Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Part IX - Papers - Thermodynamics of Iron-Platinum AlloysBy Emerson F. Heald
A systematic study was made of new and old data on chemical activities in Fe-Pt alloys at elevated ternperatuves. Experimental results may be expressed in terms of the excess free energy using Least-squares analysis of the data gave the following values for the constants: for the temperature range 1130° to 1350°C, and tentatively to 155O°C, B = -3.326564 and C = 0.221051; for the temperature range 650" to 850°C, B = -2.555690, C = 1.762735, and D =0.097196. In the study of iron-containing silicate systems, it is sometimes desirable to have a direct experimental measure of the activity of iron in the system. The well-known solubility of iron in platinum, often a headache in experimental work on iron compounds under reducing conditions, can be used to advantage in this respect. If the activity of iron in an Fe-Pt alloy in equilibrium with the silicate is known as a function of the composition of the alloy, chemical analysis of the alloy will give a knowledge of the activity of iron in all of the phases in the system. The present study was undertaken in order to elucidate the characteristics of Fe-Pt alloys as iron activity indicators. This work is intended to tie together some previous work, which may be summarized as follows. Larson and Chipman1 determined the activity of iron in Fe-Pt alloys at 1550°C by equilibrating platinum metal with calcium oxide-iron oxide-silica melts of known iron activity. Compositions of the resulting alloys were determined by chemical analysis. A similar study was carried out by Taylor and ~uan,' who worked at 1300°C. They brought the Fe-Pt alloys into equilibrium with iron oxide under conditions of known partial pressure of oxygen, and thus, from the work of Darken and ~urr~,~ conditions of known iron activity. Compositions were determined indirectly, by following the change in weight of the sample. Sundaresen et el* used the electromotive force of cells in which the alloy formed one electrode in order to measure the activity of iron in the alloy at 650" and 850°C. These temperatures were chosen to be above and below the first-order phase transition which takes place upon the ordering of Fe3Pt and the second-order transition which occurs upon the ordering of FePt3. EXPERIMENTAL 1) High Temperatures. The starting materials used were thin platinum foil, about 0.002 mm thick, and Fisher Certified reagent ferric oxide, Fez03, which had been heated for 24 hr at 1000°C. An intimate mixture of 80-mesh Fez03 and platinum platelets was placed in a thin platinum foil envelope. The latter was suspended from thin platinum wires in the hot zone of a vertical-tube, platinum-wound furnace of the type described by Muan and ~sborn.~ A capillary gas mixer similar to that used by Darken and Gurry3 was used to prepare a precisely known mixture of carbon dioxide and hydrogen, which was allowed to flow upward through the furnace tube. The partial pressure of oxygen in contact with the sample was thereby fixed at a value which was calculated from the charts prepared by porter? Temperatures were measured with a Pt-10 pct Rh-in-platinum thermocouple, which was calibrated using the melting points of gold (1062 .@C) and diopside, CaMgSizOB (1391.5"C). Temperature control was maintained to within i3"C with a Geophysical Laboratory proportional controller, using the furnace resistance as the sensing element. Samples were quenched by passing a small current through the platinum suspension wires, allowing the sample to drop into a bath of dibutyl phthalate at the bottom of the furnace tube. Prior to chemical analysis the samples were washed with acetone and dried. 2) Chemical Analysis. It proved possible, in almost all cases, to separate the Pt-Fe platelets physically from particles of iron oxide. The platelets were dissolved in a small volume of aqua regia, evaporated to dryness, and redissolved to 0.1 M HC1. In order to determine iron in the platinum alloy potentiometrically, it is necessary first to remove the platinum. A 10-cm column of Amberlite IR-120 cation exchange resin in the hydrogen form provided separation quickly and quantitatively: The mixture of iron and platinum in 0.1 M HC1 was added to the top of the column, and washed with about 100 ml of 0.1 M HC1. Under these conditions, the iron, principally in the form of cations such as FeC1" and FeCl;, is held quantitatively in the uppermost centimeter of the column. The platinum, in the form of anions such as PtC&- , is washed through without being adsorbed. After a qualitative test with stannous chloride indicated all of the platinum was removed, the iron was
Jan 1, 1968
-
Part IX – September 1968 - Papers - Grain Boundary Sliding, Migration, and Deformation in High-Purity AluminumBy H. E. Cline, J. L. Walter
Grain boundary sliding and migration were studied in pure aluminum bicrystal and polycrystal samples with two-dimensional grain structure. Scratches, 50 P apart, were used for measurement of sliding and migration distanceso. Samples were deformed at constant rate at 315C and events recorded continuously on wrotion picture film. Electron micrograPhs of boundary-scratch intersections were obtained. Yield and flow stress values were measured. The sequence of sliding and migration events for a three-grain junction is described in detail. Sliding depended only on the resolved shear stress imparted to the boundary. Sliding was accowmodated by formation of shear zones in grains opposite triple points and adjacent to curved boundaries. These shear zones provided the driving force for grain boundary migration. Migration caused rumpling of the boundaries, decreasing the sliding rate. Sliding and migration generally began at the same time, occurred simultaneously and ended at the same time. In the bicrystal, sliding and migration rates were proportional. Initial sliding rules of 5 X joe cm per sec. were measured for the polycrystal and bicrystal samples. These sliding rates agree wilh the internal friction experirnents of K;. The observations seem consistent with a viscous boundary sliding nzechanism. GRAIN boundary sliding is the translation of one grain relative to its neighbor by a shear motion along their common boundary. Sliding is thought to be an important mode of deformation at elevated temperatures and at low strain rates such as prevail in creep,' and perhaps in the area of superplastic behavior.2"4 Although much work has been done to investigate grain boundary sliding, the effort has not led to the identification of a mehanism. KG showed that grain boundaries in aluminum exhibit a viscous nature under very small displacements of internal friction measrements. Various dislocation mechanisms have been proposed but are without conclusive experimental support. Attempts to relate sliding to 6's viscous boundaries have been unsuccessful in that measured rates of sliding are always several orders of magnitude lower than KG'S results would predict.= In bi crystals7and polycrystalsR of aluminum tested under constant load, the grain boundary sliding was found to be proportional to the total creep elongation which indicated that sliding might be controlled by deformation of the grains. Shear zones were observed to extend beyond grain boundaries at triple points to accommodate the sliding.8 Surface observations brought forth the opinion that sliding and migration occurred alternately, in sequence.' Measurements of sliding at the surface have been criticized because they might not be representative of the interior of the sample. Generally speaking, it seemed that much of the previous work and knowledge was based on observations made at relatively low magnification and examination of samples after deformation had been accomplished. Thus, it was the purpose of the present study to continuously record, at high magnification, the events occurring during the deformation of pure aluminum. Samples with two-dimensional grain structures were used to simplify interpretation of the results. The sliding and migration of small areas of many samples were continuously recorded by time-lapse motion pictures. Replicas of the surface were used to provide high-resolution electron micrographs. These observations, coupled with tmsile strength data, provide sufficient information to arrive at an understanding of the phenomenon. EXPERIMENTAL PROCEDURE An ingot of 99.999 pct A1 was rolled to sheet, 0.127-cm thick. Tensile specimens, with a gage length of 0.85 cm, were machined from the sheet. Bicrystal tensile specimens, of the same dimensions, were spark cut from a large bicrystal ingot. The grain boundary was oriented at 45 deg to the tensile axis. The surfaces of the tensile samples were ground flat on fine metallographic paper and were then electropolished in a solution of 75 parts absolute alcohol and 25 parts of perchloric acid. The solution was cooled in an ice-water bath. Using a weighted sewing needle suspended from a small pivot on a precision milling machine, a grid of fine scratches, 50 p apart, was scribed on one surface of the sample. The polycrystalline samples were then annealed in hydrogen for 15 min at 350" to 400°C to produce a two-dimensional grain structure of about 0.2-cm average grain diameter which would not undergo further growth at the test temperature, 315OC. Examination of both surfaces of the samples showed that the grain boundaries were perpendicular to the surface of the polycrystal and bicrystal samples. A hot-stage tensile machine was constructed for use with an optical microscope as shown in Fig. 1. The specimen is shown mounted in the grips. The grips ride in V-ways so that the sample can be mounted without damage. The rear grip is free to slide so that when the sample expands during heating it is not put under a compressive stress. When the grips and samples are at temperature, the rear grip is locked in place by two set-screws. The other grip is connected to a synchronous drive motor which, through a worm gear and a fine-threaded rod, deforms the
Jan 1, 1969
-
Uranium and Molybdenum in Ground Water of the Oakville Sandstone, South Texas: Implications for Restoration of Uranium MineBy James K. Gluck, William E. Galloway, Gary E. Smith, John P. Morton, Christopher D. Henry
INTRODUCTION Surface mining and in situ leaching of uranium have the potential to alter ground-water quality around mines and leach sites. Of particular concern is the fate of uranium and its associated trace elements: molybdenum, arsenic, and selenium. We wish to under- stand the natural processes that control trace element concentrations in ground water and how these processes will influence dispersion of the elements from a mineralized zone, both naturally and during and after mining or restoration. For example, it is commonly recognized that the trace elements are soluble in oxidizing ground water but are insoluble, and can be precipitated, in reducing ground water. Thus oxidizing, metal-bearing water leaving a deposit could re- enter reduced ground, causing the water to be re- reduced and the trace elements to be, reprecipitated. In a sense, this is recreating the original mineralization process. To accomplish the above goals, we have (1) examined the theoretical controls of concentrations based on the available geochemical and thermodynamic data, (2) determined the major ion composition and oxidation-reduction status of Oakville waters because of the influence of these factors on trace element solubility, and (3) determined trace element concentrations and distribution in Oakville ground water. The last approach is used to evaluate how well actual behavior follows predicted behavior. This report focuses on two elements, uranium and molybdenum, because they exemplify the results obtained. The report also is restricted to a regional study of Oakville ground water. Results of more de- tailed study in and around major uranium districts in the Oakville and much of the raw data that support the conclusions in this report are presented in Galloway, Henry and Smith (1980). This report is part of that larger study, which concerned the depositional systems, hydrology, and geochemistry of the Oakville. The U.S. Environmental Protection Agency funded the study, under grant numbers R-805357-01 and R-805357-02. Theoretical controls were determined by reviewing the available literature on aqueous chemistry and behavior of uranium and molybdenum. To aid in under- standing water chemistry, Oakville water analyses were run through a modified version of the computer model WATEQF (Plumer, Jones, and Truesdell, 1976). WATEQF calculates speciation of dissolved ions and determines saturation with respect to a variety of minerals. In the