Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
The Paley Report: ManganeseHIGH-GRADE manganese ore, from which manganese is obtained commercially, is not found in large quantities in any major steel-producing nation in the free world. The U. S. is a "have not" nation with respect to deposits of directly mineable high-grade manganese ore. Known resources of 48 pct Mn or better grade ore amount to less than 200,000 tons. In 1950 the U. S. steel industry consumed 1.8 million short tons of metallurgical grade manganese ore that contained about 800,000 tons of manganese. About 16 pct of the manganese content was lost in processing, so that about 650,000 tons, or 13 pounds per ton of steel actually entered into steel production. Under present practices use expands directly with steel output, and by 1975 the demand in both the U. S. and the rest of the free world is expected to be roughly 60 pet greater than in 1950. In peacetime about 80 pet of manganese consumption goes into steel production; high-manganese steel, dry cells, and chemicals account for the remainder. The manganese supply problem centers around high-grade ore for ferromanganese production. Use of ores containing less than 35 pet Mn sharply increase the costs of making ferromanganese. Use of ferro-manganese of grade below 70 pet in turn requires changes in steelmaking that increase steel cost. Under normal conditions the present small domestic production cannot be expected to increase. Major resources in the U. S. consist of 12 low-grade deposits. The cost of mining and treating these ores to extract a product as good as that yielded by imported ores is at least twice and in some cases more than four times the 1951 price of foreign ores delivered to the U. S. However, as long as trade relations and overseas shipping are not interrupted, deposits in India, Africa, and Brazil can meet steadily increasing demand at approximately present costs. Cost considerations indicate that the U. S. should continue to rely upon overseas sources for its peace-time supply, and that this situation is satisfactory. But, this does not take into account the question of how the U. S. will be able to meet its needs in war. Position of the Rest of the Free World In 1950, free world steel producers outside the United States, with a steel output of 70 million ingot tons, consumed about 1.3 million tons of metallurgical-grade ore. Their manganese ore demand, expected to increase directly with steel production, will by 1975 be about 2.3 million tons. Russia possesses over half the known manganese ore reserves of the world and is producing twice the tonnage of any other country. It supplied more than a third of the U. S. manganese requirements up to 1938 and again in 1948, but by 1950 Soviet manganese exports to the free world had virtually ceased. The free world's supply of manganese now comes mainly from India and Africa. Somewhat over 10 pet of U. S. imports came from Brazil and Cuba. Security Considerations In the event of war the U. S. might be substantially cut off from 90 pet of present sources. Reduction in manganese specifications might cut consumption by over 10 pet without seriously affecting steel quality. By elimination of losses in the production of ferromanganese savings as high as 10 pet might be possible. But, wartime manganese requirements cannot be met through conservation alone. To meet possible future emergencies the U. S. should continue its comprehensive security program for manganese, including stockpiling and research on the economic use of low-grade ore, domestic ores, the recovery of manganese from slag and the reduction of manganese requirements in steel production. If this work, including additional pilot plant operation is pursued vigorously, it should be possible in an emergency to get an adequate supply of manganese from domestic sources. The national stockpile then can be looked upon as a source of supply during the period of at least 2 years required to reach full-scale production from low-grade resources. Ferromanganese Smelting In comparison with smelting of pig iron, ferro-manganese smelting is a very wasteful process. Under present ferromanganese blast-furnace smelting practice, about 8 pet of the manganese in the furnace charge is lost to the slag, and roughly the same amount is lost to the stack gases; the total loss approaches 15 pct. Present practice is a compromise between excessive slag loss and excessive stack loss. In fact, it may be seriously questioned whether conventional blast furnace design is suitable for manganese smelting. U. S. Resources The known manganese deposits of the U. S. contain a total of 3500 million long tons of raw material and 75 million long tons of metallic manganese. More than 98 pct of this contained metal is in 12 large low-grade deposits of which the most important are those at Chamberlain, S. Dak; Cuyuna, Minn.; Aroostook County, Maine; and Artillery Peak, Ariz. Reserves of high-grade ore (48 pct Mn) amount to less than 200,000 tons. About 20 million tons of ore average over 15 pct Mn, and when grade is decreased to 10 pct Mn reserves amount to about 100 million long tons. If cut-off grade is decreased to 5 pet Mn, resources amount to 800 million long tons. Many of these low-grade ores may be beneficiated by flotation or other concentration methods. Pyrometallurgical Methods For smelting ferromanganese, it is essential to have an ore containing at least 50 pct manganese, with an Mn:Fe ratio of about 8:1. Direct smelting of 20 pct Mn concentrates is not promising. The only method that offers any promise involves two-step smelting.
Jan 1, 1952
-
Part XI – November 1969 - Papers - Gas-Liquid Momentum Transfer in a Copper ConverterBy J. Szekely, P. Tarassoff, N. J. Themelis
In a copper converter air enters the bath in the form of turbulent jets. The interaction of these jets with the molten matte is fundamental to the converting process. In the present study, an equation is derived to describe the trajectory of a gas jet in a liquid. Calculated and experimental results for air jets injected into water are in good agreement. The trajectories of air jets in copper matte are predicted. THE air injected through the tuyeres of a Peirce-Smith copper converter emerges into the bath of molten matte in the form of a highly turbulent jet. The air jets affect a number of chemical and physical processes occurring in the converter: i) Converting Rate. It is generally recognized that the production capacity of a converter is limited by the flow of air which can be injected through the tuyeres and by the oxygen efficiency. In turn, the air flow is limited by pressure drop considerations or by the amount of splashing within the converter. ii) Oxygen Efficiency. This depends on the dispersion of the air jet in the liquid bath, and its trajectory through the bath. iii) Mixing. The jets act as mixing devices by transferring momentum energy to the bath; in this way the heat generated by the converting reactions occurring in the jets is distributed through the bath. iv) Refractory Wear. The proximity of the jets, which are centers of heat generation, to the refractories in the tuyere zone may have an important effect on refractory life. Mixing conditions in the bath will also influence refractory erosion. v) Splashing, and Accretion Build-Up. The energy of the jets is not dissipated entirely in mixing the bath. particles of liquid are carried out kith the gas above the surface of the bath in the form of liquid spouts and droplets. These result in the undesirable build-up of accretions on the converter mouth, and dust losses in the flue gas. Despite the importance of the interaction of the air jets and the matte in a converter, very few studies of the fluid dynamics of converting have been reported in the literature. Metallurgists in the USSR appear to have been more concerned with the subject than their Western counterparts. Deev et al.1 studied the interaction of an air jet with aqueous solutions in a converter model and qualitatively determined the tuyere air velocity and tuyere inclination which produced the most favorable results with respect to good mixing in the bath, and minimum splashing. Shalygin and Meyer-ovich2 also examined the air-matte physical interaction both in models and in industrial converters; they concluded that in conventional converting practice, there was no significant penetration of the air jets into the matte layer, and consequently the converting reactions occurred mainly in a zone adjacent to the tuyeres. The behavior of air jets in a converter bath, and the aerodynamic characteristics of tuyeres are discussed at length in a monograph on converting by Shalygin.3 However, the description of the phenomena occurring in the converter bath is largely qualitative. The side-blown Bessemer converter for steelmak-ing is very similar to the Peirce-Smith copper converter. Among the few investigations of the behavior of air jets in the bath of a Bessemer converter are those of Kootz and Gille4 who studied splashing in the course of an investigation on the effect of blowing conditions and converter shape on nitrogen pick-up in Bessemer steel. They found that during blowing standing waves were formed on the surface of the bath; the amplitude of the waves increased with the depth and angle of tuyere immersion until the whole bath moved backwards and forwards causing heavy splashing. Kazanstev5 used a model of a Bessemer converter to obtain correlations between the axial velocity of a gas jet and distance from the tuyere orifice and the Froude number of the jet. shalygin3 used these results to calculate the horizontal penetration of an air jet in a copper converter; the penetration was defined as the distance in which the axial jet velocity decreased to 10 pct of its initial value. However, the rising trajectory of the jet was not taken into account. In the absence of quantitative information on the fluid dynamics of converting, the design of copper converters has been based mainly on operating experience. Such experience tends to vary widely from smelter to smelter., This is reflected in Table I which is based on data compiled by Lathe and Hodnett.6 Aside from a rough, and perhaps obvious correlation between the total air flow and converter volume, Fig. 1, no pattern emerges from the data. For example, tuyere throat air velocities vary from 215 to 465 ft per sec in converters of the same size, for little apparent reason. The air jet energy input per cubic foot of converter volume, which may be taken as a measure of the amount of mixing in the converter bath, also varies greatly. A recent analysis of converter data by Milliken and Hofinger7 has also revealed unexplained variations in operating parameters. It is believed that by gaining a better understanding of the fluid dynamics of converting a more rational basis may be provided for the design of converters. In particular, it is proposed that if one takes into account the desirable criteria of a high converting rate, high oxygen efficiency and long refractory life, there should be an optimum configuration of tuyere air flow for a converter of a given diameter. The present investigation is concerned with the form and trajectory of an air jet in a converter bath. The general theory of turbulent jets has been expounded by Schlichting8 and Abramovich.9 However, most experi-
Jan 1, 1970
-
Institute of Metals Division - Effect of Temperature on the Lattice Parameters of Magnesium Alloys - DiscussionBy R. S. Busk
Niels Engel (University of Alabama, University, Ala.)— In this paper it was pointed out that the electron-gas and energy-band theory accounts for the fact that the lattice parameters exhibit a sudden change when the electron concentration (number of bonding electrons per atom) exceeds a certain number around two. This statement is said to support and prove the electron-gas theory. But this theory is not able to account for a series of experimental data. Also several expectations, deduced from this theory, are not found to exist. In Figs. 6 and 7 the energy bands of the second and third periods are given as they must be assumed in order to account for the electrical properties of the elements in these periods. In Figs. 6 and 7 the electron-gas and energy-band theory is compared with the electron-oscillator hypothesis in accounting for the properties of the elements in the second and third periods. Fig. 6 shows the second period, The energy-bands are overlapping and separated to be in agreement with the electrical conductivity of the elements. The oscillator hypothesis explains conductivity due to electron vacancies. In graphite there is a closed s-shell in every other atom and two vacancies in the others. Conductivity is therefore only maintained by migration of s-electrons in graphite. In boron there are no s-electrons. The diatomic molecules of nitrogen and oxygen and the paramagnetism of oxygen can be accounted for by a similar behavior as the s-electrons of the bonding electrons. But this explanation will deviate too much for the purpose of this discussion. Fig. 7 shows the third period. In the energy-band picture about two s-electrons are assumed in magnesium and aluminum, but only one s-electron is assumed in silicon. The diamond lattice is assumed to be controlled by a sp3 hybrid. However the electron distribution develops ideally according to the oscillator hypothesis. Only sodium, magnesium, and aluminum exhibit electron vacancies and conductivity. To account for the insulator properties in Si, P, and S in the third period it must be assumed that the four last added p-electrons must be taken up in bands containing only one electron per band.' (Compare the electron band picture in Hume-Rothery.' Hume-Rothery does not consider the insulator properties of the nonmetals.) In the second period already the first p-electron must have entered a single electron band. Based on the energy-band picture in Figs. 6 and 7, the following questions must be asked: 1—Is it consistent with the energy-band idea that electrons of the same kind (p-electrons) can be divided into separated bands? 2—Is it consistent with the energy band idea that single electron bands can exist? 3—Why are the first two p-electrons (in boron and diamond) separated into two single electron bands in the second period, but overlapping in the third period (aluminum)? 4—Why are s-electrons and d-electrons taken up in continuous overlapping bands, while p-electrons are divided into single electron bands? 5—Why do the peaks and valleys (y and w and further x and z) of the energy band below four electrons per atom not show up in the electrical conductivity of alloys? For example consider the Li-Mg system or the alloys between Mg and three electron metals where the mentioned discontinuity in the lattice parameter is found. 6—Why does the beginning of the p-electron band (x) not show up in the lattice constants similar to the filling up of the s-electron band (z) ? In magnesium alloys the electron-gas theory postulates the first Brillouin zone to be filled at about two electrons per atom. This is claimed to explain the sudden change in lattice spacing and c/a values of several magnesium alloys when the electron concentration exceeds a few percentage points over two electrans per atom. This was emphasized in the paper by Busk. If the electron-gas energy-band theory is correct a sudden change in electrical conductivity and possibly other properties .should be expected when the same electron-concentration or temperature is exceeded. A sudden change in lattice spacing or other properties should also be expected when the filling degree is such that p-electrons are introduced into the p-band, for example at x in Figs. 6 and 7. Such phenomena are at found by experiment. and If the number of electrons should vary with the energy level depending on the average number of bonding electrons per atom, the electrical conductivity should be expected to vary in accordance with the energy band layout (Figs. 6 and 7) caused by different numbers of conducting electrons at different filling up degrees. Nothing indicating such a behavior is observed. In addition to these discrepancies between the electron-gas and energy-band theory and measured data, the theory violates the principles developed along with the Bohr theory of atomic structure. According to these principles a filled shell is saturated and therefore unable to form bonds. Therefore two S-electrons per atom should form a closed or saturated shell, which has been pointed out as accounting for the inability of helium to form bonds. Beryllium, magnesium, or calcium atoms with two s-electrons should be expected to form inert atoms with properties almost like the helium atoms. Several other inconsistencies and disagreements with measured data of the energy-band theory can be mentioned. Some of these are discussed with reference to other papers. 8 Because the electron-gas and energy-band theory seems to fail on several points, I have developed another theory which can account for all the phenomena the electron-gas theory is able to account for. This new theory is further able to account for things which are impossible to explain by the electron-gas theory at the present state.
