for the most part, polar compounds, chromatography should separate many of the surfactants from the crude oil. Such a separation should provide fractions containing compounds differing in molecular structure. Nitrogeneous compounds were extracted from Miocene crude oil with a solution of sulfuric acid in meth-anol. The residual oil was further processed by chonia-tography. Each of the fractions obtained by thesc procedures was dissolved in a non-polar solvent (xylene) and diluted to its original concentration in the crude oil. No attempt was made to maintain an anaerobic atmosphere above the samples while they were being dissolved. These solutions of the fractions were then tested for their effects on the wettability of sandstone and limcstone as discussed in the next section. Measurement of the Effects of Crude Oil Fractions on Rock Wettability No entirely satisfactory method for measuring rock wettability has yet been developed. All methods used are empirical. The imbibition test was used in these studies. This test is based on the tendency of a rock to imbibe the wetting phase spontaneously. For example, if a strongly water-wet rock is first saturated with oil and then placed in water, the water will quickly invade the rock by capillarity and much of the oil will be displaced. If the rock is slightly water-wet, water irnbibition will proceed more slowly and, in many instances, considerably less oil will be displaced. A water-saturated, oil-wet rock will imbibe oil. The initial rate with which water (or oil) imbibition takes place indicates, qualitatively, the degree of water (or oil) wettability of the rock.
-
Emergence Of By-Product CokingBy C. S. Finney, John Mitchell
The decline of the beehive coking industry was inevitable, but it had filled the needs and economy of its day. A beehive plant required neither large capital investment to construct nor an elaborate and expensive organization to run. The ovens were built near mines from which large quantities of easily-won coking coal of excellent quality could be taken, and handling and preparation costs were thus at a minimum. The beehive process undoubtedly produced fine metallurgical coke, and low yields were considered to be the price that had to be paid for a superior product. Few could have foreseen that the time would come when lack of satisfactory coking coal would force most of the beehive plants in the Connellsville district, for example, to stay idle; and if there were those like Belden who cried out against the enormous waste which was leading to exhaustion of the country's best coking coals, there were many more to whom conservation was almost the negation of what has since become popularly known as the spirit of free enterprise. As for the recovery of such by-products as tar, light oil, and ammonia compounds, throughout much of the beehive era there was little economic incentive to move away from a tried and trusted carbonization method simply to produce materials for which no great market existed anyway. With the twentieth century came changes that were to bring an end to the predominance of beehive coking. Large new steel-producing corporations were formed whose operations were integrated to include not only the making and marketing of iron or steel but also the mining of coal and ore from their own properties, the quarrying of their own limestone and dolomite, and the production of coke at or near their blast furnaces. As the steel industry expanded so did the geographic center of production move westward. By 1893 it had moved from east-central to western Pennsylvania, and by 1923 was located to the north and center of Ohio. This western movement led, of course, to the utilization of the poorer quality coking coals of Illinois, Indiana and Ohio. These coals could not be carbonized to produce an acceptable metallurgical coke in the beehive oven, but could be so treated in the by-product oven. By World War I the technological and economic limitations of the beehive oven as a coke producer were being widely recognized. After the war the number of beehive ovens in existence dropped steadily to a low of 10,816 in 1938, in which year the industry produced only some 800,000 tons of coke out of a total US production of 32.5 million tons. The demands of the second World War led to the rehabilitation of many ovens which had not been used for years, and in 1941, for the first time since 1929, beehive ovens produced more than 10 pet of the country's total coke output. Production fell off again after 1945, but the war in Korea made it necessary once more to utilize all available carbonizing capacity so that by 1951 there were 20,458 ovens with an annual coke capacity of 13.9 million tons in existence. Since that time the iron and steel industry has expanded and modernized its by-product coking facilities, and by the end of 1958 only 64 pet of the 8682 beehive ovens still left were capable of being operated. Because beehive ovens are cheap and easy to build and can be closed down and started up with no great damage to brickwork or refractory, it is likely that they will always have a place, albeit a minor one, in the coking industry. The future role of the beehive oven would seem to be precisely that predicted forty years ago by R. S. McBride of the US Geological Survey. Writing with considerable prescience, McBride declared: "A by-product coke-oven plant requires an elaborate organization and a large investment per unit of coke produced per day. Operators of such plants cannot afford to close them down and start them up with every minor change in market conditions. It is not altogether a question whether beehive coke or by-product coke can be produced at a lower price at any particular time. Often by-product coke will be produced and sold at less than cost simply in order to maintain an organization and give some measure of financial return upon the large investment, which would otherwise
Jan 1, 1961
-
Logging and Log Interpretation - Neutron Lifetime, a New Nuclear LogBy E. C. Hopkinson, A. H. Youmans, R. A. Bergan, H. I. Oshry