discussion below, ion activity products (IAP) are compared with the equilibrium constant (KT) for various reactions and mineral products. Values of log IAP/KT near zero indicate that the water is in equilibrium with a mineral. Values less than -1 indicate considerable undersaturation and values greater than +1 indicate oversaturation. Galloway, Henry, and Smith (1980) give a more complete discussion of the application of this approach to Oakville water chemistry. Eh-pH diagrams have been constructed or adapted from the literature to predict what form -- dissolved ion or stable mineral species -- uranium and molybdenum assume under various conditions. Construction of the diagrams has followed procedures described by Garrels and Christ (1965). This approach is particularly appropriate because the solubility of the elements is Eh-dependent, and Eh varies greatly within the Oakville aquifer. A number of assumptions or approximations are inherent in the use of Eh-pH diagrams and chemical models such as WATEQF and in the interpretation of water chemistry in general. Both Eh-pH diagrams and chemical modeling rely entirely upon available thermo- dynamic data, including free energies of formation and dissociation constants for various reactions. These values are known to varying degrees of accuracy. Most major ions and minerals are relatively well control- led; however, data for trace metals are much poorer. Thermodynamic data are not available for some minerals, and for other minerals, two or more divergent values exist. By necessity, we have relied on the judgment of others to evaluate thermodynamic data. Calculations by WATEQF and constructions of Eh-pH diagrams are based on an assumption of equi1ibrium. Equilibrium may not be comnon in low-temperature aqueous environments; at best, ground-water composi tion may be in a state of dynamic equilibrium, continuously changing due to changes in environmental conditions. Eh-pH diagrams show what phases are stable at equilibrium under given conditions; they do not prove that the phases actually exist. Many minerals persist or form metastably under conditions outside their equilibrium stability field. The kinetics of reactions, which cannot be evaluated here, are important in determining what phases occur. Kinetics may be less of a problem for ground water that travels and evolves slowly through a semihomogeneous matrix than for many other natural systems. Eh-pH diagrams show equilibrium fields only of phases included. They do not indicate anything about stability relative to phases not included in the diagram. WATEQF, obviously, cannot calculate the degree of saturation of a mineral not included in the program or for which the appropriate ions were not analyzed. Thus, a mineral that was not considered may be the most stable phase under a given set of conditions and may control the solubility of a trace element. Also, this study is limited exclusively to in- organic compounds. Organic material is known to be an
Jan 1, 1980
-
Reservoir Engineering - Steady Flow of Two-Phase Single-Component Fluids Through Porous MediaBy Frank G. Miller
This report presents developments of fundamental equations for describing the flow and thermodynamic behavior of two-phase single-component fluids moving under steady conditions through porous media. Many of the theoretical considerations upon which these equations are premised have received little or no attention in oil-reservoir fluid-flow research. The significance of the underlying flow theory in oil-producing operations is indicated. In particular, the theoretical analysis pertains to the steady, adiabatic, macroscopically linear, two-phase flow of a single-component fluid through a horizontal column of porous medium. It is considered that the test fluid enters the upstream end of the column while entirely in the liquid state, moves downstream an appreciable distance, begins to vaporize, and then moves through the remainder of the column as a gas-liquid mixture. The problem posed is to find the total weight rate of flow and the pressure distribution along the column for a given inlet pressure and temperature, a given exit pres5ure or temperature and given characteristics of the test fluid and porous medium. In developing the theory, gas-liquid interfacial phenomena are treated. phase equilibrium is assumed and previous theoretical work of other investigators of the problem is modified. Laboratory experiments performed with specially designed apparatus. in which propane is used as the test fluid, substantiate the theory. The apparatus. materials and experimental procedure are described. Comparative experimental and theoretical results are presented and discussed. It is believed that the research findings contributed in this * paper should not only lead to a better understanding of oil-reservoir behavior, but also should be suggective in regard to future research in this field of study. INTRODUCTION In recent years much time and effort has been consumed in both theoretical and experimental studies of the static and . dvnamic behavior of oil-reservoir fluids in porous rocks. Although lack of sufficient basic oil-field data, principally concerning the properties and characteristics of reservoir rocks and fluids, largely precludes quantitative application of research results to oil-field problems, qualitative application has become common practice. In effect. oil-reservoir engineering research is serving as a firm foundation for oil-field development and production practices leading to increased economic recoveries of petroleum. This province of research. however, still poses many perplexing problems. The thermodynamic behavior of two-phase fluids moving through porous media constitutes one facet of reservoir-fluid-flow research that has not received the attention it deserves. This report embodies a theoretical discussion of this subject and a description of a series of related laboratory experiments. The significance of the problem to oil field operations is indicated but in articular the report centers around a theory and method for analyzing the steady. macroscopically linear, two-phase flow of a fluid (a single molecular species) through a horizontal column of porous medium. For simplicity in showing how the thermodynamic behavior of two-phase fluids moving through porous media affects oil-reservoir performance problems, attention is focused temporarily on a particular well producing petroleum from an idealized water-free solution-gas drive reservoir, the reservoir rock being a horizontal, thin, fairly homogeneous sandstone of large areal extent confined between two impermeable strata. The flowing hydrocarbon fluid is considered to exist entirely as a Iiquid at points in the reservoir remote from the well; however. the decline in fluid pressure in the direction of the well causes vaporization of the hydrocarbon to begin at a radial distance r from the well. Upstream from r the fluid moves entirely as a liquid and downstream from r it moves either entirely as a gas or as a gas-liquid mixture depending on the properties of the hydrocarbon and on the thermodynamic process it follows during flow. The distance r would be variable under transient flow conditions. but for purposes of analysis the flow is considered to l~e steady at the particular instant of observation during the flowing life of the well of interest. If the flow were isothermal and the hydrocarbon a pure substance, the fluid would be entirely gaseous downstream from r. Thus, this isothermal flow process for a pure substance would require that the heat of vaporization be supplied at r. over zero length of porous medium, at the precise rate necessary to maintain the constant temperature. This means that the solid matrix of the porous medium (reservoir rock) and the surroundings (impermeable strata confining the reservoir rock) would have to serve as infinite heat sources. Heat-transfer requirements would be somewhat less severe for the isothermal flow of a multicorn-ponent hydrocarbon as bubble and dew points at the same temperature correspond to different pressures. In this instance isothermal conditions would be sustained without complete vaporization of the fluid over zero length of porous medium. Nevertheless. as the flow is in the direction of decreasing
Jan 1, 1951
-
Minerals Beneficiation - Comparative Results with Galena and Ferrosilicon at MascotBy J. H. Polhems, R. B. Brackin, D. B. Grove
THE heavy media separation process plays an outstanding role in the concentration of 4000 tons of zinc ore per day at the Mascot mill of the American Zinc Co. of Tennessee. Of the total tonnage, 72 pct is treated in the heavy media separation plant to reject 56 pct of the ore as a coarse tailing, which has a ready market. Concentrates from this separation are beneficiated further by jigging and flotation. Approximately 25 pct of the total zinc concentrate production is made in the jig mill. Jig tailings are ground and pumped to the flotation circuit where the balance of the production is made. Fig. 1 shows a generalized flowsheet of the mill. The Mascot ore is a lead-free, honey-colored sphalerite in dolomitic limestone, with lesser amounts of chert and some pyrite. A mineralogical analysis is given in Table I. After 10 years of successful operation with galena medium and treatment of nearly 10,000,000 tons of ore, a decision to convert to ferrosilicon was made early in 1948 because of the increasing price of galena and consequent high operating costs. The conversion was made on Nov. 6, 1948, and the results obtained since that time have shown remarkable improvement over those made with galena. The Table I. Mineralogical Analysis of Mill Feed, Pct Calcium carbonate 49.5 Magnesium carbonate 35.2 Iron oxide and aluminum oxide 1.5 Zinc sulphide 4.5 Insoluble 9.3 100.0 Table II. Comparative Data, Galena and Ferrosilicon Ferro- Diner-Gelenaa siliconb ence Operating costs per ton milled, ct. 21.21 9.12 12.09 Medium consumption per ton milled, lb 0.80c 0.15 0.65 Reagent consumption per ton milled, lb 0.45 0.02 0.43 Tailing assay, pct Zn 0.310 0.297 0.013 Concentrate. oct Zn 12.08 10.33 1.75 Heavy medla ieparatlon recovery. pct 89.38 90.22 0.84 Mill feed rate, tons per hr 153 166 13 Heavy mesa separation feed rate. tons per hr 100 10 0 Tons milled per heavy media separation man shift 350 620 270 Mill feed to coarse tailings, pct 51.0 56.7 5.7 Lost mill time, pct 5.6 5.0 0.6 Power consumption, kw-hr per ton 2.06 1.92 0.14 a 1947. " First 6 months of 1950. c Net consumption after deducting credit for reclaimed waste galena. Consumption of new galena was 1.320 lb per ton milled. For entire life of galena operation, a credit of 40 pct of the value of the new galena added was realized from the sale of waste galena. comparisons given in this report cover the first 6 months of 1950 as representing the ferrosilicon operation, and the year 1947 as representing the galena operation. This was the last full year in which galena was used exclusively and is representative of the best work done during the 10 years of operation with this medium. After only 2 years' operating experience, with ferrosilicon and treatment of 1,807,585 tons many advantages have been revealed and are summarized in Table 11. Development Prior to the introduction of the heavy media process, all the mill feed was crushed through 5/8 in. and treated by jigging. A finished tailing assaying 0.66 pct Zn was made on rougher bull jigs, and cleaner jig tailings were ground for treatment by flotation. The first test work on the sink-and-float method of mineral beneficiation was carried out at Mascot in 1935, using a 3-ft cone and galena medium for batch tests. The following year a 6-ft cone was installed for pilot-plant work. This unit became a part of the mill circuit on March 1, 1936, and handled a gradually increasing tonnage in the next 2 years as the process developed to the point where it could treat all the + 3/8-in. material in the mill feed. Coarse jigging was then discontinued on March 1, 1939, and all coarse tailings have been made by the heavy media separation plant since that time. Feed Preparation: The original feed preparation plant consisted of a drag washer followed by two 4x10-ft Allis-Chalmers washing screens. A surge bin and two additional 5x12-ft AC washing screens were added in 1943. Use of primary and secondary washing screens was found essential to provide the cleanest possible feed for the cone and thereby avoid excessive contamination of the galena medium. Improved washing was obtained by replacing the drag washer with a 7x20-ft Allis-Chalmers scrubber, shown in Fig. 2, which has been in service since May 1944. Throughout the life of the galena operation, delivery of extremely muddy ore to the mill overloaded the medium cleaning system, and it frequently was necessary to cut off the feed and clean the medium for several hours until its normal viscosity had been re-established. The cleaning circuit