Jan 1, 1953
-
Industrial Minerals - Beneficiation of Industrial Minerals by Heavy-media Separation - DiscussionBy C. F. Allen, G. B. Walker
K. F. TROMP*—In dealing with the question of the most suitable kind of solid media for heavy density suspension processes Walker and Allen point out that the particle size of the solid media should not be taken too fine, as the viscosity increases with the area of the solid media and a low viscosity is essential lor high tonnage and accurate separation. A coarser particle size of the solid media will, in their opinion, of necessity give rise to a differential density in the bath (higher gravity at the bottom of the bath than at the top) but they advocate acceptance of the differential density rather than a higher viscosity. Though I fully agree with the choice the authors have made, I cannot subscribe to their view that only by accepting a differential density in the bath a coarse particle size of the solid media can be used. There certainly is another alternative: stronger agitation. Applying sufficiently strong vertical currents, a uniform gravity can be obtained quite well in a suspension of a coarse solid media. Of course, this is not a very attractive solution, for it means a degradation of the true gravity separation and a step backwards to hydraulic classification, which makes the washing dependent on size and shape of the particles. However, to a greater or lesser extent, this is what actually takes place in all the heavy density suspension processes relying on a uniform gravity in the bath. The so-called "stable" suspension processes make no exception. They all "stabilize" their suspensions by introducing or creating vertical currents, be it upwards or downwards or both, be it by hydraulic or by mechanical means. In fact, there is no such thing as a "stable" suspension in gravity separation, as the very reason for the use of suspensions in this field is the property that the solid media is able to settle and so facilitate the recovery. I have been enlarging on this point because the characteristics of the various processes can only be well understood and viewed from the same angle (from Bar-voys up to Chance) when the fact is recognized that mechanical or hydraulic agitation is a condition sine qua non for obtaining a uniform density from top to bottom in a suspension. Is a Cone-slraped Vessel Essenlial? Of the two alternatives for getting a low viscosity Walker and Allen have preferred correctly the sacrifice of uniform gravity in the bath instead of increasing further their vertical current arid agitation. The resulting differential density of the bath brings the problem of bow to prevent accumulation of intermediate gravity products in the bath, an accumulation which, if not prevented, would ultimately plug their cone. According to the authors an open-top cone combined with a downdraft current of the bath liquid would he the only suitable way to cope with such suspensions and they assume as a fact that "in any vessel other than a cone, such a differential density could not be tolerated." My experience is quilt: different. In my process, which has been in successful operation for more than a decade, differ-ential density of the suspension is applied ranging from values below 0.1 up to differentials above 0.5, according to the prevailing requirements of the individual plant. In this process, which is charac-terized by the use of horizontal currents in a suspension of differential density, the form of the vessel is of secondary importance and different types are in operation. It so happens that none of these are in the, form of a cone. The fact that 24 washboxes on my process have been installed and 12 others are under construction may constitute sufficient proof against the opinion that only a cone-shaped separator would be suited for differential density separation. Horizontal Currents in Differentia1 Den-sity Sepparation I myself have some doubts as to the suitability of a cone with downdraft for dealing with differential density (or, for that matter, any other washbox relying on vertical currents for removing the intermediate gravity products). It ap-pears to me that it is restricted to feed of small size only and even then with watch-fulness. If we take, for example, a piece of 2 in., the draft necessary to pull such a piece down to a zone wherein the den-sity of the suspension is, say, 0.03 higher, is quite considerable. For a suspension of, say, 1.6 sp gr the downdraft will have to be in the region of 3 in. per second. Unfortunately. most of the differential in density is in the part immediately below the reach of the top current which transports the floats. Consequently, we need the downdraft where we like it least: in the upper part of the cone. This entails the risk that light float particles are carried away with the downward current. This current of, say again, 3 in. per second would carry particles up to 1.3 sp gr and 3/8 in. size into the 1.6 gravity zone. This is prohibitive. It is also prohibitive because a downdraft of 3 in. per second in the upper part of the cone would require a tremendous circulation of medium. IIalf way up a 20 ft diam cone, a downdraft of 3 in. per second would correspond with 8500 gpm. With the downward current following the way of least resistance, the strength of the downdraft will not be exactly the same at different places of a cross area. If, as I anticipate, the center of the cone is favored, the strength of the downdraft will fall below the critical value near the
Jan 1, 1950
-
Part XII – December 1968 – Papers - The CaF2-CaC2 System, and Its Relation to EIectrosIag Remelting PracticeBy A. Mitchell
An approximate phase diagram has been developed for the CaF2-CaC2 system, indicating a eutectic point at 1240°C, Ncac2 = 0.13, and no detectable solid solution in either phase. The liquidus line is shown to correspond to a simple c22- ion in solution. A thermo-chemical study of' the reaction between carbon-saturated Ni-Ca alloys and CaC2-CaF2 liquids indicates that lhe Raoullian activity coefficient of CaC2 in dilute solution in Cap2 al 1500°C lies between 8 and 10. Some effects of the stabilily of Cap2-CaC2 solutions at high temperatures on electroslag remelting praclice are outlined. THE alkaline earth acetylides. MIIC2, have a reasonably high thermochemical stability at high temperature in the solid state,' with the exception of magnesium, which forms an unstable acetylide at low temperatures (-500°C) and a carbide, Mg2C3, in the range 700' to 1000°C. The acetylides of calcium and barium have been shown to have limited solubility in their respective chlorides,' and further these solutions contain the acetylide as a C: ion.' The equivalent magnesium solutions have not been studied. Although calcium "carbide" is used as a desulfuriz-ing reagent in steelmaking. and is possibly present as an acetylide-oxide phase in very basic electric arc practice slags, the acetylide ion appears to be substantially unstable in a silicate slag.* As a conse- *This instability arises from equilibria in the reaction: CaC2 + CO = (Ca0) + 3C where the low intrinsic solubility of CaC2 in silicate lattice, and the low activity of CaO in a silicate solution where CaO/Si02 < 1, combine to give a very small equilibrium concentration of CaC2 in solution in such silicate slags at temperatures in the region of I 500°c, even under carbon-saturated conditions. Under highly basic conditions, a liquid CaO-CaC2 phase may separate from the silicate system quence of this, the possibility that reactions involving CaC2 in silicate solutions are of importance to general steelmaking practice is remote. However, in operations involving a slag primarily based on a halide, or alkaline earth oxide, we must take into account the possibility that CaC2 will appear in quantities sufficient to significantly affect both the chemical and physical properties of the slag. The work outlined below presents a study of the CaF2-CaC2 system intended to provide sufficient data to allow an estimate of the importance of this system to electroslag remelting and welding practice. However, we should indicate at this point that there will be other processes, e.g., heat treatment, flux cleaning of castings, fused salt electrolysis, and so forth, where alkaline-earth halide fluxes are in contact with carbon, graphite, or carbides, and where halide-acetylide solutions must be taken into account. EXPERIMENTAL 1) Structural Studies. In view of the difficulty ex-perienced in handling CaC2 prepared from calcium turnings and propane gas at 700°C, it was decided to use solutions prepared directly in the equilibration apparatus, Fig. 1. The starting materials were: a) Ni-Ca-C alloy, prepared by adding calcium to liquid nickel held under calcium fluoride in an induction-heated graphite crucible; b) calcium fluoride, prepared by fusing calcium fluoride powder (British Drug House "EXTRA PURE") calcium fluoride in an induction-heated graphite crucible, in air, followed by electrolysis between graphite electrodes at 1 amp cm-2 density, for 10' coulombs per g CaF2. This procedure decomposes the CaO produced by hydrolysis during the fusion step, replacing it by CaC2; Ca2+ + 2e-Ca*(l) Ca*(l) + 2C(gr)-(CaC2)caF2 O2- -2e-O*(g) O*(g) +C(gr)-CO(g) This results in a composition of between 2 and 5 wt pct CaC2 in CaF2. Fifty grams (in lumps) of this material were placed in a graphite crucible, together with Ni-Ca-C alloy (averaging 20 wt pct Ca), and the equilibration apparatus assembled. The alloy reacted with the crucible at high temperature to give CaC2, which dissolved in the calcium fluoride solution to give the desired composition. Cooling curves were plotted manually for these liquids, with rapid stirring and CaF2 seeding to minimize supercooling, and using a Pt/Pt 13 Rh thermocouple calibrated on the freezing points of nickel and copper. This gave a reproducibility of ±0.l°C. and an absolute accuracy of the thermocouple of ±l°C. An example curve is shown in Fig. 2, with the CaF2 end of the binary system in Fig. 3. The CaF2-CaC2 ingots were crushed, under dry nitrogen, and sampled for chemical analysis and X-ray examination. Analytical details are given in the Appendix. Powder diffraction data indicated that the only phases present in all samples examined were calcium fluoride and tetragonal (Types I and 111) calcium acetylide,4 with no evidence of solid solutions or compound formation. 2) Thermochemical Studies. The apparatus used to obtain activity data on CaC2 in these systems is shown in Fig. 4. It consists of an arrangement whereby the graphite crucible and its contents (CaF2-CaC2. Ni-Ca-C) can be rapidly cooled without exposure to air. Trial experiments to determine an equilibration time by ap-
Jan 1, 1969
-
Magnetic Roasting Of Lean OresBy Fred D. DeVaney
DURING the past few years a radically new process for the magnetic roasting of iron ores has been investigated and developed by Pickands Mather & Co. and the Erie Mining Co. in the Erie laboratory at Hibbing, Minn. This process, originally devised by Dr. P. H. Royster of Washington, D. C., involves the use of a roasting technique quite different from older methods. It has now been demonstrated that iron-bearing materials can be roasted as effectively as by any previously known method, and at a much lower cost. The increasing shortage of highgrade iron ores in this country has accelerated the search for new methods that would permit low grade materials to be utilized. The concept of magnetically roasting low grade nonmagnetic ores such as the oxidized taconites and then separating such material magnetically has always had considerable appeal. The magnetic concentration idea is attractive because of the sharpness of the separations and cheapness of the method. Heretofore, however, the equipment and the processes available for the magnetizing-roasting -step have left much to be desired. The customary equipment available for reduction roasting has been: 1-multiple hearth furnaces, 2-rotary kilns, and 3-shaft type kilns. In addition, it is understood that some work has been done in magnetically roasting fine ores by a process using the FluoSolids principle, but little information on this process is available. The multiple hearth kiln has been used the most but first costs and operating costs have been high because of low capacity, high maintenance, and poor gas utilization. Magnetic roasting can be done in a rotary kiln, but the radiation losses are high and the conversion to magnetite is usually unsatisfactory because of poor contact between the gases and the solids. Of the shaft-type furnaces, probably the most efficient yet developed is that designed by E. W. Davis of the Minnesota Mines Experiment Station. This furnace was operated at Cooley, Minn., during 1934-1937 but was abandoned in 1937 because the operation was uneconomic. Heretofore the basic concept behind most magnetic roasting processes has been the idea of heating iron ore to a temperature of 800° to 1100 °F in a strong reducing atmosphere, preferably either carbon monoxide or hydrogen. Temperatures under 800°F were undesirable since excessive roasting time was required. Temperatures over 1100°F were avoided because of the danger of converting part of the iron to ferrous oxide which is nonmagnetic. In the new roasting process, the operation is carried on in a shaft furnace using a controlled atmosphere containing a low percentage of reducing gas. The temperature in the roasting zone is considerably higher than with the usual reducing gas and this speeds up the reduction time. Portions of the spent furnace gases are cooled and recirculated and this together with the good contact between ore and gas makes for high reducing gas utilization. High heat economy is secured by recuperating heat from the roasted ore by passing the cold reducing gases countercurrent to flow of ore. The heat transfer principle is similar to that employed in a pebble stove and to that used in the Erie