A new log has been developed for quantitative formation evaluation which is based on a measurement of the length of time slow neutrons survive before they are captured in the rocks and fluids. The logging instrument employs a cyclically pulsed neutron generator and a gated scintillation counter which is synchronized with the source. The source emits short, intense bursts of 14 mev neutrons once every 1,000 microsec and is quiescent between bursts. During the period the source is quiescent, the detector is electronically actuated for two independent preselected intervals. A comparison of the counting rates during these two intervals gives a measure of the rate of decay of the slow neutrons and of the associated gamma radiation. The average neutron lifetime in most earth formations is in the range from 50 to 500 microsec. It can be measured during a continuous logging operation at conventional logging speeds. The design of the logging instrument is described and the results of tests are compared with theoretical predictiom. Formulas are developed which give the relationship between log response and formation properties. It is shown that the method is particularly sensitive to formation fluid salinity, and that salt water saturation can be measured accurately in either cased or open hole. The measurement can be made independent of borehole size, fluid type, casing and tool position in the hole by properly selecting the intervals during which the measurements are made. The results of tests with a prototype logging tool are given. INTRODUCTION A new nuclear logging system has been developed which employs the Accelatron,* an accelerator-type neutron source, and accurately measures formation brine saturation in an entirely new way. It has produced a type of formation log with better sensitivity, greater sampling depth and simpler quantitative interpretation than any other nuclear log thus far suggested. The new Neutron Lifetime Log* employs a pulsed electromechanical neutron source and a synchronously gated radiation detector. A prototype instrument has been field tested during recent months to demonstrate the operability of the apparatus and the feasibility of the method. Tests in wells and simulated boreholes have confirmed theoretical predictions and have shown that formation param ters can be measured independent of casing and other borehole parameters. Preliminary results of field tests have indicated that the log may have important and widespread applications. BASIC PRINCIPLE OF NEUTRON LIFETIME LOG The Neutron Lifetime Log is based on the fact that neutrons emitted by a source in a well are rapidly but not instantly captured by the material around the source. Their capture is a matter of statistical probability; the greater the number of capturing nuclei and the greater the "capture cross section", the greater is the probability that a neutron will be captured quickly. The average life of a thermal neutron in vacuum is about 13 minutes, but in common earth materials, the average neutron life ranges between extremes of about 5 rnicrosec for rock salt and perhaps 900 microsec for quartzite. The Neutron Lifetime Log responds to variations in this average neutron life. The theoretical basis for a log of this general type has been well understood by nuclear logging experts in many laboratories both in America and in Russia, and develop mental work along these lines has been in progress for many years. The Russian literature has reported both theoretical and experimental work1,2 but in this country there have been no published reports of progress toward a practical logging instrument. The logging instrument is designed to measure radiation produced by slow neutrons during selected intervals when no neutrons are being emitted by the source. The source is arranged to emit neutrons in bursts or pulses. During the quiescent interval between the pulses, it is possible to observe the exponential "decay" of the neutrons and the neutron-induced radiation as the individual neutrons progressively disappear due to capture by atoms in the formation or the borehole. When a short pulse of 14 mev neutrons is emitted by a source in a borehole, the individual neutrons are slowed to thermal energy within a few microsec. Thus, a cloud of "slow" neutrons is formed around the source within 10 to 50 microsec after the pulse. This cloud is most dense within a few inches of the source, and is progressively less dense out to a radius of about 3 ft, where radiation from the source is practically undetectable.
Jan 1, 1965
-
Institute of Metals Division - Deformation Mechanisms of Alpha-Uranium Single CrystalsBy L. T. Lloyd, H. H. Chiswik
The operative deformation elements in a-uranium single crystals under compression at room temperature have been determined as a function of the compression directions. The deformation mechanisms noted may be arranged with respect to their frequency of occurrence and ease of operation in the following order: 1 — (010)-[I001 slip, 2—{130} twinning, 3—{~172} twinning, and 4bunder special conditions of stress application, kinking, cross-slip, {.-176) twinning, and (011) slip. The composition planes of the (172) and (176) systems were found to be irrational. Cross-slip was shown to be associated with the major (010) slip system, coupled with localized interaction of slip on the (001) planes. The mechanism of kinking was found to be similar to that observed in other metals in that it occurred chiefly when the compression direction was, nearly parallel to the principal slip direction [loo] and was associated with a lattice rotation about an axis contained in the slip plane and normal to the slip direction: the [001] in the uranium lattice. The resolved critical shear stress for slip on the (010)-[100] system was found to be 0.34 kg per mm2 In a single test it was shown that under compression in suitable directions twinning on the (130) also occurs at 600°C. DEFORMATION mechanisms of large grained polycrystalline orthorhombic a-uranium have been studied by Cahn.1 A major slip system identified as the (010) with a probable [loo] slip direction and a minor slip system on the (110) planes were reported; the slip direction of the minor system was not determined. The twinning systems that were identified experimentally included the (130) and the irrational (172) composition planes; observations of other traces which were not as frequent and which did not lend themselves to positive experimental identification led Cahn to postulate on the basis of indirect evidence that twinning also occurred on (112) and (121) planes. In addition to the foregoing slip and twinning mechanisms, Cahn also observed kinking and cross-slip in conjunction with the major (010) system; the cooperative cross-slip plane was not identified. The availability of single crystals to the present authors has enabled them to check these results, particularly with reference to the doubtful mechanisms and the preference of operation of any one mechanism in relation to the direction of stress application. The tests were confined to compression only, primarily because of experimental limitations imposed by the size and shape of the available crystals. The tests were performed at room temperature except for one crystal compressed at 600°C. The compression directions were chosen to obtain a representative coverage of one quadrant of the stereo-graphic projection. To test the existence of some of the deformation elements that were reported by Cahn, but were not found in the present study, several additional crystals were compressed in specifically chosen directions considered most ideal for their operation. Experimental Techniques The single crystals were obtained by the grain coarsening technique described by Fisher? They grinding and polishing on rotating laps, with final surface preparation performed in a H3PO4-HNO3 electropolishing bath. A typical crystal readied for compression is shown in Fig. 1; their dimensions were rather small and depended upon the testing direction. Crystals isolated for compression in a direction close to the [010] axis, which lay