Jan 1, 1952
-
Institute of Metals Division - Zinc-Zirconium SystemBy P. Chiotti, G. R. Kilp
Thermal, metallographic, vapor pressure, and X-ray data were obtained to establish the phase diagram for the zinc-zzrconiz~m system. Five compounds corresponding to the stoi-chiometric formulas ZrZn, ZrZn,, ZrZn,, ZrZn,, and ZrZn14 were observed. All these compounds, with the exception of ZrZn2, which melts congruently at 1180°C under constrained zinc-vapor conditions, undergo pexitectic reactians. The temperature at which the zinc vapor pressure is I atm for a series of alloys was determined from vapor-pressure measurements. The data obtained are summarized in the construction of a I-atm-pressure phase diagram and a phase diagram corresponding to a pressure of less than 10 atm. THE purpose of this investigation was to establish the phase diagram for the zinc-zirconium system. Thermal, metallographic, vapor pressure, and X-ray data were employed in determining the phase regions. Partial investigations of this system have been conducted by Gebhardt1 and Carlson and Borders.' Carlson and Borders studied the high-zirconium region and established the existence of a eutectic at 69 wt pct Zr with a melting point of 1015°C. The terminal phases of the eutectic horizontal were shown to be an intermetallic compound ZrZn and a solid solution of ß zirconium containing 21 wt pct Zn. The ß solid solution decomposes into ZrZn and a zirconium at 750°C. The eutectoid composition is given as 15 wt pct Zn, and the solubility of zinc in a zirconium at temperatures below 750°C is indicated to be negligible. Gebhardt studied the zinc-rich region and observed a lowering of the melting point of zinc from 419.5" to 416°C and temperature horizontals at 545" and970°C. Some preliminary observations by Chiotti, Ratliff, and Kilp were reported by Hayes.2 pietrokowsky3 has reported the compound ZrZn2 to have a cubic MgCu2 structure with ao = 7.396A. MATERIALS AND EXPERIMENTAL PROCEDURES The metals employed in the preparation of alloys were Bunker Hill slab zinc or Baker analyzed reagent granulated zinc, both 99.99 pct pure and hafnium-free iodide-process crystal bar zirconium obtained from the Westinghouse Electric Corp. The zirconium contained 200 ppm Fe, 200 ppm Si, 100 ppm C, and minor amounts of other impurities. The zirconium was milled or machined into thin chips or shavings. These were cleaned with a nitric-hydrofluoric acid solution, rinsed with water, and acetone, and dried just prior to their use in alloy preparation. The granulated zinc was similarly cleaned using dilute nitric or hydrochloric acid. Weighed quantities of these materials, 20 to 30 g total, were mixed and pressed at 20,000 to 70,000 psi to give relatively dense compacts. During the early part of this investigation the pressed compacts were placed in MgO-15 wt pct MgF, crucibles which were then sealed inside of quartz ampules. The compacts were given various prolonged heat treatments prior to their use for thermal analyses, or vapor-pressure measurements. Because of expansion of the compacts and the relatively high zinc vapor pressure it was difficult to heat to the melting temperatures of the alloys without failure of the quartz ampules. Homogenization at temperatures below the melting temperature gave brittle, porous alloys unsuitable for metallographic examination. It was also difficult to prevent condensation and segregation of zinc on the colder parts of the quartz ampules during heating and cooling operations. These problems were eliminated to a great extent by the use of tantalum crucibles. Tantalum proved to be a satisfactory container with little or no reaction between the alloys and the tantalum. Small tantalum thermocouple wells were successfully welded in the bottom of these crucibles. Pressed compacts were sealed inside the tantalum crucibles by welding on preformed caps under an argon atmosphere. Heat treating and differential thermal analysis were combined into a single operation. The experimental sample assembly is shown in Fig. 1. This assembly was enclosed inside a stainless-steel tube heating chamber which could be evacuated and filled with an inert gas. The thermocouple leads were brought out of the heating chamber between two rubber gaskets used to provide a vacuum seal for the water-cooled head. Most of the compounds in this system undergo peritectic decomposition. After heating above the temperature of a particular peritectic horizontal the sample was cooled to just below the peritectic temperature and held at temperature for several hours. The sample was then reheated through the peritectic temperature and the size of the thermal arrest, if still present, compared with the one previously obtained. If the thermal arrest was not characteristic for the alloy composition being investigated its magnitude diminished and repeated cycling and annealing eventually eliminated it. The peritectic thermal arrests characteristic of a particular composition were established in this manner.
Jan 1, 1960
-
Part II – February 1968 - Papers - Kinetics of Austenite Formation from a Spheroidized Ferrite-Carbide AggregateBy R. R. Judd, H. W. Paxton
The rate of dissolution of cementite was studied in three low-carbon materials: a zone-refined Fe-C alloy, an Fe-0.5pct Mn-C alloy, and a commercial low-carbon steel. The materials were spheroidized, ad then held isothermally at temperatures above the Al. The isothermal anneal was interrupted periodically by a water quench and the specimens were analyzed by quantitative metallography for the amount of aus-tenite formed during the anneal. The results of this study were compared with an analytical model for the process, which assumes that carbon diffusion in aus-tenite is the rate-controlling step for the cementite dissolution process. The correlation between the model and the experimental data is excellent for the zone-refined Fe-C alloys; however, the Fe-0.5 pct Mn-C alloys and the commercial steel deviate from the calculated model. This deviation is thought to be a result of manganese segregation between the carbide and the matrix. The rate of nucleation of austenite at carbide interfaces was reduced by the manganese addition and enhanced by the presence of ferrite-ferrite grain boundaries. PREVIOUS investigations of the nucleation and growth of austenite from ferrite-carbide aggregates are not entirely satisfying for at least one of several reasons. The most prevalent of these is a lack of quantitative data. Engineering studies have been run on many steels with little control over important parameters such as composition and initial aggregate structure. The data obtained are valid only for material with identical chemistry and thermal history. A more informative approach to the problem of aus-tenitization would be to determine the mechanism that controls the rate of solution of carbide in austenite and how it is modified by alloying elements. This information could then be used to calculate an austeniti-zation rate for any material, provided its composition and structure are known. The object of the present work is to establish the rate-controlling step for cementite dissolution in Fe-C austenite and to investigate the modification of this rate by small manganese additions. The composition and structure of the material used were carefully controlled and all measurements were designed to allow a quantitative analysis of the kinetic process that controls the austenitization rate. A MODEL FOR DISSOLUTION OF CEMENTITE Cementite dissolution has been analyzed mathematically by a model that approximates the material used in the experiments. This model postulates a regular ar-array of identical cementite spheroids with 4 C( diam, embedded in a grain boundary- free ferrite matrix. The analysis provides a detailed description of the dissolution of one carbide spheroid and a generalization of the solution by summation over all the carbides in the material. The carbides may be isolated by defining identical, space-filling cells of ferrite around them. If the cell dimensions are greater than the diameter of the austenite sphere resulting from complete dissolution of the carbide, and no interaction (through diffusion in ferrite) takes place between cells during the dissolution process, the model need concern only one cell, since the solution in each cell is identical. In the experimental material, the dimensions of the cell, the carbide, and the final austenite sphere are approximately 24, 4, and 8 p, respectively; use of the single cell is therefore justified. The experimental observations are made on the austenite nodules that form around each carbide during the dissolution process. The model concerns the growth of these austenite nodules. The attendant shrinking of the carbide can be obtained from the same analysis by an extension of the calculations. Several a priori assumptions are necessary to make the analysis of the growth problem tractable. They are: 1) carbon diffusion through the austenite nodule is the rate-controlling process; 2) local equilibrium exists at all interfaces, 3) the austenite nucleus that forms on each carbide instantaneously envelops the carbide; 4) during the austenite growth process, the diffusion flux of carbon in ferrite is insignificant; 5) a quasi-steady state exists in the austenite concentration field; that is, at any instant during the dissolution process, the austenite carbon concentration gradient closely approximates that for a steady-state solution; and 6) the effects of capillarity on the dissolution rate of the carbides can be neglected. Referring to Fig. 1, a mass balance at the y-a interface for an infinitesimal boundary movement gives: Where rb is the outer radius of the austenite shell, C1 and C are carbon concentrations at the interface in austenite and ferrite, respectively, see Fig. 2, is the diffusion coefficient of carbon in austenite for the concentration of carbon at the interface, and t is time. The fifth assumption permits the austenite carbon concentration to be approximated by the Laplace solution for the spherical case. Therefore, where C(Y) is the carbon concentration at r, and A and B are constants. Local interfacial equilibrium fixes the boundary conditions for the diffusion problem. They are:
Jan 1, 1969
-
Institute of Metals Division - The Deformation of Single Crystals of 70 Pct Silver-30 Pct ZincBy W. L. Phillips
Stress-strain curves were obtained for single crystals of 70 pct Ag-30 pct Zn tested in tension and shear. Samples tested in tension and shear had comparable resolved shear stresses and stress-strain curves. The {111} <110> slip system was observed. It zoas found that the9.e is a barrier to slip in both latent close -packed directions and that the magnitude of these barriers is proportional to prior strain during easy glide. It was observed that cross-slip in tension and shear was most frequent in crystals with an initial orientation near <100> "Oershoot" zoas observed in tension. The amount of this "overshoot" was independent of initial orientation. AN idealized concept of plastic deformation indicates that a single crystal should yield at some stress that is dependent on crystal perfection and it should then continue to deform plastically by the process of easy glide which is characterized by a linear stress-strain curve and a low coefficient, d/dy, of work hardening. Hexagonal metal crystals generally conform to this ideal concept of laminar flow. In fcc metals the range of easy glide is always restricted in magnitude and it is strongly dependent on orientation, composition, crystal size, shape, surface preparation, and temperature. Since one of the principal differences between the two crystal systems, both of which deform by slip on close packed planes, is the existence of latent slip planes in the fcc crystals, it has been proposed that the transition from easy glide to turbulent flow, characterized by rapid linear hardening, is due to slip on secondary planes intersecting the primary plane.ls Several theories have been proposed to explain the linear hardening and parabolic stages of the stress -strain curve.6"10 The easy-glide region is the least understood of the three stages. The stress-strain characteristics of Cu-Zn, which shows a long easy-glide region, have been extensively investigated."