Mining Co. furnace at Aurora, Minn., for pelletizing fine magnetite concentrates derived from taconite. The theory of controlled atmosphere during the roasting operation can best be appreciated by inspecting the equilibrium diagram of the Fe-C-O system shown in Fig. 1. An inspection of this diagram shows that in certain areas magnetite, Fe3O4, is the only stable form of iron. A further inspection of this table shows that if the proper ratio is maintained between carbon dioxide to carbon monoxide, such a gas will be reducing with respect to hematite, Fe2O3, and will be oxidizing with respect to both ferrous oxide, FeO, and iron, Fe. It should be kept in mind that the formation of ferrous oxide in a roasting operation is harmful, since this oxide is nonmagnetic; if it forms in any quantity, it will cause substantial loss of iron in the ensuing magnetic separation step. If a ratio of approximately three parts carbon dioxide to one of carbon monoxide is maintained, the resulting operation can be carried on at a relatively high temperature without fear of over-reduction. Specifically, most of the tests in the Erie furnace have been made at a temperature of 1500° to 1600°F, with an entrant gas containing approximately 5 pct carbon monoxide and 15 pct carbon dioxide, with the remainder largely nitrogen. It should be remembered that the ratios of carbon monoxide to carbon dioxide shown in Fig. 1 hold even though the bulk of the gas is an inert gas such as nitrogen. It may surprise many to learn that a gas containing as low as 3 pct carbon monoxide, and 12 pct carbon dioxide with the remainder nitrogen is an extremely effective reducing gas in the 1000° to 1600°F temperature range. The reducing gas is not limited to carbon monoxide, and mixtures of hydrogen and carbon monoxide may be used effectively, provided that a similar ratio is maintained between the reducing gases and carbon dioxide and water vapor. For a more detailed explanation of the theory involved, the reader is referred to U. S. patents 2,528,552 and 2,528,553. From a safety standpoint, the weak reducing gas used in the furnace offers an advantage. Its composition is such that it is well below the limits of explosion should air enter a hot furnace. This condition is not true with the usual reducing furnace, in which a gas rich in carbon monoxide or hydrogen is used. The general furnace design and method of operation may best be understood by an inspection of
Jan 1, 1952
-
Part VIII – August 1969 – Papers - Mathematical Models of a Transient Thermal SystemBy Frank E. Woolley, John F. Elliott
Mathematical models of the transient thermal behavior of a high-temperature solution calorimeter1-3 have been developed. The thermal behavior of the calorimeter is appoxirrzated by linear lumped-parameter models, and hence is described by sets of linear ordinary differential equations with constant coefficients The response of the models to various inputs is shown to agree with the response of the real system. Application of the modeling to experimental design and analysis of data illustrates the usefulness of simple models of complex systems. The early eperiments1,2 with the high-temperature solution calorimeter indicated that the change in the temperature of the bath resulting from the addition of a solute sample to the bath involved not only the direct effect due to the solution process but also possibly a secondary effect arising from the change in coupling between the bath and the induction heating coil. Consequently, an extensive analysis of the calorimeter was carried out, and models of the transient thermal processes of the instrument were developed to aid in improving the design and interpreting the behavior of the system. This paper describes the dynamic modeling; the use of it in treating experimental results has been reported earlier.3 The high-temperature solution calorimeter was constructed to measure directly the partial molar heats of solution of solute elements in a variety of liquid metal solvents.1-3 The calorimeter consists of an induction-heated liquid metal bath into which small samples of a solute element can be dropped. The bath temperature is recorded continuously, and the change in the measured bath temperature with time, dTm = f(t), resulting from the solute addition are the raw data from which the enthalpy change caused by the addition is determined. To extract the rmodynamic results from the data, the temperature change must be compared with that resulting from calibration additions of known enthalpy change. Accordingly, it is necessary to understand the transient thermal processes arising as a result of the addition to the bath. Neither modeling nor experimentation alone could provide the required insight into the working of the calorimeter. The alternate use of both methods in conjunction greatly assisted the design of the equipment and experiments, and the interpretation of the data. THE PHYSICAL CHARACTER OF THE SYSTEM The essential parts of the calorimeter, Fig. 1, for model studies are the thermocouple, the liquid metal bath and the surrounding refractories. The system is the solvent metal bath and those refractories around it which undergo a temperature change as a result of an addition to the bath, and which determine the way the temperature of the bath responds to an input. The inputs are the combined transient thermal effects arising when an addition is made to the bath. They include the thermal effects of the addition itself and the results of changed coupling between the bath and the induction coil. The response is the variation in the measured bath temperature, dTm(t) = Tm(t) - Tm(O), from an initial steady state resulting from the inputs. It was assumed in this study that the physical properties of the various elements of the system are independent of the inputs and time, although these properties may vary as the result of changes in the composition and size of the bath during a series of additions. This separation of inputs and the system is equivalent to assuming that the system is linear, i.e., that its behavior can be described by linear differential equations with constant coefficients. Linear behavior can be expected whenever the departure of each portion of the system from its steady-state condition is small enough to cause negligible changes in the thermal properties of the materials and in the various heat-transfer coefficients. Radiative heat transfer is important in this system, so the assumption of linearity should be valid only for small temperature deviations. Several conclusions were drawn from operation of the calorimeter in earlier experimental studies: 1) Radiative heat transport from the top of the bath is a significant portion of the total heat lost from the bath. However, for small changes in the bath temperature the change in transport by this path could be assumed to be proportional to the change in the bath temperature. 2) A very small portion of the heat input is lost through the thermocouple to its water-cooled holder. The thermal resistance and thermal capacity of the thermocouple protection tube are small, so the temperature of the thermocouple should follow closely that of the bath. 3) The remainder of the total heat lost from the bath will pass by conduction through the crucible to, and through, the other refractories, eventually being absorbed by the water-cooled induction coil or by the water-cooled sides and bottom of the enclosure. 4) The thermal resistance between the bath and crucible is very small. Thus the thermal capacity of the crucible will affect the temperature of the bath very soon after an addition of heat to the bath. 5) The thermal resistance between the crucible and the silica sleeve is large, especially if a radiation shield is placed in the gap. The effect of the thermal capacity of the sleeve thus will be significant only at longer times. The thermal resistance through the packing below the crucible also is large, so the packing and the silica sleeve will have similar effects on the behavior of the system. 6) A large temperature drop exists across the gap containing the water-cooled induction coil. Thus for relatively small changes in the thermal input to the bath, the refractories beyond the sleeve
Jan 1, 1970
-
Part II – February 1969 - Papers - The Removal of Copper from Lead with SulfurBy A. H. Larson, R. J. McClincy
Laboratory-scale decopperizing experiments with multiple sulfur addifions were conducted at 330°C on ternary Pb-Cu alloys containing, as the third elenlent, Sn, Ag, As, Sb, Bi, Zn, and Au, common impurities in lead blast-furnace bullion. For silver and tin, an increased rate and extent of 'cofifier removal was obsert3ed. The elements As, Sb, Zn, Au, and Bi had no effect or less effect as compared to sulfur additions with no i)npurily additions. THE production of primary lead in the blast furnace yields an impure lead frequently containing such impurities as copper. antimony. arsenic. tin, gold, silver iron, oxygen. and sulfur. By cooling this lead to a temperature near its melting point. most of the iron, sulfur, and oxygen and part of the other impurities are removed in the form of a dross. With incipient solidification of the lead, the copper concentration wil have been reduced to 0.02 to 0.05 pct. depending upon the concentration of the other impurities. according to Davey.' Since copper interferes with the treatment of silver after the desilverizing process, it is desirable to decrease the copper content of the lead still fur-ther before the lead is desilvered. The decopperizing of the lead is accomplished by stirring a small quantity. approximately 0.1 pct. of elemental sulfur into the lead at a temperature near its melting point, 330" to 360°C. The copper is removed as a copper sulfide which constitutes a small fraction of a voluminous dross consisting mostly of lead sulfide and entrained metallic lead. The residual copper concentration following the decopperizing operation is frequently as low as 0.001 to 0.005 pct. Thi fact has aroused considerable interest because the equilibrium copper concentration of lead in contact with solid PbS and solid Cu2S is at least an order of magnitude greater, 0.05 pct Cu at 330C. 1, 2 Most investigators have suggested that various impurities in the lead bullion are responsible for the very low copper concentrations frequently encountered in practice. There is little agreement, however? as to which of the impurities are helpful and which are not.3"11 Also. few investigators have sought to explain the mechanisms responsible for the removal of copper to very low concentrations. Willis and Blanks9 have proposed that a nonstoichiometric copper-deficient cuprous sulfide forms in place of the supposed Cu2S. Being copper-deficient, this sulfide phase would possess a low copper activity, and the diffusion of copper dissolved in the liquid lead into this phase would be greatly facilitated. Pin and wagner2 have investigated the removal of copper from liquid lead by studying the effect of impurity-doped lead sulfide on the decopperizing of pure Pb-Cu alloys. Samples of the doped PbS were held in contact with copper-saturated lead for 1 week at 33'7°C. They reported a beneficial effect on decopperizing with bismuth and antimony and no effect with tin or silver. which is directly opposite to the results observed in practice and those reported by Davey 3 and this studv. The purpose of this paper is to describe the effects of certain additive elements on the extent to which copper can be removed fro111 liquid lead by successive additions of sulfur. The impurity elements were added individually to prepared Pb-Cu alloys. The resulting ternary alloys as well as a binary Pb-Cu alloy were then decopperized with repeated additions of sulfur. EXPERIMENTAL Materials. Granulated test lead with a purity of 99.999 pct and the additive elements Cu. Ag. Sb. Bi. Zn. Sn. and Au with purities of 99.99 pct were American Smelting and Refining Co. research-grade materials. The major impurities in the lead were 1 ppm each of iron and copper. all others being less than 1 ppm. The arsenic used was a technical-grade arsenic of 98+ pct purity. Reagent-grade flowers of sulfur were melted under argon to provide small pieces free of fines. Apparatus. The decopperizing experiments were carried out in a 25-mm-OD by 375-mm-long Pyrex tube sealed at one end. The tube was mounted vertically in a resistance-heated. hinge-type tube furnace controlled to within ±lcC. Temperature measurement was accomplished by means of a standardized chromel-alumel thermocouple sealed into the base of a silica. paddle-type stirring rod. All decopperizing experiments were carried out under an argon atmosphere. Procedure. A Pb-Cu starting alloy containing 0.05 pet Cu was prepared under carbon and poured into cold tap water to produce shot. The ternary alloys were prepared by melting together 100 g of the starting alloy and a sufficient amount of the impurity element to yield the desired concentration. The resulting alloy was then homogenized in a Pyrex tube at 450C with continuous stirring. The furnace temperature was then lowered to the operating temperature of 330°C. When thermal equilibrium had been obtained at the operating temperature, individual additions of 0.2 pct (0.2 g) of solid sulfur were added to the melt and stirred in. Stirring was continued for a period of 3 min. discontinued for 5 min. and resumed for the remaining 2 min of a 10-min cycle. This cycle was repeated for as many sulfur additions as desired. When the decopperizing experiment had been completed the lead bullion was quenched and samples of the bullion and dross phases were taken for analysis. Results. The results obtained in the decopperizing
Jan 1, 1970
-
Institute of Metals Division - Creep Behavior of Zinc Modified by Copper in the Surface LayerBy Milton R. Pickus, Earl R. Parker