roughly parallel to the longitudinal axis of the polycrystalline rod, were about 3 to 4 mm long and 5 mm2 in cross-section, while those prepared for compression in other directions were smaller. Most of the crystals were free from twin markings and showed no evidence of Laue asterism. Several crystals, however, contained twin traces prior to compression; these were identified prior to compression so as to clearly distinguish them from those initiated during deformation. The origin of the twin markings prior to deformation may be ascribed to two sources: thermal stresses and specimen handling during isolation and preparation. Two other types of imperfections in the crystals should be mentioned: inclusions, which were probably oxides or carbides. and three of the crystals contained a small number of spherical included grains (<0.01 mm diam), which were remnants of unabsorbed grains from the coarsening treatment. The volume represented by these imperfections was small, and their presence presented no difficulties in the interpretation of the macrodeformation processes during subsequent compression. Two compression fixtures were employed: crystals A, B, C, E, and G were compressed in a hand-operated screw-driven jig whose compression platens were designed to minimize axial rotation;
Jan 1, 1956
-
Part VII – July 1969 - Papers - The Mechanical Properties of Some Unidirectionally Solidified Aluminum Alloys Part I: Room Temperature PropertiesBy J. R. Cahoon, H. W. Paxton
The mechanical properties of unidirectionally solidified A1(rich)-Mg and A1(rich)-Cu castings containing up to 15 wt pct solute have been determined with re -spect to the volume fraction of interdendritic eutectic. Pioperties were determined in the directions pumllel and Perpendicular to that of solidification; the volume fraction of eutectic was varied between the "as-cast" and equilibrizcm amounts by approperiate heat treatment following solidification. The principles of fiber strengthened composites and dispersion strengthened materials are adapted to explain the mechanical properties of these castings. It is generally accepted that castings often have inferior mechanical properties when con~pared to wrought products. However, there is little quantitative data available concerning the factors which make apparently sound castings weak and/or brittle. The relative ease and inexpensiveness of the casting process have always been attractive and, therefore, an understanding of the factors which contribute to the mechanical properties of castings would seem desirable. Such an understanding may lead to an improvement in the mechanical properties to an extent where castings would become competitive in applications where presently only wrought products are considered to have the requisite properties. Such an understanding could also improve the reliability of present cast products. Much of the recent research on castings has centered about determining the extent of segregation in cast alloys. Macrosegregation, particularly inverse segregation, has been studied in some detail 1-8 and a considerable understanding of microsegregation has been obtained.9'10 The effect of solidification rate on dendrite spacing and on the amount of interdendritic eutectic in binary alloys has been established, particularly for Al(rich)-Cu alloys.""0 However, the extension of these ideas to relate the amount of interdendritic eutectic, concentration gradients, micro-segregation, dendrite spacings, and so forth, to the rnechanical properties has been limited. Dean and spear" have related the mechanical properties of an Al-Si-Mg alloy, A356-T62, to the dendrite spacing and have shown that the mechanical properties improve with decreasing dendrite spacing. Passmore et al.12 have shown that annealing at high temperature improves the mechanical properties of Al(rich)-Cu al- loys and Archer and Kempf 13 have shown that an Al-1 pct Mg-1.75 pct Si alloy behaves in a similar manner. Ahearn and Quigley 14 have shown that high temperature homogenization also enhances the mechanical properties of an SAE 4330 steel. However, in the above investigations, no underlying reasons were suggested for the improvement in mechanical properties. The purpose of the present investigation is to relate the mechanical properties of castings to some of the solichfication variables and to derive some equations by which calculations of the mechanical properties may be attempted. In particular, the effect of the amount of interdendritic eutectic and the effect of stress direction with respect to that of solidification on the mechanical properties will be considered. The Al(rich)-Mg and Al(rich)-Cu binary alloy systems were chosen for study. The A1-Mg system was chosen because its constitutional relationships are such that large volunles of eutectic (up to 24 vol pct) may be obtained in the as-cast condition and then be completely dissolved by subsequent heat treatment at about 440°C. This allows a comprehensive study relating the mechanical properties of castings to the amount of interdendritic eutectic. Also the Al(rich)-Mg eutectic is almost a single phase 15 which should make the experimental results more amenable to theoretical interpretation and calculation. The A1-Cu system was chosen for study because of the large amount of related information available concerning segregation, dendrite spacing, and so forth. Unidirectionally solidified castings were used throughout the investigation so that the effect of solidification direction with respect to the direction of applied stress could be determined. THEORETICAL It is well known that upon solidification of binary alloy castings, the nonequilibrium amount of eutectic which forms is given by 10 where fe o is the weight fraction of eutectic, Cs is the solid solubility of solute at the eutectic temperature, k is the equilibrium partition coefficient, and C, is the average composition of the alloy. In the development of Eq. [I], it is assumed that the effects of inverse segregation and diffusion in the solid are negligible, and that no porosity is present. If the casting is homogenized at a high temperature for a long period of time, some (or all) of the eutectic is dissolved and the amount of eutectic for this "equilibrium" condition may be calculated directly from the constitutional diagram. By appropriate intermediate annealing, the
Jan 1, 1970
-
Institute of Metals Division - Phase Diagram and Thermodynamic Properties of the Yttrium-Zinc SystemBy K. J. Gill, P. Chiotti, J. T. Mason