-" In light of recent ideas on dislocations, cross-slip, effect of solute atoms, and stacking fault energy, it was felt that the certain features of this earlier work might be compared with another alloy, Ag-30 pct Zn, which also exhibits a long easy-glide region. Tension and shear stress at room temperatures were employed. The results obtained, together with some interpretation of the observations, are described below. EXPERIMENTAL PROCEDURE The silver and zinc used for mixing the alloys were 99.99 pct pure. The two components were weighed to within 0.1 pct of the weights required fo the alloy composition. They were then placed in a closed graphite mold and the mold and contents were heated in 100°C stages from 500' to 900°C with sufficient time and vigorous agitation at each stage provided to dissolve the silver. The crucible was then heated to 1150°C and agitated violently before being quenched in oil. The resulting alloy rod was machined free of sur face defects and then placed in a graphite mold designed for growing single crystals. The graphite mold was closed with a graphite plug and was encased in a pyrex glass tube which was connected to a vacuum system. The tube and mold assembly were placed in a furnace; the tube was evacuated and the furnace was rapidly heated to a temperature sufficient for fusing and sealing the glass. The glass-encased evacuated mold and contents were then lowered through a vertical furnace. The top section of the furnace was held at 100 °C above the melting point of the alloy. The lowering rate was 1.5 in. per hr. The tension specimens were 1/4 in. diam; the shear specimens were 1/2 in. diam. These specimens were then removed from the mold, etched, and chemically polished with hot (60°C) Chase etch reagent (Crz03-4.0 g, NH4C1-7.5 g, NHOs-150 cc, HzS04-52 cc, and Hz0 to make 1 liter). In preparation for tensile testing, the specimens were carefully machined to a diameter of about 0.200 in. to permit a gage length of 6 in., annealed for 16 hr at 800' to reduce coring, and then cleaned and polished. A modified Bausch-type shear apparatus which has been described previously18 were employed. The gage length was 1/8 in. This shear apparatus was placed in an Instron tensile testing machine. EXPERIMENTAL RESULTS A) Tension. Several specimens were extended at room temperature to determine the effect of initial orientation on the stress-strain curves of Ag-30 pct Zn. The initial orientation and the resolved shear stress supported by the active slip system at various total strains are plotted in Fig. 1. The critical resolved shear stress, t,, initial rate of work hardening, d/dy, and length of the easy-glide region are independent of orientation. The arrival at the symmetry line is shown by an arrow in Fig. 1. During the easy-glide region of the stress-strain
Jan 1, 1963
-
Institute of Metals Division - Recrystallization Kinetics of Low Carbon SteelBy S. F. Reiter
The paper presents isothermal recrystallization curves for 0.08 and 0.15 pct C steel at subcritical temperatures following small amounts of plastic deformation. The effects of deformation, temperature, and aging on nucleation and growth rates ore described. The free energy of activation for grain boundary migration in steel is given. SEVERAL excellent reviews of the literature have appeared concerning the recrystallization of metals.'-' The present investigation follows the approach advanced by Mehl, Stanley, and Anderson,6-7 in which the rate of recrystallization was analyzed in terms of N, the rate of nucleation, and G, the rate of growth of recrystallization nuclei. Two lots of low carbon, capped steel of the analysis given in Table I were studied. Each lot consisted of a 150 lb coil which had been hot rolled to 0.083 in. and then cold rolled to 0.042 in. at the mill. Strips 0.930 in. wide were sheared perpendicular to the rolling direction. Both steels were normalized before studying their recrystallization characteristics. The strips were cleaned, painted with a magnesia-acetone paste, and made into packs of equal weight, wrapped in 0.002 in. copper foil. The packs were placed in a salt bath at 900°C for 30 min and air cooled. A relief anneal followed in a second salt bath for 15 min at 650°C. The relief anneal was found necessary from early tests in which a longer incubation period and slower rate of recrystallization were observed in relief-annealed lot A steel than in similar material which was strained and recrystallized directly after being normalized. This effect, which indicates the presence of transformation and/or cooling stresses in steel air cooled from above the A, temperature, has also been observed by Samuels8 and Masing.9 Figs. 1 and 2 show the microstructure of lot A and B materials and illustrate the rather uniform No. 8 ASTM grain size produced by this heat treatment. Winlock and Leiter10 observed that strip specimens which had their sharp edges removed elongated more uniformly than those which were not polished. Similarly, when the sheared edges were removed on a belt grinder, it was found in the present investigation that such samples recrystallized more uniformly than did unpolished strips. Therefore, all strips were carefully rounded prior to their extension. The approximate strain limits for the production of large recrystallized grains are from 6 to 12 pct extension." It was found that for the purpose of this investigation, 8 and 9 pct elongation were suitable deformations. The strain rate employed was 0.01 in. per in. per min and produced a yield point elongation of 4 pct. Winlock and Leiter found that mild steel of No. 8 ASTM grain size gave the same yield point elongation when extended at 0.012 in. per in. per min. All of the lot A and B strips extended in tension developed a straight, stretcher strain line at each grip when the upper yield point was reached. The lines were parallel and made an angle of 55" with the edge of the strip. They approached each other with increasing strain and met near the center of the sample at the end of the yield point elongation. Immediately thereafter, a small drop in load was observed and then the load increased in a regular manner with increasing extension. The grips were initially 8 in. apart. After extension, the 6 in. gage length was carefully cut into 1 in. samples. The remainder of the strip was discarded. After a flash pickle in hot 50-50 hydrochloric acid, six samples, each of which had been taken from a different strip, were placed in a basket and submerged in a lead pot for isothermal recrystallization. Although no recovery effect was observed, strain aging did occur after extension. Therefore, samples were always recrystallized within 24 hr after their cold deformation. After recrystallization, the samples were etched with a solution comprised of one part by volume of nitric acid with three parts of water. Bromide printing paper was exposed directly at low magnifications and later used with a mask to measure the desired quantities. First, the average diameter of the largest grain visible in each sample was determined using dividers. Next, the number of recrystallized grains per unit area was counted and recorded as n. Then, for each sample, the combined area of the recrystallized grains was measured by transcribing the grain outlines to standard graph paper. Many determinations of the area of the recrystallized grains were repeated five times and indicated a standard error that was not greater than 25 pct. The average area for six samples was divided by the area of the mask to yield the percentage recrystallized. Recrystallization of 0.08 Pct C Steel The progress of recrystallization at 670°C after 8 pct elongation of lot A steel is shown in Fig. 3, a through f. The shapes of the growing crystals are approximately equiaxed, as is assumed in the
Jan 1, 1953
-
Minerals Beneficiation - Pebble Milling Practice at the South African Gold Mines of Union Corp. LtdBy O. A. E. Jackson
Pebble milling has been practiced in the reduction works of South Africa gold mines for well over 50 years. Originally flint pebbles were imported from Denmark to grind stamp-mill amalgamation-process tailing, which contained a good deal of extractable gold, but local operators soon found that large pieces of ore could be used for the same purpose. The ore is a hard, tough conglomerate in which quartz pebbles are cemented together by a matrix of redeposited silica interspersed with pyrite crystals. The gold, rarely visible, occurs as fine particles mostly segregated at the interface of the pebble and matrix, although a small fraction occurs within the pyrite crystals. There is seldom any gold in the pebbles themselves. Following the usual South African practice in pebble milling, Union Corp. grinds the ore wet in two or three milling stages incorporating classification. The sized broken ore used as grinding media is separated from the main ore stream in the crushing section that prepares the ore for milling. Where the ore channel, or reef, is narrow there is a shortage of large pebbles. In this case primary grinding may be done in ball mills or, more recently, in rod mills, which cost less per ton to operate. The trend, however, is to prepare finer feed for the milling section. This makes it possible to use smaller primary pebbles and eliminates the need for steel. REDUCTION WORKS OF UNION CORP. LTD. Union Corp. Ltd. exercises financial and technical control over a group of seven gold mines in the Transvaal and Orange Free State. In the Transvaal, with one exception. the mines lie 20 to 40 miles east of Johannesburg, in flat or gently rolling countryside. Winkelhaak, the first of several new mines that will be developed by Union Corp., is located in similar terrain in an entirely new gold mining district about 80 miles east of Johannesburg. Table I gives details of milling units for six of the Union Corp. mines, together with the tonnage milled in 1957. Winkelhaak Mines Ltd. is not included, as it did not begin milling until 1958. This reduction plant has no crushing section; ore is ground directly from the mine (autogenously) in 12x16-ft mills. Because these operations are still in development, they are not described in this article. It will be noted that certain reduction works have mills of more than one size in the same milling stage. This came about when plant extensions in- corporated larger units. In the case of Geduld Propty. Mines Ltd., which began milling operations 50 years ago, the primary stage is stamp milling. The reduction works follow a uniform pattern and are usually joined to the main ore shaft. Ore from other shafts is brought by standard-gage railway and dumped into a common transfer bin. The trend is to increase surface storage capacity to enable the crushing and milling sections to operate at a steady rate, independent of fluctuating ore deliveries from mine. Milling and cyanide extraction divisions of new mines are always designed to allow for extensions as mine production increases. The conveying, washing, and screening system of the crushing section is usually laid out in final form, with additional space for more crushing equipment. The crushing sections operate on one shift during early years of mine production; a second shift is introduced when the mining rate warrants it. Ample surge capacity is provided. Crushing and milling is done only on weekdays, as the law does not allow these operations to take place on Sunday in any plants constructed since 1911. The cyanide extraction sections, however, operate continuously seven days a week, drawing on mill pulp gradually built up in the thickeners during the week. Construction and equipment of milling plants follow standard practice. Dilution water is drawn from a large, high-level tank to obtain constant pressure, but gland service water for the pulp pumps is reticulated from high-pressure, two-stage pumps. The mills are equipped with the most up-to-date machinery and are designed to save labor. They compare favorably with milling plants in countries where native labor does not exist, and automatic controls are being installed wherever feasible. Hydrocyclone classifiers have replaced mechanical classifiers in modern milling plants, chiefly because of the saving in capital outlay, maintenance, and building space. The hydroclones are fed from steady head boxes rather than directly from pumps, and dilution water is introduced into these boxes. Tests have shown that in steadiness of operation and separating efficiency cyclones are comparable to mechanical classifiers. but protective stationarv screens are needed to keep the spigots clear. Rubber-lined pumps are used for pulp of about 3 mesh or finer and metal-lined pumps for coarser material. None of the Union Corp. milling plants practices gravity concentration of coarse gold by amalgamation or the use of corduroy blankets. Studies have proved that no economic case can be made for these methods, which complicate the milling process and demand extra precautions against theft.