THE modern theories of creep¹-4 in general have been based upon the concept of generation and migration of dislocations, with the generation process normally assumed to be rate controlling. The theories are generally deficient in that they fail to take into account many factors that are known to influence creep. The influence of the state of the surface of the test specimen has been almost completely overlooked; yet the present report shows that the nature of the surface may, in certain cases, govern the creep characteristics of a specimen. In the period since Taylor" applied the concept of dislocations to a study of metals, a school of thought has developed that closely relates the plastic deformation of metals to the generation and migration of dislocations through the crystal lattice. It might be expected that the thermal energy required for the generation of a dislocation would be different from that for migration of the dislocation through the lattice. Furthermore, the activation energy for generation would be expected to vary for different parts of the solid metal. It has been predicted that dislocations would be generated most easily at external surfaces, but could also be activated at certain internal surfaces such as grain or phase boundaries. Within the body of the metal a range of values for the activation energy might be expected because of different degrees of disorder at such regions as grain boundaries, impurities, and second-phase particles. The particular value of the activation energy that was rate determining could then depend on the specific conditions of a test. If, for example, the surface atoms were by some means constrained, the generation of dislocations in the body of the metal might become the important factor. On the other hand, other conditions may favor generation at the surface. It is possible then that the creep behavior may not be completely determined by the inherent properties of the metal. Even the environment in which a test is carried out could have a significant effect. In fact it is conceivable that in order to obtain the maximum creep resistance from a given alloy, the surface atoms must be so constrained that the activation energy for generating dislocations on the surface is at least equal to that required for generation in the body of the metal. On the basis of such considerations, and in view of the limited number of publications discussing this subject, it seemed that an investigation of the influence of the state of the surface on creep might yield information of both theoretical and engineering interest. Experiments on single crystals, demonstrating a variation in the mechanical properties due to alterations in the surface layer, have been reported by several investigators.6-13 he results of these experiments have been briefly summarized;14 consequently, the earlier work will not be reviewed here. As an example of these findings the observations of Cottrell and Gibbons may be cited. They reported the critical shear stress of a lightly oxidized cadmium single crystal is greater by a factor of 2½ than a specimen with a clean surface. Materials and Methods Single crystals M in. in diam and 8 in. long were prepared from Horse Head Special zinc, melted under an atmosphere of helium in a large pyrex test tube, and drawn up into a long ½ in. diam pyrex tube by means of a vacuum pump. The cast zinc rods thus produced were cut into convenient lengths and sealed in evacuated pyrex tubes. Single crystals were grown by gradual solidification of the remelted rods. Cleaving the ends of the single crystal specimens chilled by liquid nitrogen proved a simple method for determining orientations from the exposed basal plane from the markings left on the cleaved surface that gave the slip directions with sufficient accuracy for the experimental work. The specimens chosen for the experiments were those having the angle between the basal plane and the specimen axis within the range of 15" to 65". Since zinc single crystals are quite delicate, it was necessary to devise an appropriate method of gripping the specimens in order to suspend them in the furnace and apply the load. Stainless steel collars were prepared having an inside taper, the smaller end of the taper being of such a size that the specimen could just pass through freely. The tapered hole did not extend the full length of the collar; a sufficient thickness of metal remained so that a hook could be attached to provide a means of applying the load and suspending the specimen. One of the collars was slipped over the upper end of a specimen which was supported vertically in a steel jig. The collar was then heated electrically until the end of the crystal melted and filled the collar with molten zinc. At this point the application of heat was discontinued, whereupon the molten zinc quickly solidified, due to the chilling effect of the jig. The specimen was then inverted and the second collar applied in a similar manner. The jig served several purposes: limiting the length of specimen that was melted, providing excellent alignment of the collars with respect to the specimen axis, and protecting the specimen from mechanical damage. Once the specimen was suspended in the furnace and loaded, it was desired to accomplish the surface treatment with a minimum of disturbance of the specimen. Around the specimen was a long pyrex tube, the upper portion of which was approximately 1 in. in diam, and in it was a copper coil of such a diameter to fit snugly against the tube. A specimen, approximately ½ in. in diam and 4 in. long, was suspended by means of a stainless steel rod so that it hung within the copper coil. The lower portion of the glass tube was approximately ¼ in. in diarn, and passing through it was a 5/32 in. diam stainless steel rod which hung from the lower specimen collar. This portion of the glass tube and the stainless steel rod extended through the bottom of the furnace. A T-connector, with suitable packing, was attached to the lower end of the stainless rod to provide a water-
Jan 1, 1952
-
Iron and Steel Division - Oxidation of Phosphorus and Manganese During and After Flushing in the Basic Open HearthBy F. W. Luerssen, J. F. Elliott
F LUSHING the early slag from a stationary open Fhearth having a high percentage of hot metal in its charge is necessary in order to remove silica from the system. The flush slag is strongly oxidizing and is somewhat acidic. It has, however, considerable capacity to extract phosphorus from the bath and it also removes considerable manganese. It seems probable that factors which control the distribution of phosphorus and manganese between slag and metal in the refining period also should be dominant in the flush and postflush periods. Several studies, as summarized elsewhere,1,2 support the viewpoint that conditions closely approaching equilibrium for these elements are rather readily established during the refining period. Over the years these studies have repeatedly demonstrated that 1—high slag v01ume, 2—low bath and slag temperature, 3—basic slag, and 4—strongly oxidizing slag favor rapid elimination of phosphorus from the bath to the slag. They also show that the following conditions favor retention of manganese in the bath: 1—low slag volume, 2—high bath and slag temperature, 3— basic slag, and 4—minimum oxidizing power of slag. When it is considered that the flush slag often carries as high as 75 pct of the manganese charged and only 25 to 60 pct of the phosphorus charged, it is evident that in removing silica much manganese is sacrificed but phosphorus removal is far from conplete. Because of overriding circumstances, this is accepted in most operations and actually it is considered to be inevitable. This may account for the fact that little attention has been paid to conditions affecting the elimination of phosphorus and manganese in the flush slag. A recent study of the behavior of various charge oxides has developed considerable information on the flush and postflush periods. Because the data are felt to be of general interest, they have been brought together and Presented in this paper. The object is to show the various factors in the flush and postflush periods which influence elimination of phosphorus and manganese. Physical Conditions During and After Flushing Physical conditions existing during the flush vary from plant to plant, from shop to shop, from furnace to furnace, and even from heat to heat. They are strongly influenced by the physical and chemical character of the charge oxide which is ordinarily necessary to provide sufficient oxidizing power early in the heat. Invariably the period is characterized by a vigorous reaction between the principal re-actants: the hot metal being added and the charge oxide. During the flush, it is probable that the slag acts to some extent as an oxidizer; but, because of the critical influence of the behavior of the charge oxid'e on flushing action, it seems apparent that the oxide itself is the dominant oxidizer. Fig. 1 shows the course of two heats which were selected as being typical of the group studied. Heat A was charged with 55 pet hot metal, based on the total metallics charged, and heat B had 57 pct hot metal. As indicated in Table I and Fig. 1, the melt-down slag, which is not usually voluminous and which is principally FeO, expands greatly in volume and will show rather high levels of SiO2, MnO, and P2O5 very soon after the beginning of the hot metal addition. Simultaneously, large volumes of CO are liberated which cause violent mixing of slag and metal. It is of interest to note that the time required to bring carbon down to a low level is very much longer than that required for the removal of silicon, manganese, or phosphorus. At the end of flush, carbon in the bath is still approximately 2 pct. When strongly reducing hot metal is brought into contact with strongly oxidizing conditions within the furnace! it is probable that the rate of mass transfer to the slag (and atmosphere) of silicon, manganese, phosphorus, and carbon initially depends principally on the rates at which the two participating phases are brought into contact That is, it depends on the nature of the various reactions. Later in the flush period, when the scrap is virtually all dissolved and the action of the bath has settled down to a steady and somewhat gentle boil, it is likely that other factors, such as the transfer of oxygen across the slag-metal interface, become dominant. The temperature of the slag-metal system is far from uniform. Heat is being driven by the flame down through the slag. Bubbling and surging of the metal also frequently brings portions of the bath in contact with the flame. At areas of contact between the ore and liquid metal, or slag and liquid metal, the oxidizing reactions generate much heat. On the other hand, scrap is being melted which tends to absorb large quantities of heat. Because the liquid bath is high in carbon, the steel scrap is brought into solution rapidly. This can proceed at a rather low temperature; and until much of the scrap has been taken into solution, the bath temperature would not be expected to increase appreciably. Consideration of these factors leads to the conclusion that during the flush period the slag should be rather hot and the bath relatively cold. Both observation and temperature measurements bear this out. Experimental Data The extended program of charge oxide evaluation permitted study of the widely varying conditions existing during the flushing period. Slag and metal analyses and bath temperatures reported herein (Tables I and 11) were obtained toward the latter portion of the work. Four different types of charge oxide, sinter, two types of hydraulic cement-bonded soft ores, and a pyrobonded agglomerate were used in the study. Although the heats reported were from only one 205 ton furnace, they show variations in flush slag analyses all the way from 25 pct FeO, which is typical with the use of a hard natural charge ore, to 45 pct FeO which resulted when a very poorly agglomerated fine ore was used. The physical behavior of the flushes showed a correspondingly wide variation from well controlled reactions to violent surges following periods of inac-
Jan 1, 1956
-
Mining - Acid Coal Mine Drainage. Truth and Fallacy About a Serious Problem - DiscussionBy Douglas Ashmead