Thermal, metallographic, and vapor pressure data were obtained to establish the pkase boundaries and the standard free energy, enthalpy, and entropy of formation for the compounds in the Y-Zn system. Three coinpounds with stoichiometric formulas of YZn, YZn2, and Y2Zn17 melt congruently at 1105", 1080°, and 890°C, respectively. Four compounds with stoiclziometric formulas of YZn3, YZn4, YZn5, and YZn,, undergo perztectic reactions at 905", 895", 870º, and 685ºC, respectively. Three eutec-tics exisl in this system with the .following eutectic temperatures and zinc contents in wtpct: 875ºC, 23.2 Zn; 1015ºC, 51 Zn; 865ºC, 82 Zn. The YZn, pkase undergoes an allotropic transformation. In the two phase YZn2 -YZn alloys the trans.formation gives a weak thermal arrest at 750°C, whereas in the two phase YZn2-YZn3 alloys no thermal arrest is observed and the transformation occurs over a temperature range below 750°C. At 500°C the free mzergies of formation per lnole vavy from —18,090 for YZn to —53,430 fov YZr11 and corresponding enthalpies vary from -24,050 to -92,080. The free energies and enthalpies per g atom as a function of composition show a maximum for the YZn2 phase; the 500°C values are -9580 and -13,180, vespectively. 1 HE only information found in the literature on Y-Zn alloys was the observation reported by Carlson, Schmidt. and speddingl that Y-20 wt pct Zn forms a low melting alloy. The alloy was produced by the bomb-reduction of YF3 and ZnF2 with calcium in an investigation of methods for producing yttrium metal. The solubility of yttrium in zinc has been determined by P. F. woerner2 and reported by Chiotti, Woerner, and Parry.3 In the temperature range 495" to 685°C the solubility may be represented by the relation In these equations N represents atom fraction of yttrium and T is the temperature in degrees Kelvin. The purpose of the present investigation was to establish the phase diagram for the Y-Zn system and to determine the standard free energy, enthalpy, and entropy of formation for the compounds formed. MATERIALS AND EXPERIMENTAL PROCEDURES The metals used in the preparation of alloys were Bunker Hill slab zinc, 99.99 pct pure, and Ames Laboratory yttrium sponge. Arc-melted yttrium buttons contained the following impurities in parts per million: C-129, N-12, 0-307, Fe-209, Ni-126, Mg-13, Ca < 10, F-105, and Ti < 50. Some of the alloys containing 70 wt pct or more of Zn were prepared from yttrium containing 5000 ppm Ti as a major impurity. Tantalum containers were found to be suitable for all alloys studied and were used throughout the investigation. The pure metals, total weight about 30 g, were sealed in 1 in. diam tantalum crucibles by welding on preformed tantalum covers. A 1/8 in. diam tantalum tube was welded in the base of each crucible for use as a thermocouple well. Welding was done with a heli-arc in a glove box which was initially evacuated and filled with argon. The sealed crucibles were enclosed in stainless steel jackets and heated in an oscillating furnace at temperatures up to 1150°C. Homogeneous liquid alloys were obtained within a half hr at these temperatures except for alloys containing less than 20 pct zinc. The latter alloys were held at 1000º to 1100°C for 2 to 3 days in order to obtain equilibrium. After the initial equilibrations the tantalum crucibles containing the alloys were removed from the steel containers and used directly for differential thermal analyses. Further annealing heat treatments for alloys in which peritectic reactions were involved were carried out in the thermal analyses furnace. After thermal analyses the tantalum crucibles were opened and the alloys sectioned and polished for metallographic examination. In the following discussion alloys referred to as "quenched" were obtained by quenching the sealed stainless steel jacket containing the tantalum crucible and alloy in water. The differential thermal analyses apparatus used was a modified version of the one described in an earlier paper., The graphite crucible was replaced by an inconel crucible, the nickel standard and sampie container were separated by a 1/8 in. MgO plate, no getter was used, and provisions were made to
Jan 1, 1963
-
Producing – Equipment, Methods and Materials - Pressure Measurements During Formation Fracturing OperationsBy H. D. Hodges, J. K. Godbey
In order to better understand the fracturing process, bottom-hole pressures were measured during a number of typical fracturing operations. A recently developed system was used that allows simultaneous surface recording of both the bottom-hole and wellhead pressures on the same chart. The results from six fracruring treatments are summarized on the basis of the pressure data obtained. Al-though no complete analysis is attempted, the value of accurate pressure measurements is emphasized. Important characteristics of the bottom-hole pressure record do not appear at the wellhead because of the damping effect of the fluid-filled column. In four of the six treatments described, the formations apparently fractured during the initial surge of pressure with only crude oil in the well. The properties of the fluids used during the treatments are given and the fluid friction losses are obtained directly from the pressure records. This technique is also shown to be adequate for determining when various fluids, used during the process, enter the formation. INTRODUCTION Hydraulic fracturing for the purpose of increasing well productivity is now accepted in many areas as a regular completion and workover practice. Numerous articles have appeared in the literature discussing the various techniques and theories of hydraulic fracturing'. In general, three basic types of formation fractures are recognized today. These are the horizontal fracture, the vertical fracture, and fractures along natural planes of weakness in the formation'. Any one or all three of these fracture types may be present in a fracturing operation. However, with only the wellhead pressure record as a guide, it is difficult at best to determine if the formation actually fractured, and is almost impossible to determine the type of fracture induced. These difficulties arise in part because the wellhead pressure record, especially when fracturing through tubing, does not accurately reflect the pressure variations occurring at the formation. Several factors contribute to this effect and preclude the possibility of using the wellhead pressure as a basis for accurately calculating the bottom-hole pressure. These factors are: 1. The compressibilities of the fluids which damp the pressure variations. 2. The changes in the densities of the fluids or apparent densities of the sand-laden fluids. 3. The flowing friction of the various fluids and mixtures, which is dependent on the flow rates and the condition of the tubing, casing, or wellbore. 