Jan 1, 1960
-
Institute of Metals Division - Discussion of The Dependence of Yield Stress on Grain Size for Tantalum and a 10 Pct W-90 Pct Ta AlloyBy R. E. Smallman
R. E. Smallman (University of Birmingham, England)—Recently, Tedmon and Ferriss11 have determined the yield stress parameters oi and ky for tantalum by measuring the lower yield stress as a function of grain size 2d and fitting the results to a relationship of the form They report that although ky , which is taken to be a measure of the dislocation locking strength, is small (- 2 to 4 x 106 cgs units) a substantial yield drop is nevertheless observed in a normal tensile test. Niobium gives a similar result,12-14 as pointed out in the original work by Adams et a1.,12 and in order to check this apparent anomaly the yield-stress parameters of electron beam-melted niobium have recently been reanalyzed15 by the Luders strain technique. In this method the strain hardening part of the stress-strain curve is extrapolated to zero plastic strain; the intercept on the preyield portion of the curve is taken to give oi, whilst the difference between oi and the lower yield stress gives kyd-1/2. The results indicate that ky increases with increasing grain size and hence, a plot of vs d-112 yields an apparent ky, which is lower than the true value. A similar effect could account for the small ky found in the relatively pure tantalum used by Tedmon and Ferriss. The variation of ky with grain size shows that dislocations are more strongly locked in coarse-grained specimens than in fine-grained samples. In niobium, this may be attributed to the fact that the dislocation density in the fine-grained material is higher than that found in the coarse-grained samples which are given a sufficiently prolonged anneal to remove any residual substructure and, since the metal contains only a small amount of interstitual impurity, a variation in locking occurs. By contrast, application of both the grain size analysis and the Luders strain method to yield-stress data from commercially pure vanadium containing a large amount of interstitial impurity gives consistent values of oi and ky, with ky independent of grain size and temperature. Electron microscope observations show minor variations in dislocation density from grain size to grain size, but in any case in this material the dislocations are heavily locked with precipitate. On yielding new dislocations are generated and, as a consequence, the importance of any differences in dislocation density between the various specimens of different grain size is considerably reduced. It is perhaps significant that Adams and lannucci,16 working with a grade of tantalum containing a higher interstitial content than that used by Tedmon and Ferriss, prepared the specimens of different grain size by annealing in the temperature range 1500" to 2000° C to minimize any differences in dislocation structure, and found that ky had a value of 1.04 x 107 cgs units, independent of testing temperature. Such behavior is consistent with the dislocations being locked by carbide precipitates so that the generation of free dislocations is an athermal process. The recent work of Gilbert et al.17 also shows that in tantalum there is no significant variation of ky with grain size provided it contains 150 ppm of oxygen. In this case, however, the dislocations are not locked by precipitate and ky is temperature dependent. C. S. Tedmon and D. P. Ferriss (authors' reply)— We would like to thank Dr. Smallman for his interesting comments and discussion to our paper, "The Dependence of Yield Stress on Grain Size for Tantalum and a 10 pct W-90 pct Ta Alloy".18 It was suggested that perhaps the relatively small values obtained by us for ky of tantalum could be attributed to the same cause that accounts for the apparently small values of ky that result when it is determined by the Luders Strain technique. Since our values were obtained by plotting the lower yield stress vs the reciprocal of the square root of the grain size, it is not clear how this could be the case. The values of ky in this experiment have been calculated, using the Luders strain technique. With this method, values for ky on the order of 2 x 105 to 5 x lo6 cgs units were obtained. In spite of this rather large variation, the magnitudes are still small, and there appeared to be no good correlation between ky and the grain size or the yield stress, probably because of the difficulty in accurately extrapolating the work-hardening portion of the curve back to zero plastic strain. As was shown in the original data,18 there was little work hardening in any of the curves, at any temperature. In his discussion, Dr. Smallman also points out how ky has been observed to increase with increasing grain size, when determined by the Luders strain technique. There are at least two possible explanations for this. In the first case, if it is assumed that the bulk of the interstitial impurities are concentrated at the grain boundaries, then, of course, the available grain boundary area would decrease with increasing grain size, thus presenting less area for the interstitials, which would then presumably increase the concentration within the grains, thereby increasing the locking of the dislocations. In the second case, the increase in ky with increasing grain size would be attributed to the nature of the grain boundary itself. One of the several ways of deriving the Hall-Petch equation19 is based on the stress concentration arising from a pile-up of dislocations at the boundary. The ability of the stress concentration to unlock a source in a neighboring grain would depend on the strength of the grain boundary. As is well-known, the nature and struc-
Jan 1, 1963
-
Coal - Evaluation of Mine Drainage WaterBy S. A. Braley
DRAINAGE water from coal mines is probably the most serious water pollution problem today, varying in importance according to location of the mines and geological structure. Drainage may be either acid or alkaline in character. Acid discharge, the most severely detrimental to a stream, is caused by natural oxidation of the sulfuritic material (FeS2) in the strata associated with the coal seam. Since the acid is the result of a natural reaction the acid water differs because it does not cease with abandonment of the mining operations. There is no known economical method of neutralizing acid mine water or any practical method to prevent oxidation of exposed pyrite. Since production of acid from a mine does not stop when mining stops, the total quantity produced depends entirely upon the excavated areas. The increasing volume of acid water in manv mines has greatly increased operating costs. Pumping is expensive and acid mine waters are destructive of all equipment, especially metals in pumps and piping, and necessitate the use of corrosion-resistant materials. Discharge of the acid mine drainage into streams neutralizes their normal alkalinity, causes them to become acid, and produces an environment unfavorable for aquatic life and unsuited for industrial or domestic use without costly treatment. Mine drainages vary in percentage composition over wide limits, although the usual dissolved substances are ferrous and ferric iron, aluminum, calcium and magnesium sulfates, and lesser amounts of sodium, potassium and manganese sulfates and chlorides. Some alkaline discharges may contain heavy concentrations of iron as iron bicarbonate. These waters may produce iron hydroxide deposits in the receiving stream but do not cause it to become acid. In the extensive literature on acid mine water there appears to be a great deal of confusion about the importance of various components and the methods for their determination. In many instances faulty conclusions have been drawn from use of unsuitable methods of analysis. It is desirable that the factors and terms used in evaluation of analyses of mine waters should be so clearly defined that any interested person could properly appraise any analytical report. Some analysts report complete chemical analyses of mine waters and neglect to record drainage volumes. Others report only a minimum of analytical data after taking no precautions to preserve the original composition of the water during the time elapsing between collection and analysis. Some use methods of analysis intended for so-called pure waters of the potable and boiler water classes. These methods are not applicable to highly buffered waters such as mine water. Probably the most common criteria for evaluation are pH, free acidity, or acidity or alkalinity to methyl orange or methyl red, total acidity or acidity to hot phenol-phthalein, and the sulfate content. If these determinations are made on carelessly collected samples after a few days to weeks standing in warm rooms, they do not in any way represent the character of the water flowing from the mines. It is hoped that a brief discussion of the fundamental value of some of these factors may lead to a bettqr understanding of the need for more careful evaluation of mine water discharges. The term pH is one used by chemists to express relative acidity or alkalinity in terms of concentration of effective hydrogen ion in a solution. It is defined as the negative logarithm of the hydrogen ion concentration or activity in equivalents per liter. pH = logarithm A neutral solution, which is one containing the same number of hydrogen and hydroxyl ions, has a pH of 7. As the hydrogen ions increase and the solution becomes more acid, the pH decreases toward zero; and as the hydroxyl ions increase and the solution becomes more alkaline, the pH approaches 14. When dissolved in water to a dilute solution acids like sulfuric and hydrochloric, commonly known as strong acids, ionize completely, and the pH or hydrogen ion concentration varies with molar concentration of the dissolved acid. However, in high concentrations of such acids, the pH or hydrogen ion concentration is less than the acid concentration because the acid does not completely ionize. In only very dilute solutions does the pH represent the total amount of acid that can be neutralized by an alkali. All ionization reactions are equilibrium reactions. If other chemicals are added to the solution of an acid and the added chemical produces an ion that is the same as one of the ions of the acid, the degree of ionization of the acid is altered and the pH changes to some value that represents the active hydrogen ion of the new solution. Thus if iron sulfate is added to a solution of sulfuric acid the pH increases, since the common sulfate ion suppresses the degree of ionization of the sulfuric acid and decreases the effective hydrogen ion. However, the total acidity of the solution is increased. There are two salts composed of iron and sulfate— ferrous and ferric sulfate. In these salts there is no hydrogen ion that can ionize to give an acid solution, but when they are dissolved in water, the pH is less than 7 and the solution becomes acid. This is caused by a reaction known as hydrolysis and is represented by the equations FeSO4 + 2H2O ? Fe(OH)2 + 2H + SO,: or Fe,(SO,)3 + 6H2O ? 2Fe(OH)3 + 6H+ + 3504 A solution with a total acidity of 5000 ppm according to the first equation will have a pH of 4.40 but one with an acidity of 75 ppm, according to the sec-
Jan 1, 1958
-
Discussion of Papers Published Prior to 1956 - Comminution as a Chemical ReactionBy K. F. G. Hosking
