Part IX - Papers - A Resistometric Study of Phase Equilibria at Low Temperatures in the Vanadium-Hydrogen System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. G. Westlake
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
1157 KB
Publication Date:
Jan 1, 1968

Abstract

The electrical resistance of a series of V-H alloys (0 to 3.5 at. pct H) has been measured over the temperature range G° to 360°. Interstitial impurities made contributions to the residual resistivity, but not the ideal resistivity. The contribution of hydrogen in solid solution is expressed by Ap = 1.12 microhm-cm per at. pct H; but the contribution of precipitated hydride was negligible. A portion of the so1vu.s for the V-H phase diagram is presented. The solubility limit is given by In N (at. pct H) = (5.828 i 0.009) - (2933 i 44)/RT. Comparison of critical temperatures joy hydride precipitation and published critical temperatures for hydrogen embrittlement suggests the two are related. ThiS study was initiated as part of an investigation of the mechanism by which small concentrations of hydrogen embrittle the hydride-forming metals at low temperatures. It has already been shown that, in the case of hcp zirconium, a reduction in ductility accompanies the strengthening resulting from precipitation of a finely dispersed hydride phase.''' Our attempts to detect a similar precipitation of a second phase at low temperatures in V-H alloys by transmission electron microscopy have been thwarted because we have been unable to prepare thin foils that are representative of the bulk material with respect to hydrogen concentrati~n.~'~ The present investigation establishes the solvus of the V-H system at subambient temperatures. Subsequently, we hope to be able to determine whether the embrittlement temperature is related to the critical temperature for precipitation of the hydride in a given V-H alloy. veleckis5 has proposed a partial phase diagram for the V-H system based on extrapolations of the pressure-composition relations he measured at higher temperatures. Kofstad and wallace' conducted a similar study of single-phase alloys but did not attempt to establish the phase diagram. Zanowick and wallace' and ~aeland' have studied a portion of the phase diagram by X-ray diffraction, but they investigated no alloys in the hydrogen concentration range 0 to 3 at. pct, the range of interest to us. EXPERIMENTAL PROCEDURE The vanadium was obtained from the Bureau of Mines, Boulder City, Nev., in the form of electrolytic crystals. The analyses supplied with them listed 230 ppm by weight metallic impurities, 20 ppm C, 100 ppm N, and 290 ppm 0. The crystals were electron-beam-melted into an ingot that was rolled to 0.64 mm. Strips, 60 mm long and 4.2 mm wide, were cut from the sheet, and both rolled surfaces were ground on wet 600-grit Sic paper to produce specimens 0.4 mm thick. They were wrapped in molybdenum foil, vacuum-encapsulated in quartz, and annealed 4 hr at 1273°K. The specimens were annealed in a dynamic vacuum of 2X lo-' Torr for 30 min at 1073°K for dehydrogenation, and charged with the desired quantity of hydrogen by allowing reaction with hydrogen gas at 1073°K for 2 hr and cooling at 100°K per hr. Purified hydrogen was obtained by thermal decomposition of UH3. Sixteen specimens were studied: two contained no hydrogen and the others had hydrogen concentrations between 0.5 and 3.5 at. pct (hydrogen analyses were done by vacuum extraction at 1073°K). Electrical resistances were measured by the four-terminal-resistor method on an apparatus similar to the one described by Horak.~ The specimen holder was designed so that both current and potential leads made spring-loaded mechanical contact with the specimen. The potential leads were 30 mm apart, and the current leads were 55 mm apart. The current was 0.10000 amp. We used the following baths for the indicated temperature ranges: liquid nitrogen, 77°K; Freon 12, 120" to 230°K; Freon 11, 230" to 290°K; and ethanol, 290" to 340°K. Temperatures lower than 77°K were achieved by allowing the specimen to warm up after removal from liquid helium. Temperatures above 77°K were measured by a calibrated copper-constantan thermocouple (soldered to the specimen holder) and below 77°K by a calibrated carbon resistor. The temperature of the bath changed less than 0.l0K between duplicate measurements of the resistance. RESULTS AND DISCUSSION Typical plots of resistivity p vs temperature T are shown in Fig. 1. In the interest of clarity, only five curves are presented and the data points have been
Citation

APA: D. G. Westlake  (1968)  Part IX - Papers - A Resistometric Study of Phase Equilibria at Low Temperatures in the Vanadium-Hydrogen System

MLA: D. G. Westlake Part IX - Papers - A Resistometric Study of Phase Equilibria at Low Temperatures in the Vanadium-Hydrogen System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account