4. The non-Newtonian characteristics of a sand-oil mixture and its dependence upon the fluid properties, the concentration of sand, and the mesh size used. 5. The unknown and variable temperatures throughout the fluid column. Because of these reasons it was determined that in order to obtain a more accurate knowledge of the nature of fracturing, the bottom-hole pressure must be measured along with the pressure at the surface during a fracturing treatment. Even with accurate pressure data, a reliable estimate of the nature of fracturing is still dependent upon knowledge of the tectonic conditions. However, the hydraulic pressure on the formation is basic to any approach to a complete analysis. In order to accomplish this objective a system was developed to record the wellhead and bottom-hole pressures simultaneously at the surface. By recording both pressures on a dual pen strip-chart recorder, it was possible to greatly expand the time scale so that rapid pressure variations would be faithfully recorded. By such simultaneous recording, time discrepancies inherent in separate records are eliminated, thus overcoming one of the most difficult problems associated with bottom-hole recording systems. This paper illustrates the results obtained by using this system during six typical fracturing operations. All of these tests were taken in wells that were treated through tubing. By a direct comparison of the wellhead and bottom-hole pressures, the importance of obtaining complete pressure information during a fracturing treatment is emphasized. THE INSTRUMENTATION AND PROCEDURES The bottom-hole pressure measuring instrument consisted of a pressure-sensing element, a telemetering section, and a lead-filled weight or sinker bar. The pressure-sensing element used was an isoelastic Amerada pressure-gauge element. By using an isoelastic element, no temperature compensation was necessary in the tests described, since the temperature was believed to be well below the maximum temperature limit of 270°F. The rotary output shaft of this helical Bourdon tube element was coupled to a precision miniature potentiometer. The rotation of the pressure-gauge shaft thus changed the resistance presented by the potentiometer
-
Institute of Metals Division - Structural Relationships Between Precipitate and Matrix in Cobalt-Rich Cobalt-Titanium AlloysBy R. W. Fountain, W. D. Forgeng, G. M. Faulring
Precipitation of the phase Co3Ti (Cu3Au type) from a Co-5 pct Ti a11oy has been investigated using single-crystal X-ray diffraction techniques. Oscillation and transmission Laue patterns of specimens aged for short-time periods at 600" C indicate the formation of titanium-rich and titanium-poor zones coherent with the {100} matrix planes. Longer aging times at 600° C establish that the equilibrium phase also forms on the {100} matrix planes as platelets. These observations are corroborated by electron metallography; electron diffraction studies show the phase Co3Ti to be ordered. A probable sequence of the precipitation reaction is discussed. A previous publication by two of the present authors reported on the phase relations and precipitation in Co-Ti alloys containing up to 30 pct Ti.1 The results of this investigation established the existence of a new face-centered cubic inter metallic phase, ranging in composition from about 17.0 to 21.7 pct Ti at temperatures below 1000° C The decomposition of the fcc supersaturated solid solution was studied employing hardness and electrical resistivity measurements. The changes in hardness upon precipitation in alloys containing 3, 6, and 9 pct* Ti were found to be associated with an initial increase in hardness followed by a plateau and then a second, more pronounced hardness increase. Investigation of this behavior by electrical resistivity measurements suggested that two different kinetic processes were involved, which, when interpreted in terms of the kinetic relation,2-4 indicated that initial precipitation was in the form of thin plates. On continued aging, the plates impinged during the growth process. The general features of these findings have been confirmed by Bibring and Manenc,5 while, in addition, they report the phase to be ordered. The present investigation was undertaken to provide more definite information on the structural relationships between the precipitate and the matrix. EXPERIMENTAL PROCEDURE Single crystals of a (20-5 pct Ti alloy were prepared from the melt employing the Bridgman technique. Poly crystalline rod, 1/2 in. in diam, prepared from vacuum-melted material, was machined to 3/8- in. diam to remove any surface contamination that may have resulted from hot-working. The crystals were grown under a purified hydrogen atmosphere in high-purity alumina crucibles heated by induction. Considerable difficulty was encountered in attempting to grow monocrystals because of the high melting point of the alloy and the high solute concentration. However, one crystal about 6 in. long was obtained which was essentially a single crystal except for one or two very small grains around the periphery. The as-grown crystal was solution heat-treated for 24 hr at 1200°Cin a purified argon atmosphere and water-quenched. One-quarter-in. slices were taken from each end of the solution heat-treated crystal for chemical analyses, and the remainder of the crystal was mounted and oriented by the back reflection Laue Method. The chemical analysis of the crystal was as follows: Pct Ti Pct 0 Pct C Pct N Pct H Pet CO 5.29 0.08 0.004 0.002 0.0003 Balance By proper tilting of the crystal, it was possible to obtain slices 1/32 in. thick of [loo] and [110] orientation. The solution heat-treated crystal slices were sealed in silica capsules for the aging treatments, with titanium sponge placed at one end of the capsule to act as a getter. All slices were water-quenched from the aging temperatures, the capsules being broken under the water to ensure a rapid quench. Thinning of the slices for transmission X-ray studies was accomplished by a combination of mechanical and electrolytic techniques, the final thickness being about 0.1 mm. Laue patterns of the solution heat-treated crystal indicated that no strain was introduced by the thinning technique. ELECTRON METALLOGRAPHY After X-ray examination, the structural changes attending the precipitation were followed by examination of direct carbon replicas of polished and etched surfaces of the single-crystal slices and extracted phases. The earliest indication of significant structural change was observed after aging at 600°C The structure of a heavily etched, solution-treated crystal is shown in Fig. l(a). Aside from the etch pit pattern, no regularity of background structure is observed. On the other hand, in the background of the specimen heated for 500 hr at 600°C, the etching pattern shows a directionality indicating the influence of minute precipitate particles, Fig. l(b). On electrolytic dissolution of this specimen in 10 pct HC1 in alcohol, a large volume of very small, flattened cubes
Jan 1, 1962
-
Institute of Metals Division - Intragranular Precipitation of Intermetallic Compounds in Complex Austenitic AlloysBy W. C. Hagel, H. J. Beattie