I read Professor Gaudin's paper with great interest and pleasure because for some time I have held that the chemical aspect of comminution is a subject of considerable importance to the mineral dresser and deserves to be thoroughly investigated. It does seem appropriate, however, to emphasize the fact that "fresh" edges and corners produced by the grinding of solids display enhanced reactivity has been recognized and utilized in the development of certain mineral identification techniques. Some of these techniques are worth noting, not only because they might facilitate research in the aspect of mineral dressing under discussion, but also because they emphasize the fact that many mineral species commonly regarded as being very inert can display a surprising reactivity when in the freshly ground state. In 1951 Isakov6 published a number of tests for the components of certain mineral species which depend essentially on grinding in a mortar a mixture of the material under investigation with a solid reagent. Thus when stibnite, 4(Sb2S3), is ground with sodium or potassium hydroxide. the antimony is revealed by a momentary development of a yellow color which changes in air to orange-red. Other antimony minerals need a preliminary treatment before the test can be carried out. This consists of grinding with aluminium sulfate, ferric sulfate or potassium bisulfate, and breathing upon the resultant mixture. I have employed a similar technique to determine the approximate magnesia content of certain limestones.' The method depends essentially on the fact that when a sample of limestone is ground under controlled conditions with solutions of sodium hydroxide and Titan yellow the color of the final product is, within limits, a function of the amount of magnesia present. I have also shown that the components of a wide range of minerals can be identified by applying chemicals to their streaks on portions of vitrified, unglazed floor tiles, etc. Under such circumstances the diversity of the reactions which take place in the cold (because of the reactivity of fresh corners and edges) is surprising. Thus, for example, if a garnierite, (Ni,Mg)3Si2O5(OH)1, streak is treated first with a drop of 0.880 ammonia and then with a drop of a 1 pct alcoholic dimethyl-glyoxime it immediately becomes red, indicating the presence of nickel.' Stevens and Carron9 have evolved a simple field test for distinguishing minerals by "abrasion pH." A soft nonabsorbent mineral is scratched in a drop of water on a streak plate until a milky suspension is formed. A piece of pH indicator paper is dipped into the suspension, after which it is removed and the maximum deviation from neutrality noted. When a hard mineral or one which absorbs water is being tested, fragments are first ground for 1 min with a few drops of water in a mortar to make a heavy suspension. The importance of the findings of such tests to mineral dressing may be judged by the abrasion pH values, Table 11, recorded by Stevens and Carron for certain species usually regarded as comparatively inert. The combined results Of the above researches clearly indicate that comminution is capable of altering the pH of a pulp and of causing the chemical nature of the surfaces of some of the components to be profoundly changed' Depending On circumstances such surface alterations may have a beneficial or an adverse effect if these products are subsequently subjected to flotation. The tests also suggest that by grinding "inert" minerals with appropriate solid or liquid reagents "reactive" surfaces may be developed which might facilitate separations by flotation. It is an interesting and instructive problem to determine the reactions that are likely to take place when dry solid substances are subjected to comminution and to the unavoidable heat liberated during the process. To do this it is theoretically necessary to know the free energy values of the reactants and possible resultants, but unfortunately there is a dearth of such data! However, the heats of formation of many substances are known, and generally speaking, if in a reaction of the type AB + CD = AD + CB the sum of the heats of formation of AB and CD is less than that of AD and CB the reaction will probably proceed to the right. Thus, according to a note I have (the author of which I cannot name) if PbS (black) is warmed with CdSO, (white), PbSO., (white) and CdS (yellow) are formed, and that the reaction does, in fact, take place is indicated by the change in color of the mixture. The reaction is expected, as the sum of the heats of formation of PbS and CdSO, is less than that of PbSO, and CdS (as shown below). PbS + CdSO4 = PbSO4 + CdS 22.2 + 218.0 < 216.2 + 33.9 Finally, certain other aspects of the chemistry of comminution, which are neither mentioned by Professor Gaudin nor referred to by me are to be found in a paper by Welsh" and in the printed discussion thereof. A. M. Gaudin (author's reply)—The observations contributed by Dr. Hosking are indeed welcome, as they add to our experimental knowledge of a topic which is believed to be of the first importance. In connection with the experiments cited it should be kept in mind that oxidation, hydration, and carbonation at various rates should always be deemed to be possibilities when grinding is done in water or in air, even in "industrially dry" air. Special precautions might lead to sufficient minimizing of these reactions and to the assertion, instead, of deliberately-created reactions. The author wishes to thank Dr. Hosking for his contribution.
Jan 1, 1957
-
Discussions - Of Mr. Weed's Paper on Types of Copper-Deposits in the Southern Part of the United States (see vol. xxx., p. 449)J. E. Stead, Middlesborough, England (communication to the author): Prof. Howe's valuable paper on cast-iron brings forward most prominently the correct explanation of the part played by combined carbon in pearlite and cementite, in determining the strength and hardness of cast-iron. On a previous occasion I haveoshown that castings made by melting a white Cleveland iron and glazed iron, one containing 1.5 and the other from 4 to 5 per cent. of silicon, and each about 3 per cent. of carbon, were stronger than those made of ordinary foundry-iron; the difference in the final castings being a differ-
Jan 1, 1902
-
Part III – March 1969 - Papers - Diffusion of Rare Earths into II-VI CompoundsBy W. W. Anderson, D. G. Girton
The photoluminescence of Pr, Nd, Ho, Er, Tm, and Yb in CdS, and Ho, Er, Tm, and Yb in ZnSe has been observed from crystals Prepared by diffusion using rare earth metals and an excess chalcogen pressure. For a given temperature, time, and chalcogen pressure the spectral characteristics were very reproducible from run to run, and the emission intensity for Nd, Er, and Yb in CdS was as high or higher than the best vapor phase doped crystals we have grown. For a few rare earths it was found that certain conditions of diffusion tend to yield optimum rare earth emission intensity with respect to the background lattice emission. Photoluminescence measwements of Yb in CdS as a function of depth gave a profile which was neither a Gaussian nor complementary error function. Part of the profile appears to arise from a fast component of the diffusion and the other part from a slow diffusing component. At 960°C and 33 atm S pressure, a com -plimentary error function approximation of the slow diffusing component gave a diffusion coefficient of D = 1.3 x 10-9 sq cm per sec. MOST of the studies of emission from rare earth ions in II-VI compounds have been reported on crystals doped during growth,1,2 although Kingsley and Aven prepared ZnSe:Er by diffusion for paramagnetic resonance and fluorescence studies. Pappalardo and Dietz prepared CdS:Yb by diffusion, but they made optical absorption measurements., We know of no study on the properties of rare earth diffusion in the II-VI compounds. To date we have diffused Pr, Nd, Ho, Er, Tm, and Yb into CdS, and Ho, Er, Tm, and Yb into ZnSe and observed the rare earth emission spectra. For a given temperature and chalcogen pressure, the emission characteristics are very reproducible from run to run and for Yb, Nd, and Er in CdS, as good as the best crystals we had prepared by doping during vapor phase growth.2 The emission of Pr, Ho, and Tm has been observed in CdS prepared by diffusion for the first time. Previous attempts2 to prepare these later three materials by vapor phase growth were unsuccessful. The problem of obtaining reproducible characteristics in II-VI semiconductor compound work is well known.5 Not only is it difficult to reproduce results from one laboratory to another but it is sometimes difficult to reproduce results from one growth run to another under ostensibly identical conditions within one laboratory. This situation has been particularly bothersome in research on the luminescence of rare earth activated ZnS1 and Cds2. Crystals from one vapor phase growth run would show very strong rare earth line emission while crystals from a nearly identical run would show no rare earth emission. It was also observed on occasion that the intensity of the rare earth emission was not constant over the entire volume of a single crystal. MATERIAL PREPARATION AND INSTRUMENTATION Vapor phase grown boules of CdS were supplied by Dow Corning. This material was characterized by a free electron concentration of n - 3.5 x 1015 cm-3 and Hall mobility of 350 sq cm per v sec at room temperature. There were microscopic voids and decorated precipitates in some samples. The precipitates annealed out at diffusion temperatures but the voids remained. Single crystal rectangular samples of mm dimensions were sawed from the boules. The ZnSe was polycrystalline, UHP grade from Eagle-Picher. Poly-crystalline samples were sawed from the ingots. The samples were lapped, polished on one side, etched in a solution of 0.5 M K2Cr2O7 in 16 N H2SO4, and thoroughly washed in distilled water. A sample, excess sulfur (or selenium), and 5 mg of rare earth metal (turnings) were sealed in a 3.6 cm3 quartz ampoule at about 2 X 10-5 torr. The high chalcogen pressure used (1 to 30 atm) prevented thermal etching of the crystals and affected the diffusivity and solubility of the rare earth ions in the crystal lattice. For meaningful or reproducible results, it is thus necessary to specify the vapor pressure at which the diffusion was carried out. It is assumed that a negligible amount of the chalcogen was used in the formation of rare earth sulfides or selenides Our sulfur vapor pressure calculations are based on data assuming S2, S6, and S, molecules only in which case the equilibrium constants are given by6 where the pressures are expressed in torr. Selenium vapor consists of a mixture of Se2, Se4, Se6, and Se6 molecules. The selenium vapor pressure was calculated using equilibrium constants given by The status of the rare earth source during diffusion is unknown, i.e., the partial pressures of the rare earth metal and of the rare earth chalcogenides has not been determined. All emission spectra were recorded at 77°K on a Perkin-Elmer model 98-G spectrometer using a 640 line per mm grating. No correction was made for the spectrometer and detector spectral sensitivity. Excitation was by means of an XBO 1600 w xenon arc
Jan 1, 1970
-
Minerals Beneficiation - The Burt FilterBy A. Y. Bethune, W. G. Woolf
THE hydrometallurgy of special high-grade zinc as practiced by the Sullivan Mining Co. at its electrolytic zinc plant, Kellogg, Idaho, involves an important filtration step immediately following the leaching process. By means of the filtration the heavy zinc sulphate solution is separated from the residual products which remain after the zinc calcine has been dissolved in the sulphuric acid electrolyte. Because this plant uses the so-called high-acid, high-density process' for the production of First, the strength of the electrolyte (270g H,SO, per liter) results in a saturated zinc sulphate solution, having a specific gravity of 1.510 to 1.540, which must be kept warm during filtration because of its property of "seeding out" small crystals if allowed to drop much below 60°C. Second, the action of the "high" acid on zinc calcine under the temperature conditions of the leach (80" to 102 "C), although favorable to good zinc extraction, causes a considerable quantity of iron to be dissolved (8 to 18. g per liter) along with variable quantities of alumina and silica, depending on the grade and type of original zinc concentrates roasted. These three, iron, alumina, and silica, are almost completely precipitated during the neutralization of the leach (only a few. milligrams per liter of each remain in solution), so that the resulting pulp, instead of being a granular, sand-like product having a particle-size distribution dependent on the fineness of the zinc calcines leached, is in reality a slimy, chemical precipitate whose filtration characteristics constantly change depending on the amounts of iron silica, and other impurities, which are dissolved and reprecipi-tated. Third, the combination of supersaturated solution of high specific gravity plus a dense, semi-gelatinous residue creates a difficult washing problem requiring a positive displacement wash to liberate the zinc sulphate entrapped in the pulp. In a closed-cycle hydrometallurgical operation, such as practiced in this plant, the extent of washing is determined by the volum,e limitations imposed on the intermediate wash waters by the amount of "fresh" (or process) water which may be added. The volume of fresh water used for makeup purposes is limited to the amount which is lost during the closed cycle by evaporation in the leach, sulphate content of the calcines leached, moisture content of the residue, and spillage. The Burt filter as modified and improved by the Sullivan Mining Co. has successfully met and overcome these difficulties under a variety of zinc plant operating conditions since 1928. It might have many interesting applications to metallurgical fields other than that of electrolytic zinc, and its possible usefulness to hydrometallurgists in general warrants its description and discussion. The Burt filter is so named from its inventor who originated it in Mexico for pulp filtration in the cyanide process for gold and silver ores. While retaining the basic principle of Burt's earlier revolving pressure-type filter with internal filtration media, a number of modifications and improvements have been made in Sullivan Mining Co.'s installation. The Burt filter may be classified as a batch-type pressure filter in contradistinction to either the