In his paper Mr. Braley makes no mention of the bacteriological aspects of the problem. It is now quite well established that certain bacteria play a major role in formation of acid mine waters, and it is a simple matter in the laboratory to show that under sterile conditions the rate of acid production from a pyrites suspension is only about one quarter of that obtained from a similar suspension inoculated with drainage from a mine producing an acidic pit water. Under sterile conditions the oxidation is due to direct chemical action and, from the evidence just given and from much other evidence, this increase under nonsterile conditions is due to certain bacteria. Experiments recently completed, and shortly to be published, have shown that this bacteriological oxidation can be prevented by the maintenance of pH conditions above 4. It was found that to raise this pH above 4 at the beginning of the experiments was not sufficient but that, due to the continuing chemical oxidation, alkali had to be added daily to maintain the pH conditions above 4. The amount of alkali added, however, over a fixed period, was only about one quarter of the alkaline equivalent of the acid produced when pH conditions were not controlled over an equal period. The opinion expressed by Mr. Braley that sodium hydroxide has little or no effect on the rate of oxidation of pyrites is not substantiated by the above experiments. The writer does not claim that these results show a practical solution to the problems, especially in abandoned workings, but feels that the application of an alkaline coating, such as lime wash, to exposed accessible workings might be well worth trying. S. A. Braley (author's reply)—In 1919 Powell and Parrl suggested that bacteria, or some catalytic agent, hastened the oxidation of pyritic or marcastic sulfur in coal. Carpenter and Herndon (1933)' attributed the action of Thiobacillus thiooxidans. Colmer and Hinkle (1947)3 observed an organism similar to T. thiooxidans and another organism that oxidized iron. Leathen and Braley 9rst discovered this organism in 1947 in a sample of water from the overflow of the Bradenville mine (Westmoreland County, Pennsylvania). They characterized the organism in 1954" and gave it the name Ferrobacillus ferrooxidans. Although Temple and Colmer (1951)' had suggested the name Thiobacillus ferrooxidans, since they claimed it oxidized both ferrous iron and thiosulfate, we have found that pure cultures of the organism do not oxidize thiosulfate, hence the name F. ferrooxidans. In 1955 Ashmead7 isolated an organism, similar to the one called Thiobacillus ferrooxidans by Temple and Hinkle, from acid mine water in Scotland. It is probable that this organism was F. ferrooxidans. In 1954 Bryner, Beck, Davis, and Wilsonh reported microorganisms in effluents from copper mine refuse. These organisms appeared to be similar but were not in pure culture. In view of this history of bacterial investigation of acid mine water and our own ten years of experience, we do not agree with Mr. Ashmead that bacteria play a major role in acid formation. We do not find that any of these bacteria will directly oxidize pyritic material. They do, however, augment the chemical formation of sulfuric acid by atmospheric oxidation. In two papers in 1953% eathen, Braley, and McIntyre discuss the role of bacteria in acid formation and postulate the mechanism through which they operate. Mr. Ashmead in his discussion of my paper has assumed that this work was carried on in the presence of acid mine water in which bacteria would be present. This was not the case. Strictly sterile conditions were not maintained, but the organisms present in mine drainages were definitely absent in these experiments. We believe that we have demonstrated that alkalis do not inhibit the chemical oxidation of pyritic material. This is also indicated by Mr. Ashmead's discussion in which he says that alkali must be added daily due to the continuing chemical oxidation. It is interesting to note that Mr. Ashmead finds that maintenance of pH above 4.00 decreases the activity of the bacteria. We have found also that a decrease in pH below 2.8 also inhibits its activity. Table XIII of published data'" illustrates the decrease in activity with increased acidity, although pH values are not given. These values are in comparison with uninoculated controls and show the marked increase in acidity up to 22 weeks but a decline at 29 weeks, at which time the experiment was terminated. It is probable that after a longer period only chemical oxidation would have continued. From our studiesv we have postulated that the iron oxidizing bacterium (Ferrobacillus ferrooxidans) oxidizes the ferrous iron, resulting from chemical oxidation, to ferric iron. The ferric iron then aids the atmospheric oxidation of the sulfuritic material and is itself reduced to ferrous iron, which in turn acts as food for the autotrophic bacteria. Study of the physiologic properties of F. ferrooxidans shows that its preferred pH is about 3.00 and its activity decreases with variation in either direction. It is extremely inactive above pH 4.00 and below 2.5. This inactivity above 4.00 is indicated by Mr. Ashmead's observations. These properties of F. ferrooxidans then correlate perfectly with our hypothesis. Ferrous iron is oxidized very slowly by atmospheric oxygen in highly acid sohtion and since the bacteria become inactive, acid is formed only by atmospheric oxidation. At a pH of 4.00 or above iron is more readily oxidized by atmospheric oxygen, but the bacterial activity is decreased. However, with a pH above 4.00 the ferric iron is removed from the field of activity since its soluble sulfate hy-drolyzes and precipitates the iron as ferric hydroxide or a basic sulfate. As we have shown in the paper under discussion, the alkali does not inhibit the chemical oxidation, and thus the acid formation continues. This
Jan 1, 1957
-
Geology - Deep Hole Prospect Drilling at Miami, Tiger, and San Manuel, ArizonaBy E. F. Reed
CONSIDERABLE deep hole prospect drilling has been done in the last few years in the Globe-Miami mining district about 70 miles east of Phoenix, Arizona, and in the San Manuel-Tiger area about 50 miles south of the Globe-Miami region. More than 205,000 ft of churn drilling have been completed by the San Manuel Copper Corp. at their property in the Old Hat Mining District in southern Pinal County. The deepest hole on this property is 2850 ft; there are 49 holes deeper than 2000 ft. At the adjoining Houghton property of the Anaconda Copper Mining Co., where only one hole reached 2000-ft depth, there were 27,472 ft of churn drilling and 3436 ft of diamond drilling. Three churn drill holes were deepened by diamond drilling methods. Near Miami in the Globe-Miami district the Amico Mining Corp. drilled four holes by combined churn and rotary drilling methods, the total amounting to 13,879 ft, of which 2256 ft were drilled with a portable rotary rig. In the same district, besides doing a large amount of shallow prospect drilling, the Miami Copper Co. drilled two holes of 2560 and 3787 ft, respectively, which were completed by churn drilling methods. The rocks encountered in drilling at San Manuel and Tiger are described by Steele and Rubly in their paper on the San Manuel Prospect' and by Chapman in a report on the San Manuel Copper Deposit.' The rocks are well-consolidated Gila conglomerate, quartz monzonite, and monzonite porphyry. In some places these formations stand very well while being drilled, and three holes were drilled without casing, the deepest of which was 2200 ft. In other holes faulted and fractured ground made drilling difficult. In the Globe-Miami district the deep drilling was done in the down-faulted block of Gila conglomerate east of the Miami fault and in the underlying Pinal schist. The geology of this area is described by Rannome. In the Amico holes the conglomerate varied from material consisting entirely of granite boulders and fragments to a rock made up of schist fragments in a sandy matrix; in the Miami Copper Co. holes there were more granite boulders and the material was poorly consolidated. Drilling was much more difficult and expensive in the Miami area than in the San Manuel district, mainly because of the depth of the holes and the formations drilled. All the deep hole prospecting described in this paper was done with portable rigs. The churn drill rigs were of several types, of which the Bucyrus-Erie were the most popular. Bucyrus-Erie 28L, 29W, and 36L rigs were used on some of the deeper holes on the San Manuel property. A few Fort Worth spudder types were tried, and the deepest hole at San Manuel was drilled with a Fort Worth Jumbo H. The spudder type is considerably larger than most other rigs used on this work and required a larger location site. The spudders were belt-driven machines with separate power units, and time required for setting up and moving was much longer than with the more portable drills. All the churn drilling was done by contractors or with machinery leased from them. A few of the contractors had complete equipment, including most of the necessary fishing tools. Unusual and special fishing tools were obtainable from the supply companies in the oil fields of New Mexico or in the Los Angeles area. Most of the contractors used equipment with standard API tool joints, so that much of it was interchangeable. Failure of tool joints is one of the principal causes of fishing jobs. It can be minimized if the joints are kept to the API specifications and the proper sized joints are used in the various holes. The minimum sizes that should be used with various bits are as follows: 12-in. and larger bits, 4x5-in. tool joints; 10-in. bits, 31/4x41/4-in. tool joints; 8-in. bits, 23/4x 33/4-in. tool joints; 6-in. bits, 2Y4x3Y4-in. tool joints; 4-in. bits, 15/ix25/8-in. tool joints. Two rotary drill rigs were tried at San Manuel on the same hole, and a portable rotary drill rig was used on the Amico drilling for test coring the formation and for drilling in holes 3 and 4. Rotary drilling differs from churn drilling or cable tool drilling in that the bit is revolved by a string of drill pipe and the cuttings are removed from the hole by a thin solution of mud pumped through the drill pipe. The principal parts of a rotary rig are the power unit, a rotating table to revolve the drill pipe, hoists to raise and lower the pipe and to handle casing, and a pumping system to circulate the drilling liquid. The rig used on the Amico property at Miami was mounted on a truck. The larger rig used on the San Manuel property was hauled by several trucks and had separate turntable and pumping units. Diamond drill coring equipment was used successfully with the rotary rig in the holes on the Amico property. To allow for 23/8-in. drill pipe with tool joints, 31h-in. core barrels and bits were used. With the standard 31h-in. core barrel there was considerable difficulty in maintaining circulation with mud, so a barrel was designed with a smaller inner tube and a broad-faced bit. This allowed coarser material to circulate between the barrels. Rock bits of 55/8 to 3 in. were used with the rotary rig for drilling between core runs. Diamond drill equipment is much lighter than churn drill tools, so that fishing tools can usually be obtained from supply houses by air express when needed. Three churn drill holes on the Houghton property at Tiger were deepened by diamond drilling with Longyear UG Straitline gasoline-driven machines. The open churn drill hole was cased with 21h-in. black pipe. In deep hole churn drilling, casing is one of the most important items, especially in drilling in un-consolidated material like the formations drilled by
Jan 1, 1953
-
Extractive Metallurgy Division - Activities in the Iron Oxide-Silica-Lime SystemBy J. F. Elliott
PRESENT knowledge of the usual metallurgical slags indicates that they are, for the most part, rather complex in behavior and as yet there is no ready means for describing, in a simple manner, the behavior of any one of them. One of the best known slag systems is the iron oxide-silica-lime ternary which is the basic "solvent" in a number of important metallurgical refining operations, the basic open hearth being one of the most important. In this operation, the slag dissolves such components as sulphur, phosphorus, manganese oxide, and magnesia. Considerable study of this slag system and the behavior of these additions has been carried out in the past by a number of authors, as has been summarized in several critical reviews.','2 However, except for determination of the activity of iron oxide, only a limited amount of effort has been directed towards developing, from these data, an understanding of the general behavior of the basic solvent. Reported here are the results from a series of calculations based on data from the literature which permit a semiquantitative evaluation of the activities of iron oxide, silica, and lime (plus magnesia) in the ternary system at 1600°C. The preliminary results, which were reported briefly at a symposium held by AIME in 1953, have been revised and are completed. The steps in the calculation are as follows:* I—establish the activity curves and the curve of the excess molar free energy of mixing at 1600°C for each of the binary systems, 2—construct the activity surface of iron oxide for the ternary from the data on the binary systems and information available in the literature for the ternary area, 3—determine the surface of excess molar free energy of mixing for the ternary system from the activity surface of iron oxide and from the molar curves obtained for the binary system, and 4—differentiate the ternary surface of the molar excess free energy of mixing to obtain the ternary surfaces for the logarithm of the activity coefficients for silica and lime (log rslo, and log rc.~). Si0,-Fe,O: Schuhmann and Ensio have measured the activity of iron oxide in simple iron oxide-silica slags when in equilibrium with y iron. Their data recalculated to 1600°C are shown in Fig. 1. Also included is a point representing a measurement by Gokcen and Chipmana of the activity of iron oxide at 1600°C at the point of saturation with solid silica. For convenience and in accordance with other treatments,' the calculations are based on the hypothetical component, FelO, which is obtained by converting all the analyzed iron in the slag to FeO. In spite of Schuhmann and Ensio's conclusion that the activity of iron oxide in the system does not vary with temperature over the experimental range of 1258" to 1407"C, the data are corrected to 1600°C assuming that temperature does have an effect. It was felt to be most reasonable to assume that the term log rr.10 is a linear function of the reciprocal of the temperature. Reyu has indicated that an effect of temperature on the activities in this system is to be expected from the Schuhmann and Ensio data. In essence, the correction consists of multiplying the experimental value of log rf,,o by the ratio of the experimental temperature in Kelvin to 1873°K. The magnitude of the correction is not large, being approximately 11.5 pct of the experimental value of log rve10. A very minor correction was necessary to compensate for the fact that the slags were in equilibrium with y iron in the experiment, while at steel-making temperatures they would be in equilibrium with liquid iron. Data for the correction were obtained from Darken and Gurry. The standard states established are pure liquid iron oxide (FelO) in equilibrium with pure liquid iron (with the appropriate amount of oxygen in solution) and pure liquid silica. The method of plotting in Fig. 1 is convenient for the calculation of the activity of liquid silica and permits a reasonable extrapolation for the activity of Fe,O in the ranges where no experimental data are available. The uncertainty in the extrapolation to infinity at one terminal where Nvelo = 1 for the usual Gibbs-Duhem integration is reduced considerably by this method. The region of two coexisting liquid phases is estimated to range from 1.8 to 41.7 mol pct Fe,O. The nature of the activity curve for the single-phase region indicates that the activity of iron oxide across the two-phase region is very close to 0.39. Computation of the function log ~F,,o/(1— NF,,o)' for this region (dashed line) in conjunction with the curve through the adjusted experimental data indicate the best probable value of 0.382 for alPe,o in the two-phase area. The line from 0 to 0.018 Nf~~o is obtained by assuming that the component follows Henry's law. In this range, the value for log rveto is 2.59. Appropriate mathematical manipulation of the plotted linet yields the activity curves for the The curve AF", the excess molar free energy of mixing (actual minus ideal), as shown in Fig. 3 is also computed from Fig. 1. This curve is required for subsequent calculations. CaO-Fe,O: The phase diagram for the lime-iron oxide system when in equilibrium with liquid iron is not well known but there appears to be no intermediate compound present. This fact as well as the activity values for Fe,O extrapolated to the CaO-Fe,O binary from Taylor and Chipman' tend to indicate somewhat negative deviations from ideality for the activity curves for the two components. Strong indication of this is evident in Fig. 1 where are plotted the points computed from the estimated activities of Fe,O for the binary system.' It appears that the best line through the data is a horizontal straight line. Because of the general indication of the slight negative departure from ideality, the line is extrapolated horizontally to NF~,o = 0. It is con-