Seven austenitic alloys of varions base compositions and minor-alloy additions were solution-treated, aged systematically between 1200oand 1800oF, and examined by X-ray and electron metallography. Intragranular preczpitations of µ, Laves, s, ?', Ni3Ti, and x phases were observed as a function of composition and aging time and temperatwre. Phase solubility limits were detevtnitzed within 100Fo intervals. These inter metallic compounds fall into two distinct general classes, and whichever class predomznates depends on base composition. It has become increasingly evident that multicom-ponent austenitic alloys are well characterized by their precipitation processes. Since certain groups of elements act as one, the relationships among these processes are reasonably simple; complete identification of such processes is usually attainable by a systematic aging study with a combination of techniques centered on microscopy and diffraction. Several nickel- and cobalt-base alloys illustrating cellular precipitation and its interaction with general precipitation were reported previously.1 The group of alloys covered in the present paper demonstrates precipitation-hardening reactions involving two distinct classes of intermetallic compounds where the predominating class appears to depend on base composition. This dependency ties in with a crystal-chemistry regularity first observed some twenty years ago by Laves and Wallbaum but never amplified to our knowledge. Results of electron-microscope and X-ray diffraction studies on systematically aged hot-rolled alloys known commercially as S-816, S-590, Rene-41, Incoloy-901, M-308, and M-647 are reported here. Some of these alloys have previously undergone minor-phase analyses by other investiators. Alloy S-816 was investigated by Rosenbaum, Lane and Grant,3 and Weeton and Signorelli.4 Rosenbaum found only CbC in hot-rolled bars. Lane and Grant found CbC and a small amount of M6C in the cast structure and stated that both carbides form during aging, most of the precipitation being CbC. Weeton and Signorelli found CbC, M23C6 and a weak indication of a phase after a slow step-down cooling cycle from 2250°F. Rosenbaum also investigated hot-rolled samples of S-590 and identified CbC and M6C. Preliminary information on Rene-41, gained partly from the present work, was reported by Morris.5 Long-time precipitation phenomena in Incoloy-901 at 1350°Fwere investigated by Clark and Iwanski.B heir raw data re- semble those of our present heat with 0.1 pct B, while their interpretation of these data resembles our interpretation of data from another heat with only 0.001 pct B; they made no statement as to boron content. No previous minor-phase studies of alloys M-308 or M-647 have been reported. EXPERIMENTAL METHODS Table I gives alloy compositions in both weight and atomic percent. Specimens were solution-treated from 1700º to 2200ºF, aged at logarithmic-time intervals up to 1000 hours between 1200 and 1800 F, and examined in accordance with procedures previously described in detail. ' ' Phase extractions were carried out in electrolytic cells containing 800 ml of either 7 pct HC1 in denatured ethanol or 20 pct H3PO4 in water. After electrolysis for 48 hr at 0.1 to 0.2 amp per sq inch, residues were separated by filtration or centrifuging. X-ray powder patterns of residues were recorded on a diffractometer for accuracy and on film for sensitivity. Lattice parameters were calculated by least-squares analyses of indexed sin 8 values, and relative abundances were estimated from intensities of strongest lines of each phase. These phase abundances denote relative amounts with respect to each other rather than to the alloy. Mechanically polished specimens were etched in a freshly mixed solution of 92 pct HC1, 5 pct H2SO4, and 3 pct HNO3. Parlodion replicas for the electron microscope were chromium-shadowed in high vacuum at a glancing angle of 20deg. All electron micrographs are reproduced here with the shadowing source above. The correspondence betweenelectronmicrostructures and phases identified by X-rays was established by a high redundancy of correlation between relative amounts at different stages of aging and examination above and below critical transformation or solubility temperatures. EXPERIMENTAL RESULTS S-816 and S-590—The phases found in S-816 and S-590 after various aging and solutioning treatments are listed in Table 11. These data and the observed
Jan 1, 1962
-
Institute of Metals Division - Studies on the Metallurgy of Silicon Iron, IV Kinetics of Selective OxidationBy A. U. Seybolt
In part 111' of this series it was shown that during the selective oxidation of a 3 1/4 pct Si-Fe alloy in damp hydrogen, only silica, (observed at room temperature) as low cristobalite or low tridy-mite or both, was formed as an oxidation product. In some in- „ stances where the film was fairly thin (probably well under 100A) there was some suggestion of an amorphous form of SiO2. The present investigation of oxidation rate showed that the selective oxidation of silicon-iron can be rather complicated, and apparently impossible to rationalize in an unequivocal manner. In some temperature regions, notably near 800" and 1000°C, the data seem to obey the familiar parabolic rate law. However, at intermediate temperatures complications were noted, some of which are possibly due to the order-disorder reaction in the silicon-iron solid solution. IN an earlier report' it was shown that during the oxidation of 3 1/4 pct Si-Fe alloys in H2O-H2 atmospheres only silica films were formed in the temperature range from 400° to 1000°C in hydrogen nearly saturated with water at room temperatures, or at dew points as low as -45°C. In the work to be reported here, some observations are made on the rate of oxide film formation. As in the earlier investigation, electron diffraction patterns generally showed either low tridymite or low cristobalite or both, except for some very thin films. These sometimes showed diffuse rings, presumably due to a very small crystallite size, or in a few cases, diffuse bands probably caused by an amorphous film. EXPERIMENTAL PROCEDURE Vacuum-melted silicon iron made of high-purity materials was rolled into strips 0.014 in. thick, and cut into samples 1/2 in. wide by 1 in. long. Chemical analysis showed 3.2 pct Si and 0.002 pct C. All samples were surface abraded with 600-grit paper, were solvent cleaned, and then placed in an paper,apparatus containing a "Gulbransen type"2 micro-balance. Here the gain in weight of the samples of about 5 sq cm area could be followed as a function of time during the oxidation caused by the water in atmospheres of various controlled water-hydrogen ratios. The water-hydrogen ratios can most easily be described as varying from a dew point of 0°C (PH2O-p^2 = 6.2 x 10-3 , to K (P j -40°C (PH2O/PH^= 1.3 X 10-* Most of the experiments were conducted at the 0°C dew-point atmosphere because drier atmospheres caused so little gain in weight that the accuracy of measurement was poor. Because of this, only the data obtained at PH2O,/P,,,= 6.2 x X3 will be reported. The temperature range extended from 800" to 1000°C; and most of the oxidation runs lasted for about 24 hr. The reproducibility of any reading was about ± 1 ?, but the sensitivity of the balance was about 0.2 ?. The atmosphere, flowing at 200 cm per-min, was preheated to the furnace temperature before contacting the specimen. While the gas flow caused a measurable lift on the sample, it was ordinarily sufficiently constant so that it was not an appreciable source of error. X-ray and electron diffraction checks of the samples before and after oxidation showed no evidence of preferred orientation, either on the metal samples or on the silica films formed. EXPERIMENTAL RESULTS The data obtained are summarized in Table I, and some are given in detail in Figs. 1 to 4. In the fourth column of Table I, kp refers to the parabolic rate constant in the expression (?/cm2)2 = kpt + c [1] where ? = micrograms gain in weight kp = parabolic rate constant in units r2 /cm4 t = time in minutes c = constant It will be noted that in many cases no value for kp is given; this is because in these instances the data did not obey the parabolic rate law. The silica film thicknesses given in the last columns are values calculated from the weight gain, an average tridy-mite-crystobalite density, and by assuming a perfectly plane surface. Fig. 1 shows the data plotted in the form of Eq. [I], hence a linear plot indicates parabolic behavior. It has been frequently observed in the literature that