conventional vacuum-type filter, which depends on atmospheric pressure to force solution through a cloth medium, or to the filter-press, which employs whatever pressure is imparted by the pump delivering the liquid being filtered. The Burt consists essentially of a hollow steel cylinder about 40 ft long, 5 ft in diameter, resting horizontally, and capable of rotation about its long axis. It is supported on one end by a hollow trunnion and near the other end by a riding-ring and roller combination. The cylinder is lined with filter units each fastened against the inside of the shell and parallel to the long axis so as to form a hollow cavity into which pulp may be charged. A specific amount of pulp is admitted to the filter and a unique valving arrangement prevents the loss of pulp while air pressure forces the solution through a canvas medium to the discharge port of each filter unit. The residue is left on the surface of the canvas inside the cavity. The remainder of the filter cycle is concerned with washing the residue free of zinc sulphate, discharging it from the Burt, and preparing the filter for the next charge. A more detailed description of Burt filter construction, a typical filter cycle, and its operating characteristics when employed on material encountered in this plant will be given in that order. Description of the Filter: Fig. 1 shows a side elevation view of a filter with riveted shell construction. Since this drawing was made shells have been fabricated by welding, instead of riveting, with complete success. Shells are lagged on the outside to retain heat. Fig. 1 shows a side elevation and plan view of a Burt filter in operating position. The 1/2-in. steel shells are lined with 3/16-in. copper sheet as protection against the corrosive action of the solution (containing about 500 mg Cu per liter) on iron, and the copper is given a thin protective coating of plastic-base paint. Fig. 2 is a view from the discharge end of the filter, with head removed, before filter units are fastened to the periphery. It shows
Jan 1, 1951
-
Minerals Beneficiation - Flotation Characteristics of Pyrrhotite with XanthatesBy Strathmore R. B. Cooke, Iwao Iwasaki, C. S. Chang
The effects of aeration on an aqueous suspension of pyrrhotite were studied and their results correlated with flotation tests using xanthates as collectors. The effects of copper activation and of pH variation were determined and possible mechanisms postulated. PYRRHOTITE has long been considered a gangue mineral to be eliminated as tailing in the treatment of various sulphide ores. However, in recent years the world-wide lack of sulphur resources has called attention to this mineral as a potential source of both sulphur and iron. Its importance as an economic mineral, however, has not been particularly emphasized. For this reason very little is known about its response to flotation, except that it can be depressed easily in alkaline circuit, by long aeration,1,2 addition of oxidizing agents,3 or by starch.' The object of this work was to study the floatabil-ity of pyrrhotite. This includes the effect of oxidation by aeration, of copper activation, and of change in pH. Preparation of the Pyrrhotite Sample: It was desirable that the highest grade of pyrrhotite obtainable be used for this experiment, since the presence of other minerals could affect the surface properties.5 However, no pyrrhotite was available as crystals, and massive deposits of hydrothermal origin commonly contain considerable amounts of chalcopyrite. Pyrrhotite concentrate was, therefore, prepared from a sulphide deposit occurring near Aitkin, Minn. The deposit is of pyrometamorphic nature consistirlg mainly of pyrrhotite and pyrite with graphite, silicates, and carbonates as gangue. The ore, already crushed through 3 mesh when received, was screened at 65 mesh and the undersize discarded. The oversize was crushed through rolls, and then stage-ground dry in an Abbe porcelain mill, the —65 mesh portion being screened out after every 15 min of grinding until all the material passed through this size. The ground product was then concentrated with a drum-type dry magnetic separator. The rougher concentrate was cleaned twice and then demagnetized. The final product was split in a Jones splitter and stored in air-tight bottles. Microscopic examination of the concentrate showed that it was relatively clean and free of pyrite, locked particles, and gangue. By means of the krypton gas adsorption method," the specific surface was determined to be 3000 cm2 per g. The chemical and screen analyses of the final concentrate are given in Tables I and II respectively. It is a well-recognized fact that the oxidation of some sulphide ores during stockpiling, grinding, and conditioning affects their flotation behavior. The problem of oxidation may become serious in the case of pyrrhotite, since this is known to be more easily oxidized than many other sulphides. To ascertain the extent of oxidation, an experiment was carried out by aerating an aqueous suspension of pyrrhotite with air, oxygen, and nitrogen as follows. A 300-g sample of pyrrhotite in 2700 ml of water was agitated and simultaneously aerated in a Fager-gren-type laboratory flotation machine. A Precision wet test meter was connected to the air inlet valve, the flow rate of the gas being kept constant at 0.3 cu ft per min throughout the experiment. Samples of approximately 30 ml each were taken from the cell at 0, 4, 10, 20, 35, 60, and 90 min. After the pH was taken, each sample was filtered and the filtrate was analyzed for total iron and sulphur. The iron was determined colorimetrically by the thioglycolate method using a green filter.' The filtrate was oxidized with bromine to convert all of the soluble sulphur compounds into sulphate and this was determined with a Parr turbidimeter." When aeration tests were made in alkaline circuit, calcium hydroxide or sodium hydroxide was added at regular intervals to maintain a constant pH. A similar procedure was followed in an experiment to determine the abstraction of copper. ion by pyrrhotite. In this case various quantities of cupric chloride were added. The filtrate from each sample taken was analyzed for copper, total iron, and sulphur. The carbamate method with a green filter was used for the copper analysis,' since this method could tolerate a considerable amount of iron in the solution. A pneumatic cell, made from a 350-ml fritted glass Buechner funnel, was used for this experiment. The detail of the assemblage has been described elsewhere." In the present work a stainless steel baffle was inserted in the cell. This baffle overcame the tendency for the coarse pyrrhotite particles to be swirled around the wall of the cell and thus fail to collect in the froth. A 50-g sample of pyrrhotite was added to the cell which contained 260 ml of water. When pretreat-ment of the sample was desired, reagents, such as activator and pH regulator, were then added and the pulp was conditioned for a specified conditioning time. Prior to the addition of the collector approximately 15 ml of the solution were removed for pH measurement and for iron and sulphur analyses. Copper when used as activator was also determined. Collector and frother were then added and the pulp was conditioned for an additional 2 min. Air was admitted to the cell and the froth removed. The separation required from 4 to 6 min, depending on the characteristics of the froth. The float and non-float products were filtered, dried, weighed, and assayed for iron.
Jan 1, 1955
-
Coal - Hypothesis for Different Floatabilities of Coals, Carbons, and Hydrocarbon MineralsBy Shiou-Chuan Sun
THE fact that coals of different ranks and even of the same rank differ greatly in their amenability to iroth flotation is well known. In recognition of the need for an explanation of this phenomenon, two hypotheses have been suggested. Wilkinsl reported that the floatability of coals increased with an increase of the carbon content or rank. This postulate is handicapped by the fact that bituminous coals that possess moderate carbon contents are actually more floatable than anthracite coals that have high carbon contents, as shown in columns 6 and 9 of Table I. Taggart and his associates' implied that the difference of floatability between bituminous and anthracite coal was caused by the variation of carbon-hydrogen ratio. This is not applicable to the relative floatability of other coals and carbons. For example, column 11 of Table I shows that the carbon-hydrogen ratios of low-floating lignitic coal and non-floating animal charcoal are not only smaller than the moderate-floating anthracite coal, but are also similar to the high-floating bituminous coal. Furthermore, according to this hypothesis, high temperature coke-A (464), Ceylon graphite (1238), and lamp-black (357), all possessing extremely high carbon-hydrogen ratios, should be less floatable than other substances having much lower carbon-hydrogen ratios such as high volatile-B bituminous coal (11.9 to 22), anthracite coal (35.7 to 60.5), lignitic coal (15.6 to 33.6), and charcoal (13 to 26.2). However the former group is actually more floatable than the latter group. In this paper, a surface components hypothesis is Proposed to explain the different floatabilities of coals, carbons, and hydrocarbon minerals. The validity of the hypothesis is experimentally supported by the actual floatability, natural floatability, wettability, and adsorbability for neutral oils of coals, carbons, and hydrocarbon minerals tested. The combustible recovery of the flotation results, as used in this paper. was calculated from Eq. 1: P (100-Ep) 100 RWCP Rc= [1] F (100-E,) C, where R, is the percent combustible recovery; F and P are, respectively, the weight of feed and the weight of concentrate or product; E, and Ep are, respectively, the total percent of ash plus moisture in feed and in concentrate; Ru. is the percent weight recovery: and C, and C, are, respectively, the percent of combustible in feed and in concentrate. Except for ash and moisture content, all chemical components of a coal are assumed combustible. The experimental work included studies on flotation, ultimate and proximate analyses, contact angle tests, extractions of bitumen-A with benzene, adsorptions for liquid hydrocarbons, and wetting tests. Most of the flotation experiments were performed in a laboratory Fagergren machine; others were tested in a small Denver machine. The solid feed for the former was 300 g and for the latter was 30 g. The solid materials used for flotation were crushed to —48 mesh. After the mineral pulp in the flotation cell was agitated for 6 min and the pH was adjusted to 7.5 & 0.2 with sodium hydroxide or hydrochloric acid, a petroleum light oil having a viscosity of 5.73 centipoises at 77 °F was added and conditioned for 2 min. Finally, pine oil was introduced and the froth was collected for exactly 3 min. The weight ratio of petroleum light oil to pine oil was kept constant at 1.5 to 1. Tap water was used for all flotation tests. Contact angles were measured with a captive bubble machine. For each coal sample, three specimens were mounted in transoptic mounts and polished with levigated alumina, first on a sheet glass, then on a cloth-covered metal polishing wheel. The polished specimen was first washed with distilled water and wiped thoroughly on a cleaned linen pad, then transferred into the pyrex cell of the captive bubble machine and conditioned for 6 min., and finally measured for contact angles at three or more points. Except where otherwise stated, the induction time for each measurement was 1 min. The contact angle representing each material was obtained by averaging the measurements of three specimens. The linen pad was first washed with warm distilled water, then boiled 30 min in a 2N sodium hydroxide solution, and finally washed with distilled water until no trace of sodium hydroxide could be detected in the decanted solution. The cleaned linen pad was stored under distilled water. Immediately before using, the pad was rewashed and transferred into a clean pyrex petri dish partly filled with distilled water. The glassware and rubber gloves used were cleaned by soaking in sulphuric acid-potassium dichromate cleaning solution, followed by rinsing with distilled water. The polished specimens were handled only by glass forceps. The ultimate and proximate analyses were made in accordance with the ASTM standard procedures for coal and coke. The extractable bitumen-A was determined by weighing 1 g of —100 mesh sample and placing it in a desiccated and weighed ASTM aluminum-extraction thimble. The thimble was placed in condenser hooks and inserted into an extraction flask containing 100 cu cm of benzene. The flask was heated and the benzene vapor was condensed by water coils. At the end of 24 hr of percolation, the thimble was removed, desiccated, and weighed. Loss in weight of sample was taken as bitumen-A and calculated to dry and ash-free basis.