Jan 1, 1956
-
Geology - Deep Hole Prospect Drilling at Miami, Tiger, and San Manuel, ArizonaBy E. F. Reed
CONSIDERABLE deep hole prospect drilling has been done in the last few years in the Globe-Miami mining district about 70 miles east of Phoenix, Arizona, and in the San Manuel-Tiger area about 50 miles south of the Globe-Miami region. More than 205,000 ft of churn drilling have been completed by the San Manuel Copper Corp. at their property in the Old Hat Mining District in southern Pinal County. The deepest hole on this property is 2850 ft; there are 49 holes deeper than 2000 ft. At the adjoining Houghton property of the Anaconda Copper Mining Co., where only one hole reached 2000-ft depth, there were 27,472 ft of churn drilling and 3436 ft of diamond drilling. Three churn drill holes were deepened by diamond drilling methods. Near Miami in the Globe-Miami district the Amico Mining Corp. drilled four holes by combined churn and rotary drilling methods, the total amounting to 13,879 ft, of which 2256 ft were drilled with a portable rotary rig. In the same district, besides doing a large amount of shallow prospect drilling, the Miami Copper Co. drilled two holes of 2560 and 3787 ft, respectively, which were completed by churn drilling methods. The rocks encountered in drilling at San Manuel and Tiger are described by Steele and Rubly in their paper on the San Manuel Prospect' and by Chapman in a report on the San Manuel Copper Deposit.' The rocks are well-consolidated Gila conglomerate, quartz monzonite, and monzonite porphyry. In some places these formations stand very well while being drilled, and three holes were drilled without casing, the deepest of which was 2200 ft. In other holes faulted and fractured ground made drilling difficult. In the Globe-Miami district the deep drilling was done in the down-faulted block of Gila conglomerate east of the Miami fault and in the underlying Pinal schist. The geology of this area is described by Rannome. In the Amico holes the conglomerate varied from material consisting entirely of granite boulders and fragments to a rock made up of schist fragments in a sandy matrix; in the Miami Copper Co. holes there were more granite boulders and the material was poorly consolidated. Drilling was much more difficult and expensive in the Miami area than in the San Manuel district, mainly because of the depth of the holes and the formations drilled. All the deep hole prospecting described in this paper was done with portable rigs. The churn drill rigs were of several types, of which the Bucyrus-Erie were the most popular. Bucyrus-Erie 28L, 29W, and 36L rigs were used on some of the deeper holes on the San Manuel property. A few Fort Worth spudder types were tried, and the deepest hole at San Manuel was drilled with a Fort Worth Jumbo H. The spudder type is considerably larger than most other rigs used on this work and required a larger location site. The spudders were belt-driven machines with separate power units, and time required for setting up and moving was much longer than with the more portable drills. All the churn drilling was done by contractors or with machinery leased from them. A few of the contractors had complete equipment, including most of the necessary fishing tools. Unusual and special fishing tools were obtainable from the supply companies in the oil fields of New Mexico or in the Los Angeles area. Most of the contractors used equipment with standard API tool joints, so that much of it was interchangeable. Failure of tool joints is one of the principal causes of fishing jobs. It can be minimized if the joints are kept to the API specifications and the proper sized joints are used in the various holes. The minimum sizes that should be used with various bits are as follows: 12-in. and larger bits, 4x5-in. tool joints; 10-in. bits, 31/4x41/4-in. tool joints; 8-in. bits, 23/4x 33/4-in. tool joints; 6-in. bits, 2Y4x3Y4-in. tool joints; 4-in. bits, 15/ix25/8-in. tool joints. Two rotary drill rigs were tried at San Manuel on the same hole, and a portable rotary drill rig was used on the Amico drilling for test coring the formation and for drilling in holes 3 and 4. Rotary drilling differs from churn drilling or cable tool drilling in that the bit is revolved by a string of drill pipe and the cuttings are removed from the hole by a thin solution of mud pumped through the drill pipe. The principal parts of a rotary rig are the power unit, a rotating table to revolve the drill pipe, hoists to raise and lower the pipe and to handle casing, and a pumping system to circulate the drilling liquid. The rig used on the Amico property at Miami was mounted on a truck. The larger rig used on the San Manuel property was hauled by several trucks and had separate turntable and pumping units. Diamond drill coring equipment was used successfully with the rotary rig in the holes on the Amico property. To allow for 23/8-in. drill pipe with tool joints, 31h-in. core barrels and bits were used. With the standard 31h-in. core barrel there was considerable difficulty in maintaining circulation with mud, so a barrel was designed with a smaller inner tube and a broad-faced bit. This allowed coarser material to circulate between the barrels. Rock bits of 55/8 to 3 in. were used with the rotary rig for drilling between core runs. Diamond drill equipment is much lighter than churn drill tools, so that fishing tools can usually be obtained from supply houses by air express when needed. Three churn drill holes on the Houghton property at Tiger were deepened by diamond drilling with Longyear UG Straitline gasoline-driven machines. The open churn drill hole was cased with 21h-in. black pipe. In deep hole churn drilling, casing is one of the most important items, especially in drilling in un-consolidated material like the formations drilled by
Jan 1, 1953
-
Technical Notes - Origin of the Cube Texture in Face-Centered Cubic MetalsBy Paul A. Beck
THE occurrence of the (100) [lOO] or "cube" texture upon annealing of cold-rolled copper has been much investigated.' The conditions favorable for its formation were found to be a high final annealing temperaturez or long annealing time," a high reduction of area in cold rolling prior to the final anneal,' and a small penultimate grain size." The effects of penultimate grain size and of rolling reduction were found by Cook and Richards4 to be interrelated in such a way that any combination of them giving lower than a certain value of the final average thickness of the grains in the rolled material leads to a fairly complete cube texture with a given final annealing time and temperature. Also, according to the same authors, at a higher final annealing temperature a larger average rolled grain thickness, i.e., a lower final rolling reduction, is sufficient than at a lower temperature. These somewhat involved conditions can be understood readily on the basis of recent results obtained at this laboratory. Hsun Hu was able to show recently by means of quantitative pole figure determinations that the rolling texture of tough pitch copper, which is almost identical with that of 2s aluminum: may be described roughly as a scatter around four symmetrical "ideal" orientations not very far from (123) [112]. In the case of aluminum, annealing leads to retain-ment of the rolling texture with some decrease of the scatter around the four "ideal" orientations, and to the appearance of a new texture component, namely the cube texture." A microscopic technique, revealing grain orientations by means of oxide film and polarized light, showed that the retainment of the rolling texture is achieved through two different mechanisms operating simultaneously, namely "re-crystallization in situ," and the formation of strain-free grains in orientations different from their local surroundings, but identical with that of another component of the rolling texture. Thus, a local area in the rolled material, having approximately the orientation of one of the four "ideal" components of the texture, partly retains its orientation during annealing, while recovering from its cold-worked condition, and it is partially absorbed at the same time by invading strain-free grains of an orientation approximately corresponding to that of another "ideal" texture component. The reorientation here, as well as in the formation of the strain-free grains of "cube" orientation, may be described as a [Ill] rotation of about 40°, see Fig. 1 of ref. 6. The preferential growth of grains in such orientations is a result of the high mobility of grain boundaries corresponding to this relative orientation.' " It appears very likely that in copper the mechanism of the structural changes during annealing is similar to that observed in aluminum (except for the much greater frequency of formation of annealing twins in copper). In both metals the new grains of cube orientation have a great advantage over the new grains with orientations close to one of the four components of the rolling texture. This advantage stems from their symmetrical orientation with respect to all four retained rolling texture components of the matrix; they are oriented favorably for growth at the expense of all of these four orientations. As a result, the growth of the "cube grains" is favored over the growth of the others, as soon as the new grains have grown large enough to be in contact with portions of the matrix containing elements of more than one, and preferably of all four component textures. It is clear that this critical size is smaller and, therefore, attained earlier in the annealing process if the structural units, such as grains and kink bands, representing the four matrix orientations are smaller, i. e., if the average thickness of the rolled grains is smaller. Hence, for a given annealing time and temperature, a smaller penultimate grain size and a higher rolling reduction both tend to increase that fraction of the annealing period during which the above condition is satisfied. Consequently, the percentage volume of material assuming the cube orientation increases. The same is true also for increasing time and temperature of annealing when the penultimate grain size and the final rolling reduction are constant, since the average size attained by the new grains during annealing increases with the annealing time and temperature. For the same reason, at higher annealing temperatures a given volume percentage of cube texture can be obtained with larger rolled grain thickness (larger penultimate grain size, or smaller rolling reduction) than at lower annealing temperatures. The well-known conspicuous sharpness of the cube texture may be interpreted as a result of the fact that selective growth of only those grains is favored that have an orientation closely symmetrical with respect to all four components of the deformation texture and exhibit, therefore, a high boundary mobility in contact with each. The effect of alloying elements in suppressing the cube texture, as described by Dahl and Pawlek,' appears to be associated with a change in the rolling texture. For face-centered cubic metals, such as copper, which do exhibit the cube texture upon annealing, the rolling texture is always of the type described above, i. e., scattered around four "ideal orientations" of approximately (123) [112]. The addition of certain alloying elements, such as about 5 pct Zn or 0.05 pct P in copper, has the as yet unexplained effect of changing the rolling texture into the (110) 11121 type. This texture consists of two fairly sharply developed, twin related components. In such cases, as in 70-30 brass and in silver, the annealing texture again is related to the rolling texture by a [lll] rotation of about 30°, however, because of the different rolling texture to start from, it has no cube texture component. At higher temperatures, both in brassm and in silver," grain growth leads to a further change in texture: A [lll] rotation of the same amount, but in reversed direction, back to the original rolling texture.