Jan 1, 1960
-
Part IX - Papers - A Resistometric Study of Phase Equilibria at Low Temperatures in the Vanadium-Hydrogen SystemBy D. G. Westlake
The electrical resistance of a series of V-H alloys (0 to 3.5 at. pct H) has been measured over the temperature range G° to 360°. Interstitial impurities made contributions to the residual resistivity, but not the ideal resistivity. The contribution of hydrogen in solid solution is expressed by Ap = 1.12 microhm-cm per at. pct H; but the contribution of precipitated hydride was negligible. A portion of the so1vu.s for the V-H phase diagram is presented. The solubility limit is given by In N (at. pct H) = (5.828 i 0.009) - (2933 i 44)/RT. Comparison of critical temperatures joy hydride precipitation and published critical temperatures for hydrogen embrittlement suggests the two are related. ThiS study was initiated as part of an investigation of the mechanism by which small concentrations of hydrogen embrittle the hydride-forming metals at low temperatures. It has already been shown that, in the case of hcp zirconium, a reduction in ductility accompanies the strengthening resulting from precipitation of a finely dispersed hydride phase.''' Our attempts to detect a similar precipitation of a second phase at low temperatures in V-H alloys by transmission electron microscopy have been thwarted because we have been unable to prepare thin foils that are representative of the bulk material with respect to hydrogen concentrati~n.~'~ The present investigation establishes the solvus of the V-H system at subambient temperatures. Subsequently, we hope to be able to determine whether the embrittlement temperature is related to the critical temperature for precipitation of the hydride in a given V-H alloy. veleckis5 has proposed a partial phase diagram for the V-H system based on extrapolations of the pressure-composition relations he measured at higher temperatures. Kofstad and wallace' conducted a similar study of single-phase alloys but did not attempt to establish the phase diagram. Zanowick and wallace' and ~aeland' have studied a portion of the phase diagram by X-ray diffraction, but they investigated no alloys in the hydrogen concentration range 0 to 3 at. pct, the range of interest to us. EXPERIMENTAL PROCEDURE The vanadium was obtained from the Bureau of Mines, Boulder City, Nev., in the form of electrolytic crystals. The analyses supplied with them listed 230 ppm by weight metallic impurities, 20 ppm C, 100 ppm N, and 290 ppm 0. The crystals were electron-beam-melted into an ingot that was rolled to 0.64 mm. Strips, 60 mm long and 4.2 mm wide, were cut from the sheet, and both rolled surfaces were ground on wet 600-grit Sic paper to produce specimens 0.4 mm thick. They were wrapped in molybdenum foil, vacuum-encapsulated in quartz, and annealed 4 hr at 1273°K. The specimens were annealed in a dynamic vacuum of 2X lo-' Torr for 30 min at 1073°K for dehydrogenation, and charged with the desired quantity of hydrogen by allowing reaction with hydrogen gas at 1073°K for 2 hr and cooling at 100°K per hr. Purified hydrogen was obtained by thermal decomposition of UH3. Sixteen specimens were studied: two contained no hydrogen and the others had hydrogen concentrations between 0.5 and 3.5 at. pct (hydrogen analyses were done by vacuum extraction at 1073°K). Electrical resistances were measured by the four-terminal-resistor method on an apparatus similar to the one described by Horak.~ The specimen holder was designed so that both current and potential leads made spring-loaded mechanical contact with the specimen. The potential leads were 30 mm apart, and the current leads were 55 mm apart. The current was 0.10000 amp. We used the following baths for the indicated temperature ranges: liquid nitrogen, 77°K; Freon 12, 120" to 230°K; Freon 11, 230" to 290°K; and ethanol, 290" to 340°K. Temperatures lower than 77°K were achieved by allowing the specimen to warm up after removal from liquid helium. Temperatures above 77°K were measured by a calibrated copper-constantan thermocouple (soldered to the specimen holder) and below 77°K by a calibrated carbon resistor. The temperature of the bath changed less than 0.l0K between duplicate measurements of the resistance. RESULTS AND DISCUSSION Typical plots of resistivity p vs temperature T are shown in Fig. 1. In the interest of clarity, only five curves are presented and the data points have been
Jan 1, 1968
-
Institute of Metals Division - Extension of the Gamma Loop in the Iron-Silicon System by High PressureBy Larry Kaufman, Martin Schatz
The effect of pressure on the extension of the ? loop in the FeSi system has been determined by means of metallogvaphic studies and hardness measurements performed on a series of high-purity Fe-Si alloys containing 7.5, 11.0, and 13.9 at. pct Si, respectively. These mensurements, performed at 42 kbar and temperatures up to 1200oC, indicate that the ? loop is expanded to about 10 at. pct Si at 42 kbar as opposed to a maximum extension of 4 at. pct Si at 1 atm. Comparison of the experimental results with thermodynamic predictions of the pressure shifts yields satisfnctory results. DURING the past few years, several studies have been performed in our laboratory1-' in order to determine the effect of high pressure on phase equilibrium in pure iron and iron-base alloys. The purpose of these studies has been to elucidate the effects of high pressure experimentally and to compare the observed results with predicted pressure effects derived on the basis of known thermody-namic and volumetric data at 1 atm. These studies have included work on pure iron2,5,7 as well as Fe-Ni,1,5 Fe-cr,l,5 and Fe-c4-6 alloys. In addition, Tanner and Kulin3 have reported results of pressure studies on two Fe-Si alloys containing 2.0 and 6.25 at. pct Si. At the time of this latter study, no detailed information was available concerning the difference in volume between the a (bcc) and ? (fcc) phases in the Fe-Si system as a function of silicon content. In order to compare their observations with calculated pressure shifts, Tanner and Kulin were forced to assume that silicon had no effect on the difference in volume between a and ? iron. The resulting discrepancy between their calculation of the a/? phase boundary at 42 kbar and the observed results led them to the conclusion