Jan 1, 1955
-
Extractive Metallurgy Division - Desilverizing of Lead BullionBy T. R. A. Davey
IN 1947 the author became interested in the fundamental aspects of the desilverizing of lead by zinc, conducted some experimental work, and searched the technical literature for all available fundamental data. Since then a revival of interest in the subject in Europe resulted in the appearance of quite a number of papers. It became evident that it would be more profitable to collect together and examine thoroughly the results of various workers, than to attempt to duplicate the experimental determinations. There are many inconsistencies in the various publications, and it is opportune to review at this time the present status of knowledge on the Ag-Pb-Zn system. There is also a need for a clear description, in fundamental terms, of the various desilverizing procedures. This paper is presented in four sections: 1—There is an historical review of the origins of the Parkes process, of the results of many attempts to find a satisfactory fundamental explanation for the phenomena, and of the modifications proposed to date. 2—A diagram of the Ag-Pb-Zn system is presented. This is believed to be free of obvious inconsistencies or theoretical impossibilities, although thermodynamic analysis subsequently may reveal errors. 3—The fundamental bases of the various desilverizing procedures, which have been used up to the present day, are described; and a new method is suggested for desilverizing a continuous flow of softened bullion in which the bullion is stirred at a low temperature in two stages producing desilverized lead at least as low in silver as that from the Williams continuous process and a crust which, on liquation, yields a very high-silver Ag-Zn alloy. 4—A suggestion is made for the revival of de-golding practice, following a recently published account which does not seem to have attracted the attention it deserves. The terms "eutectic trough" and "peritectic fold" as used in this paper are synonymous with "line of binary eutectic crystallization" and "line of binary peritectic crystallization" as used by Masing.' The German literature on ternary and higher systems is rather extensive and a fairly general system of nomenclature has arisen, whereas in English usage the corresponding terms are not as well established. For this reason the meanings of terms used in this paper, together with the equivalent German terms, are given as follows: 1—Eutectic trough—eutektische rinne: line at which a liquid precipitates two solids S1 and S2 simultaneously. If the composition of a liquid which is cooling reaches this line, it then follows the course of this line until a eutectic point is reached, or until all the liquid is exhausted. The tangent to the eutec-tic trough cuts the line joining S1S2. 2—Peritectic fold—peritektische rinne: line at which a solid S1 and a liquid L transform into another solid S2. If the composition of a liquid which is precipitating S1 reaches the line, on further cooling only S2 is precipitated. The liquid composition moves from one phase region (L + S1) into the other (L + S2), and does not follow the course of the boundary. The tangent to the peritectic fold cuts the line S1S2 produced nearer S,. 3—Liquid miscibility gap, or conjugate solution region—mischungslucke: the region within which two liquid phases coexist in equilibrium over a certain range of temperature. A system whose composition is represented by a point in this region comprises one liquid at high temperature; then as the temperature is progressively reduced, two liquids, one liquid and one solid, one liquid and two solids, and finally three solids. 4—Liquid miscibility gap boundary—begrenzung der flussigen mischungsliicke: the line along which the surface of the miscibility gap dome, considered as a solid model, intersects the surrounding liquidus surfaces. 5—Tie lines—konoden: lines joining points representing the compositions of two liquids, a liquid and a solid, or two solids, in equilibrium. In binary systems the only tie lines customarily drawn are those through invariant points, e.g., through the eutectics of the Pb-Zn and Ag-Pb systems, or the various peritectics of the Ag-Zn system, as in Figs. 1 to 3. In ternary systems it is desirable to draw sufficient tie lines to indicate the slopes of all possible tie lines. 6—Ternary eutectic point—ternares eutektikum: point at which liquid transforms isothermally to three solids, S1, S2, and S Such a point can lie only within the triangle 7—Invariant peritectic (transformation) point— nonvariante peritektische umsetzungspunkt: (a) — On the miscibility gap boundary, the point at which two liquids and two solids react isothermally so that L, + S, + L, + S2. (b)—On the eutectic trough, the point at which a liquid and three solids react iso-thermally so that L + S, + S2 + S3. Such a point must lie on that side of the line joining S,S which is further from S,. (c)—A further possibility, not found in this ternary system, is that the point is at the intersection of two peritectic folds when the reaction concerned is L + S, + S, + S Historical Introduction Karsten discovered in 1842 that silver and gold may be separated from lead by the addition of zinc.2 Ten years later Parkes used this fact to develop the well known desilverizing process which bears his
Jan 1, 1955
-
Minerals Beneficiation - The Burt FilterBy W. G. Woolf, A. Y. Bethune
THE hydrometallurgy of special high-grade zinc as practiced by the Sullivan Mining Co. at its electrolytic zinc plant, Kellogg, Idaho, involves an important filtration step immediately following the leaching process. By means of the filtration the heavy zinc sulphate solution is separated from the residual products which remain after the zinc calcine has been dissolved in the sulphuric acid electrolyte. Because this plant uses the so-called high-acid, high-density process' for the production of First, the strength of the electrolyte (270g H,SO, per liter) results in a saturated zinc sulphate solution, having a specific gravity of 1.510 to 1.540, which must be kept warm during filtration because of its property of "seeding out" small crystals if allowed to drop much below 60°C. Second, the action of the "high" acid on zinc calcine under the temperature conditions of the leach (80" to 102 "C), although favorable to good zinc extraction, causes a considerable quantity of iron to be dissolved (8 to 18. g per liter) along with variable quantities of alumina and silica, depending on the grade and type of original zinc concentrates roasted. These three, iron, alumina, and silica, are almost completely precipitated during the neutralization of the leach (only a few. milligrams per liter of each remain in solution), so that the resulting pulp, instead of being a granular, sand-like product having a particle-size distribution dependent on the fineness of the zinc calcines leached, is in reality a slimy, chemical precipitate whose filtration characteristics constantly change depending on the amounts of iron silica, and other impurities, which are dissolved and reprecipi-tated. Third, the combination of supersaturated solution of high specific gravity plus a dense, semi-gelatinous residue creates a difficult washing problem requiring a positive displacement wash to liberate the zinc sulphate entrapped in the pulp. In a closed-cycle hydrometallurgical operation, such as practiced in this plant, the extent of washing is determined by the volum,e limitations imposed on the intermediate wash waters by the amount of "fresh" (or process) water which may be added. The volume of fresh water used for makeup purposes is limited to the amount which is lost during the closed cycle by evaporation in the leach, sulphate content of the calcines leached, moisture content of the residue, and spillage. The Burt filter as modified and improved by the Sullivan Mining Co. has successfully met and overcome these difficulties under a variety of zinc plant operating conditions since 1928. It might have many interesting applications to metallurgical fields other than that of electrolytic zinc, and its possible usefulness to hydrometallurgists in general warrants its description and discussion. The Burt filter is so named from its inventor who originated it in Mexico for pulp filtration in the cyanide process for gold and silver ores. While retaining the basic principle of Burt's earlier revolving pressure-type filter with internal filtration media, a number of modifications and improvements have been made in Sullivan Mining Co.'s installation. The Burt filter may be classified as a batch-type pressure filter in contradistinction to either the conventional vacuum-type filter, which depends on atmospheric pressure to force solution through a cloth medium, or to the filter-press, which employs whatever pressure is imparted by the pump delivering the liquid being filtered. The Burt consists essentially of a hollow steel cylinder about 40 ft long, 5 ft in diameter, resting horizontally, and capable of rotation about its long axis. It is supported on one end by a hollow trunnion and near the other end by a riding-ring and roller combination. The cylinder is lined with filter units each fastened against the inside of the shell and parallel to the long axis so as to form a hollow cavity into which pulp may be charged. A specific amount of pulp is admitted to the filter and a unique valving arrangement prevents the loss of pulp while air pressure forces the solution through a canvas medium to the discharge port of each filter unit. The residue is left on the surface of the canvas inside the cavity. The remainder of the filter cycle is concerned with washing the residue free of zinc sulphate, discharging it from the Burt, and preparing the filter for the next charge. A more detailed description of Burt filter construction, a typical filter cycle, and its operating characteristics when employed on material encountered in this plant will be given in that order. Description of the Filter: Fig. 1 shows a side elevation view of a filter with riveted shell construction. Since this drawing was made shells have been fabricated by welding, instead of riveting, with complete success. Shells are lagged on the outside to retain heat. Fig. 1 shows a side elevation and plan view of a Burt filter in operating position. The 1/2-in. steel shells are lined with 3/16-in. copper sheet as protection against the corrosive action of the solution (containing about 500 mg Cu per liter) on iron, and the copper is given a thin protective coating of plastic-base paint. Fig. 2 is a view from the discharge end of the filter, with head removed, before filter units are fastened to the periphery. It shows
Jan 1, 1951