Jan 1, 1952
-
Metal Mining - Diesel Truck Haulage Through Inclined AditBy V. C. Allen
THE Tri-State Zinc, Inc., Galena, Ill., was confronted with the problem of securing ore from a deposit because the hoisting shaft was several thousand feet from the mill. The orebody is several thousand feet long, averaging 200 ft in width and 60 ft in height and opened up by vertical shafts some 300 ft deep. Mining is by the room-and-pillar method. During the initial operation the ore was loaded by conventional electric 1/2-yd boom-and-dipper shovels and hauled to the shaft by 8-ton diesel trucks. This underground ore loading and hauling was well adapted to the conditions and productive of low costs per ton. However, with the mill situated as mentioned, a triple handling of all broken rock was necessary: l—from the stope to the shaft by truck, 2—up the shaft by skip br can into the surface hopper, and 3—by truck from the surface hopper to the crushing plant at the mill. In addition to the repeated handling, serious troubles were encountered during the winter because of freezing in the shaft hopper. Consideration was given to either moving the mill to the new orebody or to the construction of a second mill. The presence of other orebodies to be mined at a later date made the first alternative impractical while the capital outlay for a second mill, when the present plant of approximately 850 tons per day was deemed sufficiently large for the total reserves, made the second alternative also unwise. It was decided to retain the mill in the originals location and continue to move the ore to it. The idea of driving an inclined adit from the surface to the bottom of the orebody suitable for truck haulage and big enough to allow the passage of all mechanical equipment was conceived. Among the apparent advantages of such an incline were: 1— Direct haulage from the stope to the mill without rehandling. 2—Elimination of virtually all grizzlies. Trucking from underground to the mill would do away with all hoppers, chutes, gates, and skips and make the maximum rock size dependent solely on the size of the shovel dipper at the mine and the crusher opening at the mill. 3—Less secondary blasting would be needed. 4—Ease of transporting equipment and supplies underground. Shovels and trucks could be taken through the incline intact. 5—Equipment could be brought to the surface for repairs and servicing without loss of time. The same advantages of ease in moving would be present in the handling of men, steel, powder, and supplies. 6—There would be far less difficulty in increasing the amount of tonnage that could be moved by truck up an incline than would be found in attempting to increase the capacity of a shaft. 7—All the broken ore in the stopes would serve as bin capacity, as it would take the breakdown of all of the loading and hauling equipment to have the same effect as a delay in shaft hoisting. 8—All danger of men being trapped in the mine as a result of shaft fire or power stoppage would be eliminated. 9— Virtually all trouble from severe winter conditions would be eliminated by the direct haul underground to the mill. The decision was made to proceed with the driving of an inclined adit. The topography of the surface between the orebody and the mill was such that it was possible to locate the portal at a point 170 ft above the mine floor and 1800 ft horizontally from the central point of the orebody to the south and 2500 ft from the mill to the north. A grade of 10 pct was found to be optimum for continuous truck haulage when the various factors of speed, safety, and truck maintenance were all considered. The incline as driven was consequently 1700 ft long on 10 pct grade and 12 ft high by 17 ft wide in cross section. The tunnel-driving equipment was chosen so that it could be used in mining after the completion of the tunnel. Drilling was done with a jumbo with two Joy jibs mounting 3-in. drills, loading with an Allis-Chalmers diesel-powered, front-end loader of approximately 11/4-yd capacity, and hauling by Koehring Dumptor trucks of 8-ton capacity, diesel-powered. The width of the tunnel allowed the end loader and Dumptor to be placed abreast. Since the Dumptors can be driven either forward or backward with equal facility, loading was accomplished without turning around either machine throughout the loading operation. The crew in addition to the tunnel foreman was comprised of three men per shift at the start and in the later work, four men. Each crew could perform any part of the working cycle. If the drilling was completed and the round blasted in the middle of a shift, the same men would proceed with the loading and hauling. Since the mine already had been drained to the bottom levels, no water was encountered. At the halfway point the tunnel was widened for approximately 100 ft to permit trucks to pass. The total cost of the tunnel excluding the capital outlay for equipment, which was all continued in use in the subsequent mine operation, was $60,363.00 or $35.50 per ft. The tunnel was completed at the end of June, 1949 and has been in continuous use since that time. In the five months from July to November inclusive, 106,049 tons have been transported to the mill or an average of 835 tons per day. No unforeseen disadvantages have been encountered and the advantages which had been predicated before the adit's construction have been more than realized. As previously mentioned, the deposit is worked by the room-and-pillar system with occasional faces up to 125 ft high. Except in driving development drifts when diesel-powered, front-end loaders such as were used in the tunnel are employed, all shoveling is done by Yz-yd boom-dipper type shovels electrically driven. These units need a width of 25 ft and a height of 14 ft in which to operate. All hauling is by diesel trucks, mainly Koehring Dump-tors. Roads are maintained with caterpillar tractors and a road grader. The tonnage output from the
Jan 1, 1952
-
Discussion of Papers Published Prior to 1954 - Alkali Reactivity of Natural Aggregates in Western United States (1953) 196, p. 991By William Y. Holland, Roger H. Cook
Dexter H. Reynolds (Chapman and Wood, Mining Engineers and Consulting Geologists, Albuquerque, N. M.)—A number of questions are raised by conclusions and inferences made in the above-mentioned paper. The more troublesome of these concern use of the various pozzolans to combat the deleterious effects of the alkali-aggregate reaction. The most alkali-reactive materials listed are opal and rocks containing opaline silica. The pozzolans mentioned specifically for use as amelioratives are opaline shales and cherts. These are stated to retard the expansion caused by the alkali-aggregate reaction. Another well-recognized pozzolan is diatomaceous earth, which consists principally of opaline silica. A pozzolan presumably owes its effectiveness to its high reactivity with the alkaline liquid phase of the concrete mix. It appears reasonable to expect that finely divided opaline silica added as a pozzolan would be more susceptible to reaction with the alkalies present than would larger particles of the same material. The authors report that work with high and low alkali cements indicates that in the presence of alkali-reactive materials, deleterious expansion depends upon the alkali content of the cement. The total effect, therefore, should be more or less independent of the amount of reactive aggregate present, and still more independent of its state of subdivision. The deleterious effects should, if anything, be aggravated by the addition of a finely divided, highly reactive pozzolan. Further, if the alkali-aggregate reaction is of great importance in the long-term soundness of concrete structures, the addition of a pozzolan to a concrete made with aggregate free from known deleterious materials would be a questionable procedure. The benefits reportedly accruing from such use of pozzolans are greater ultimate strength for a given cement content, increased resistance to deterioration by exposure to sulphate solutions and other mineral waters, and greater resistance to damage by wetting and drying and freezing and thawing. In view of the deleterious effects of highly reactive materials are these benefits ephemeral? The same considerations apply to another alkali-reactive material, chalcedony, which appears to consist of ultrafine-grained quartz, with opal absent in detectable amounts. Quartz flour is notably reactive chemically and physiologically (cf. Ref. 11 of Holland and Cook's paper), a fact borne out by its effectiveness as a pozzolan, which presumably might be expected to offset the deleterious effects of the presence of chalcedony in the aggregate. A second question of some importance concerns the reportedly highly deleterious reactivity of acidic and intermediate volcanic glasses, such as rhyolite, perlite, and pumice. Air entrainment is listed as one of the ameliorative measures to combat the deleterious effects of the alkali-aggregate reaction. The alkalic-silica gel formed by the reaction may expand into air bubbles and thus not cause appreciable expansion of the concrete mass. It would appear then that pumice and perlite, particularly perlites of the pumiceous types and other types after expansion, would also tend to counteract the expansion, since these materials consist largely of voids and air bubbles. Certainly this would be expected of structural concrete in which pumice or perlite is used as total aggregate. Finely ground pumice, perlite, and volcanic ash have been demonstrated to be active pozzolans (cf. Pumice as Aggregate for Lightweight Structural Concrete by Wagner, Gay, and Reynolds, Univ. of New Mexico Publications in Engineering No. 5, Albuquerque, 1950). In fact, the term pozzolan was first associated with finely divided pumice or volcanic ash. Such materials were used with hydrated lime as the sole cementitious agent in constructing public buildings, roads, and aqueducts by the ancient Romans. The deleterious alkali reactivity of the volcanic glass, itself containing several percent of the alkalies, apparently did not contribute to the remarkable state of preservation of those ancient structures, as exemplified by the Appian Way and the Pantheon Dome. Still a third question involves .the reactivity of constituents of concrete when exposed to various salt solutions. Resistance to. deleterious expansion and cracking as a result of contact with mineral waters and its relationship to the mineral content of the aggregate are not mentioned by the authors. Yet the phenomena pictured in Fig. 1, and especially in Fig. 2, appear very much like those caused by exposure to mineral waters. The deterioration of concretes exposed to sulphate waters is generally considered related to the chemical constituency of the cement itself, particularly to the relative amount of tricalcium alum-inate contained. Could not many of the ill effects presently blamed on alkali-aggregate reaction really have been caused by contact with sulphate or other salt-containing mineral waters? Or perhaps their use as mixing waters? May not the deleterious expansion be as much a function of the chemical makeup of the cement as it is of the mineral constituency of the aggregate? Would it not be just as important to use alkali-free mixing water as it is to use a low-alkali cement? It appears obvious that resistance of cements and concretes to sulphate and other salt solutions cannot be left out of account in discussion of deterioration of concrete structures with time. This factor may be of equal or even greater importance than the alkali-aggregate reaction, particularly for concrete subjected to wetting and drying cycles, such as airstrip paving, water-retaining dams, and highway structures. Another very important factor is called to attention on page 1022 of the article in Mining Engineering, October 1953, in that failure of concrete structures may result from poor construction practices and use of too high water-cement ratios. Both of these can contribute remarkably to decreased resistance to attack by sulphate waters, and presumably could have an equally remarkable effect upon extent of damage resulting from the alkali-aggregate reaction. From the above remarks it appears that while alkali-aggregate reaction may be an important factor in decreasing the useful. life of a concrete structure, it is not the only factor involved, and it may not be even a controlling factor. Likewise, many of the phenomena apparently associated with the alkali-aggregate reaction may have resulted from cond'itions which had little relationship to the alkali-reactivity of a constituent of the aggregate. Certainly if alkali-aggregate reactivity is a major factor in bringing about early failure, one cannot help feeling anxiety concerning the future of the many concrete structures in this country and abroad in which pumice and perlite were used as total or partial aggregates. This anxiety can only be dispelled by calling to mind that among the best-preserved relics coming down to us from ancient times are structures made with mortars containing highly alkali-reactive aggregates.
Jan 1, 1955
-
Its Everyones BusinessNational Minerals Advisory Council A meeting of the National Minerals Advisory Council on August 3rd in Washington, D. C., indicated the vitally important part that the mining industry is to play in the mobilization program. Director James Boyd of the Bureau of Mines told the Council that the Department of the Interior would review the recommendations of all the Council's commodity committees with regard for mobilization planning in the light of the changed international picture. The Council was requested to reactivate its commodity committees and have them gather all available data on supplies, their sources and availability and present and potential production of the minerals and metals represented on each committee. Data on labor, machinery, transportation, automotive and stationary equipment, power, fuel, lumber, water supply are a few of the important items called for in the reports, which are to be presented at a meeting of the Council on September 1 at Salt Lake City. The material in the reports will become the basis for discussing metal and mineral requirements at that time. Discussion at the meeting bared several $64 questions, probably the most important of which are the following: 1. Which of the war-essential metals and minerals and in what quantities can we reasonably expect to get them from abroad under threat of submarines? 2. How are we going to meet the manpower problem posed by (a) migration of labor from mining to manufacturing since the end of World War II and (b) the draft and the calling up of reservists? Opinion was expressed by industry spokesman at the meeting that the function of complying with mobilization requirements be left to those in the industry itself; that is, those having the "know how." This view contended that any administrating governmental agency should be kept as small and streamlined as possible. There was general sentiment against the reactivation of the wartime Premium Price Plan or other bonus plans as a stimulus to production. The thought was emphasized that what was needed was a change in the basic conditions which have fostered the decline in domestic mining activity in the postwar years. One such condition, long overdue for correction, is the tax structure as it applies to mining enterprises. Many quarters both in industry and in government favor tax relief along the lines suggested in the six tax recommendations by the Council to the Secretary of the Interior last December. The Council adopted a resolution expressing a feeling that the following tax recommendations are still feasible and desirable and will accomplish as much toward increasing exploration for new deposits (thereby subsequently increasing production) as will government loans for exploration: (1) Losses from unprofitable ventures should be allowed corporations, partnerships, or individuals as ordinary deduction against current income. (2) Development costs after discovery should be recognized as operating expenses. (3) Allowance for depletion should be made to the stockholder as well as to the corporation. (4) Income should not be taxed without full allowance for losses of loss years. (5) Adequate allowances for percentage depletion should be made. A discussion of the manpower problem led to the Council's acceptance of a resolution advising that "military authorities should proceed with caution in depriving the mining and metallurgical industry of its manpower." The resolution strongly urged that no personnel "directly engaged in exploration, development, production or supervision (of strategic and critical materials) should be drafted for the armed forces, at least until the anticipated demands upon these producers are clarified." Stockpiles The Munitions Board's "Stockpile Report to the Congress" of July 23, 1950 revealed: (1) The total estimated value of the stockpile objective is $4,051,714,510 at the close of fiscal year 1950. (2) The total value of the stockpile on hand, at the close of fiscal 1950 was $1,556,154,352 or 38.4 pct of the total stockpile objective. An additional $494,948,060 was on order, making a total of 50.6 pct on hand plus the amount on order. (3) Materials obtained for the stockpile by the ECA from January to June 1950 amounted to $13,112,085, while development projects by ECA during this period involved the expenditure of $9,322,000, mainly with counterpart funds. Shortly after the start of the Korean conflict it was felt that Congress ould appropriate greatly increased sums for the purchase of materials for the stockpile. This stimulus to the program may increase the dollar earnings of those European nations that are present or potential contractors in our stockpiling program. Such a development would mean that these nations could add to their gold reserves, thereby stabilizing their respective economies and hastening recovery. This seems to be the picture for the next six months anyway. The "bug" appears when it is realized that the increased threat of total world war actually may retard recovery in Europe as nations on the continent may feel inclined to devote more of their resources to defense programs. Industries Essential to Defense The Department of Commerce in response to a request by the Department of Defense issued on August 3, 1950 a "Tentative List of Essential Activities" as a "guide for calling up for active duty members of the civilian components of the Armed Forces." The list includes the following: Primary Metal Industries. Included herein are establishments engaged in the smelting and refining of ferrous and nonferrous metals from ore, pig, or scrap. Metal Mining. This category includes establishments primarily engaged in mining, developing mines or exploring for metallic minerals (ores). This group includes all ore dressing and beneficiating operations. Anthracite Mining, Bituminous Coal and Lignite Mining, Crude Petroleum and Natural Gas Extraction, Mining and Quarrying of Nonmetallic Minerals, Except Fuels. Challenge to the Mining Industry The source of our country's great strength lies in its capacity to produce. In times of stress such things as national morale and manpower are all-important but without a capable industrial machine we would be helpless. That machine must be fed with minerals and metals in order to generate and maintain momentum sufficient to insure success. Consequences of the lack of adequate supplies of essential metals and minerals to increase and sustain our industrial power are not pleasant to contemplate. It is absolutely imperative that we put forth Herculean effort to guarantee ample supplies of such essential materials as copper, lead, zinc, manganese, antimony, mercury, tungsten, tin, chromite, nickel, cobalt, iron ore and rubber. The mining industry faces a challenge more serious than ever existed before in the history of our country. The industry must be equal to the task.