that silicon additions probably decrease the difference in volume between a and ? iron. Recently: Cockett and Davis8,9 have reported de- tailed studies of the lattice parameters of a series of Fe-Si alloys at temperatures ranging from 20" to 1150°C. These measurements, performed on alloys in the bcc and fcc range, show that silicon does indeed decrease the difference in volume between a and ? iron. By correcting the calculations of Tanner and Kulin in line with the observed effect of silicon they were able to show improved agreement between computed and observed pressure shifts.' The present measurements were undertaken to provide additional corroboration of this effect, by extending the range of composition, in addition to exploring a situation where large extensions of a ? loop could result in impingement of the ? field with an ordered bcc phase (based on Feo.75Sio.25). I) EXPERIMENTAL PROCEDURES AND RESULTS The alloys investigated were obtained from Dr. F. Kayser of M.I.T. They were prepared at the Ford Scientific Laboratory by vacuum melting electrolytic iron and high-purity silicon. The melts were poured under an argon atmosphere into hot-topped steel molds. Subsequently the ingots were hot-worked down to 1/2-in.-diam rods. Three alloys containing 7.5, 11.0, and 13.9 pct Si were studied. Carbon, regarded as the principal impurity, analyzed at, or below, 0.001 wt pct for all of the alloys. Prior to pressure-temperature treatment, the rod was annealed for 24 hr in vacuum at 1000°C, water-quenched, and subsequently machined into 0.100-in.-diam by 0.100-in.-long specimens. Subsequent to machining, the specimens were again annealed and then examined metallographically. They were found to exhibit a clear coarse-grained ferrite similar to Figs. 10 and 110 of Ref. 1 and Fig. 2 of Ref. 3. Subsequently, specimens of each alloy were equilibrated at 42 kbar at various temperatures in supported piston apparatus.1,3,4,6 Three specimens, one of each alloy, were wrapped in platinum and exposed simultaneously. The pressure-temperature cycle consisted of increasing the pressure from ambient to 42 kbar at 25oC, heating rapidly to the desired temperature, holding for 15 min, and quenching to 100°C, followed by slower cooling to 25°C and pressure release. The temperature was measured with a Pt/Pt-13 pct Rh thermocouple which was not corrected for pressure effects. Subsequently, specimens were examined metallographically and by
Jan 1, 1964
-
Open Pit Mining - How Far Can Chemical Crushing with Explosives in the Mine Go Towards Further Replacement of Mechanical Crushing in the Plant?By Charles H. Grant
Some of the limiting factors relative to explosive crushing of rock and ways to overcome a few of these problems are presented. Relationships between borehole diameters, bench heights, and spacings, along with a review of the influence geometry has on energy as these are changed, are discussed. Efficiency in use of explosives and the decay of energy as it moves through rock and is absorbed and dissipated, is described, along with fragmentation as a function of spacings and energy zoning, etc. Communications are one of the major problems encountered. In an effort to provide a better understanding of the use of explosives, it is necessary to take a little different view of what explosives are, how to look at them as tools to fragment rock, and some of the problems encountered in doing so. First, take the explosive: although there are many factors involved, consider these as being reduced to only two — shock-strain imparted to the rock by the high early development of energy, and the gas effect which is a combination of heat, moles of gas formed, rate of formation of these gases which develop pressures, etc. First, consider shock energy by itself and assume there is no gas effect in the reaction. Fig. 1 illustrates a block or cube of rock, in the center of which is detonated an explosive charge which is 100% shock energy. Tensile slabbing would be seen on the surface and probably the cube of rock would generally hang together even though microcracks were formed. If the situation is reversed and an explosive whch has no shock energy and only gas effect (Fig. 2) is considered, the cube of rock would act as a pressure vessel and contain the pressure from the gas effect until it exceeded the rock-vessel strength; then the rock would break in a few large pieces. If these two kinds of energy are put together and the area of shock-strain around the explosive (Fig. 3) is considered, the two energies will be seen working together to furnish broken rock. The gas effect applies pressure to the microcracks formed from the shock energy to weaken the rock-pressure vessel and propagate these cracks to break the rock apart. It not only will be broken more finely, but will break apart at a lower pressure than the gaseffect case, since the shock energy has first weakened the rock vessel. Although tensile spalling from the shock-strain imparts momentum to the rock, the main source of displacement comes from the gas effect. The term "rock" is being used to mean any material to be blasted. These energies are absorbed by the rock in different ways. First, classify rock into two main categories: "elastic" and "plastic-acting." Elastic rock should be thought of as rock which can transmit a shock wave and is high in compressive strength, such as granite or quartzite. Since this elastic rock transmits a shock wave well, it makes good use of the shock energy from the explosive-forming cracks, etc., for the gas effect to work on. Plastic-acting rocks are rock masses which are relatively low in compressive strength and absorb shock energy at a much faster rate, thereby making poor use of the shock energy by not developing as extensive a cracked zone for the gas effect to work on. Rocks of this type are generally softer materials such as some limestones, sandstones, and porphyries. For the most part, the shockenergy part of the explosive reaction is wasted in plastic-acting rock, leaving most of the work to the gas effect. Since the ratio of gas effect to shock energy is different in different explosives, it is easy to understand why some explosives perform well in elastic rock and poorly in plastic-acting rock, and vice versa. Some of the most difficult blasting situations arise when mixtures of plastic-acting and elastic rock are encountered (Fig. 4). Fig. 4 shows an example of granite boulders cemented together with something like a decomposed quartz monzonite which is plastic-acting. The elastic granite boulders will transmit the shock-strain within itself, but when this shock tries to move through the monzonite to the next boulder, its intensity is absorbed by the monzonite and little shock-strain is placed on the adjoining boulder. In addition to this loss by absorbtion, shock reflection at the surface of the boulder will effect tensile spalling. The net effect is poor breakage of the boulders which do not have drillholes in them as they simply will be popped out with the muck. The same is true (Fig. 5) when layers and joints make
Jan 1, 1970