Minerals Beneficiation - Comparative Results with Galena and Ferrosilicon at Mascot

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 691 KB
- Publication Date:
- Jan 1, 1952
Abstract
THE heavy media separation process plays an outstanding role in the concentration of 4000 tons of zinc ore per day at the Mascot mill of the American Zinc Co. of Tennessee. Of the total tonnage, 72 pct is treated in the heavy media separation plant to reject 56 pct of the ore as a coarse tailing, which has a ready market. Concentrates from this separation are beneficiated further by jigging and flotation. Approximately 25 pct of the total zinc concentrate production is made in the jig mill. Jig tailings are ground and pumped to the flotation circuit where the balance of the production is made. Fig. 1 shows a generalized flowsheet of the mill. The Mascot ore is a lead-free, honey-colored sphalerite in dolomitic limestone, with lesser amounts of chert and some pyrite. A mineralogical analysis is given in Table I. After 10 years of successful operation with galena medium and treatment of nearly 10,000,000 tons of ore, a decision to convert to ferrosilicon was made early in 1948 because of the increasing price of galena and consequent high operating costs. The conversion was made on Nov. 6, 1948, and the results obtained since that time have shown remarkable improvement over those made with galena. The Table I. Mineralogical Analysis of Mill Feed, Pct Calcium carbonate 49.5 Magnesium carbonate 35.2 Iron oxide and aluminum oxide 1.5 Zinc sulphide 4.5 Insoluble 9.3 100.0 Table II. Comparative Data, Galena and Ferrosilicon Ferro- Diner-Gelenaa siliconb ence Operating costs per ton milled, ct. 21.21 9.12 12.09 Medium consumption per ton milled, lb 0.80c 0.15 0.65 Reagent consumption per ton milled, lb 0.45 0.02 0.43 Tailing assay, pct Zn 0.310 0.297 0.013 Concentrate. oct Zn 12.08 10.33 1.75 Heavy medla ieparatlon recovery. pct 89.38 90.22 0.84 Mill feed rate, tons per hr 153 166 13 Heavy mesa separation feed rate. tons per hr 100 10 0 Tons milled per heavy media separation man shift 350 620 270 Mill feed to coarse tailings, pct 51.0 56.7 5.7 Lost mill time, pct 5.6 5.0 0.6 Power consumption, kw-hr per ton 2.06 1.92 0.14 a 1947. " First 6 months of 1950. c Net consumption after deducting credit for reclaimed waste galena. Consumption of new galena was 1.320 lb per ton milled. For entire life of galena operation, a credit of 40 pct of the value of the new galena added was realized from the sale of waste galena. comparisons given in this report cover the first 6 months of 1950 as representing the ferrosilicon operation, and the year 1947 as representing the galena operation. This was the last full year in which galena was used exclusively and is representative of the best work done during the 10 years of operation with this medium. After only 2 years' operating experience, with ferrosilicon and treatment of 1,807,585 tons many advantages have been revealed and are summarized in Table 11. Development Prior to the introduction of the heavy media process, all the mill feed was crushed through 5/8 in. and treated by jigging. A finished tailing assaying 0.66 pct Zn was made on rougher bull jigs, and cleaner jig tailings were ground for treatment by flotation. The first test work on the sink-and-float method of mineral beneficiation was carried out at Mascot in 1935, using a 3-ft cone and galena medium for batch tests. The following year a 6-ft cone was installed for pilot-plant work. This unit became a part of the mill circuit on March 1, 1936, and handled a gradually increasing tonnage in the next 2 years as the process developed to the point where it could treat all the + 3/8-in. material in the mill feed. Coarse jigging was then discontinued on March 1, 1939, and all coarse tailings have been made by the heavy media separation plant since that time. Feed Preparation: The original feed preparation plant consisted of a drag washer followed by two 4x10-ft Allis-Chalmers washing screens. A surge bin and two additional 5x12-ft AC washing screens were added in 1943. Use of primary and secondary washing screens was found essential to provide the cleanest possible feed for the cone and thereby avoid excessive contamination of the galena medium. Improved washing was obtained by replacing the drag washer with a 7x20-ft Allis-Chalmers scrubber, shown in Fig. 2, which has been in service since May 1944. Throughout the life of the galena operation, delivery of extremely muddy ore to the mill overloaded the medium cleaning system, and it frequently was necessary to cut off the feed and clean the medium for several hours until its normal viscosity had been re-established. The cleaning circuit
Citation
APA:
(1952) Minerals Beneficiation - Comparative Results with Galena and Ferrosilicon at MascotMLA: Minerals Beneficiation - Comparative Results with Galena and Ferrosilicon at Mascot. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.