Jan 9, 1950
-
Minerals Beneficiation - The Effect of Mill Speeds on Grinding Costs - DiscussionBy R. C. Ferguson, Harlowe Hardinge
Oscar Johnson—In my opinion, the effect of mill speeds on grinding costs must be studied along with capital investment and dollars gathered together as profits. Comparing the entire groups of operators with those who have had the opportunity to make slow-speed mill studies, I think you will find the latter small in numbers. Most managers want the equipment worked to its maximum output. There are, however, some installations where plant and mill sizes are such that they can do the job with reduction of mill barrel speeds. The past and the present installations of the industry are laid out to get the most capacity for the least capital outlay. This is the case even with the plants of Chile Exploration, International Nickel, Morocco, and Anaconda, now under construction or being changed. The industry recognizes that most all equipment it buys today is good and can be depended upon for efficient performance. Under this scheme of things, I am doubtful that slow-speed ball mill operation will be generally applicable. With reference to the U. S. Bureau of Mines laboratory tests, I think table II could have been omitted. It is inconclusive as to maximum efficiency for the low-pulp level mill on hard ore. There should be no question about this point. However, data on mill speeds can be found to substantiate various theories as well as refute them. Gow, Guggenheim, Campbell and Coghill, in their paper on Ball Milling,' believe their 2 x 2 ft laboratory mill reflects results that can be expected from large mills. If so, then referring to their table 11, they state, "The conclusion to be drawn from this second series is that high speed, not exceeding 72 pct of the critical, favors capacity, as before, but that with proper conditions of operation high speeds may give as good efficiency values as low speeds. In this case the efficiency values are nearly constant. A horizontal curve would indicate that the amount of grinding was directly proportional to the power expended, and these tests suggest that such a coildition can be made to exist in commercial operations." Table II (From Paper by Gow et a1)2 Speed. Pot Critical 32 42 52 62 72 82 Capacity: Surface tons per hr (65- mesh) 266 42.1 54.4 65.9 74.3 74.1 Surface tons per hr (200- mesh) 56.1 87.4 112.7 137.1 154.2 153.0 Efficiency: Surface tons per net hp hr (65-mesh) 35.7 36.3 36.3 35.4 34.3 32.3 Surface tons per net hp hr (200-mesh) 75.3 75.3 75.1 73.7 71.0 66.0 Ore in mill, 1.b. 98 100 100 113 122 165 The field performance data, table 111, represents much effort in its collection and preparation. But, one must realize that there are many variables that effect the efficiency of grinding mill operation, and too much must not be assumed as to the effect of some specific change. Possibly with changes in mill speed, the results might be more consistent by also a change in ball rationing, type of ball, volume of ball charge,. p.ulp level and amount of pulp in the mill, pulp consisting, design of liner, circulating load, etc. Also, changes in ore character must be reckoned with when evaluating grinding performance. At present the Climax Molybdenum Corp. is running at much reduced capacity. Mr. James Duggan informs me that at mill speeds of 17 rpm, they save a $0.025 per ton on liners and $0.025 per ton in power, but, if the demand for molybdenum increased, he would go back to higher speed to obtain maximum tonnage, as the values from the increased tonnage would far more than offset the one half saving at the slower speed. The Jnspiration ran a six months' test between mills running 21 rpm and 23.5 rpm. The slower mills ground 10 pct less ore with a slight saving per ton, but when the reduced plant tonnage was checked back into the actual cost figures of concentration, the high-speed mills with their greater tonnage showed considerable advantage. To be convinced of possible practical results from the predictions in the conclusions, I think we would have to rely on the analysis of expert cost accountants to furnish the necessary proof figures. Hardinge and Ferguson are to be commended for the work in preparing this paper. I am convinced that our Massco engineers should go into higher speeds with our equipment. Harlowe Hardinge (authors' reply)—For one, I heartily agree with Mr. Johnson's opening statement that the effect of mill speeds on grinding costs must be studied along with capital investment and dollars gathered together as profits. It was on this basis and for this reason the paper was written. Mr. Johnson, on the other hand, takes the position that, on the whole, low speeds are not justified from the economic standpoint, basing his principal reason on the fact that lower mill speeds cut mill capacities and hence reduce the gross income from the product produced. There is no denying this point. It is almost axiomatic. It is for this very reason that the overall advantage of lower mill speeds has been discounted and even overlooked. It was for this reason mainly that the paper was written in the first place. It is one thing to plan an efficient operation at the outset, basing one's figures on the tonnage requirements at the time, and it is quite another to be confronted with the problem of increasing the output of an existing installation at a minimum of capital expenditure. Economic consideration of a new installation is greatly influenced by referring to an old one. Too often, the analyst assumes that if this practice is followed in the new installation, one would not go wrong. It is just here that he may be wrong. Past practice and low capital expenditure are all too frequently given priority over the engineer's analysis of operating costs. When we are able to start fresh, we should give proper weight to other economic factors which do not exist in an old installation. It is these economic factors that make it possible to spend at the outset just a little more money and get it back in a matter of months and effect big savings for years to come. F. C. Bond—This paper is of considerable importance in that it emphasizes a modern trend to operate ball mills at somewhat slower speeds than formerly. We have checked the data in the paper with that obtained
Jan 1, 1951
-
Minerals Beneficiation - The Effect of Mill Speeds on Grinding Costs - DiscussionBy Harlowe Hardinge, R. C. Ferguson
Oscar Johnson—In my opinion, the effect of mill speeds on grinding costs must be studied along with capital investment and dollars gathered together as profits. Comparing the entire groups of operators with those who have had the opportunity to make slow-speed mill studies, I think you will find the latter small in numbers. Most managers want the equipment worked to its maximum output. There are, however, some installations where plant and mill sizes are such that they can do the job with reduction of mill barrel speeds. The past and the present installations of the industry are laid out to get the most capacity for the least capital outlay. This is the case even with the plants of Chile Exploration, International Nickel, Morocco, and Anaconda, now under construction or being changed. The industry recognizes that most all equipment it buys today is good and can be depended upon for efficient performance. Under this scheme of things, I am doubtful that slow-speed ball mill operation will be generally applicable. With reference to the U. S. Bureau of Mines laboratory tests, I think table II could have been omitted. It is inconclusive as to maximum efficiency for the low-pulp level mill on hard ore. There should be no question about this point. However, data on mill speeds can be found to substantiate various theories as well as refute them. Gow, Guggenheim, Campbell and Coghill, in their paper on Ball Milling,' believe their 2 x 2 ft laboratory mill reflects results that can be expected from large mills. If so, then referring to their table 11, they state, "The conclusion to be drawn from this second series is that high speed, not exceeding 72 pct of the critical, favors capacity, as before, but that with proper conditions of operation high speeds may give as good efficiency values as low speeds. In this case the efficiency values are nearly constant. A horizontal curve would indicate that the amount of grinding was directly proportional to the power expended, and these tests suggest that such a coildition can be made to exist in commercial operations." Table II (From Paper by Gow et a1)2 Speed. Pot Critical 32 42 52 62 72 82 Capacity: Surface tons per hr (65- mesh) 266 42.1 54.4 65.9 74.3 74.1 Surface tons per hr (200- mesh) 56.1 87.4 112.7 137.1 154.2 153.0 Efficiency: Surface tons per net hp hr (65-mesh) 35.7 36.3 36.3 35.4 34.3 32.3 Surface tons per net hp hr (200-mesh) 75.3 75.3 75.1 73.7 71.0 66.0 Ore in mill, 1.b. 98 100 100 113 122 165 The field performance data, table 111, represents much effort in its collection and preparation. But, one must realize that there are many variables that effect the efficiency of grinding mill operation, and too much must not be assumed as to the effect of some specific change. Possibly with changes in mill speed, the results might be more consistent by also a change in ball rationing, type of ball, volume of ball charge,. p.ulp level and amount of pulp in the mill, pulp consisting, design of liner, circulating load, etc. Also, changes in ore character must be reckoned with when evaluating grinding performance. At present the Climax Molybdenum Corp. is running at much reduced capacity. Mr. James Duggan informs me that at mill speeds of 17 rpm, they save a $0.025 per ton on liners and $0.025 per ton in power, but, if the demand for molybdenum increased, he would go back to higher speed to obtain maximum tonnage, as the values from the increased tonnage would far more than offset the one half saving at the slower speed. The Jnspiration ran a six months' test between mills running 21 rpm and 23.5 rpm. The slower mills ground 10 pct less ore with a slight saving per ton, but when the reduced plant tonnage was checked back into the actual cost figures of concentration, the high-speed mills with their greater tonnage showed considerable advantage. To be convinced of possible practical results from the predictions in the conclusions, I think we would have to rely on the analysis of expert cost accountants to furnish the necessary proof figures. Hardinge and Ferguson are to be commended for the work in preparing this paper. I am convinced that our Massco engineers should go into higher speeds with our equipment. Harlowe Hardinge (authors' reply)—For one, I heartily agree with Mr. Johnson's opening statement that the effect of mill speeds on grinding costs must be studied along with capital investment and dollars gathered together as profits. It was on this basis and for this reason the paper was written. Mr. Johnson, on the other hand, takes the position that, on the whole, low speeds are not justified from the economic standpoint, basing his principal reason on the fact that lower mill speeds cut mill capacities and hence reduce the gross income from the product produced. There is no denying this point. It is almost axiomatic. It is for this very reason that the overall advantage of lower mill speeds has been discounted and even overlooked. It was for this reason mainly that the paper was written in the first place. It is one thing to plan an efficient operation at the outset, basing one's figures on the tonnage requirements at the time, and it is quite another to be confronted with the problem of increasing the output of an existing installation at a minimum of capital expenditure. Economic consideration of a new installation is greatly influenced by referring to an old one. Too often, the analyst assumes that if this practice is followed in the new installation, one would not go wrong. It is just here that he may be wrong. Past practice and low capital expenditure are all too frequently given priority over the engineer's analysis of operating costs. When we are able to start fresh, we should give proper weight to other economic factors which do not exist in an old installation. It is these economic factors that make it possible to spend at the outset just a little more money and get it back in a matter of months and effect big savings for years to come. F. C. Bond—This paper is of considerable importance in that it emphasizes a modern trend to operate ball mills at somewhat slower speeds than formerly. We have checked the data in the paper with that obtained
Jan 1, 1951