Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Institute of Metals Division - The Surface Tension of Solid CopperBy A. J. Shaler, H. Udin, J. Wulff
In the study of the sintering of meta powders, we have come to the conclusion in this laboratory that further progress requires a more basic understanding of the operating mechanisms. This is emphasized in detail by Shaler. He has shown that a knowledge of the exact value of the surface tension is imperative for a solution of the kinetics of sintering. This force plays a principal role in causing the density of compacts to increase.2 Furthermore, a knowledge of the surface tension of solids is also applicable to other aspects of physical metallurgy. C. S. Smith3 points out the relation between surface and interfacial tension and their function in determining the microstructure and resulting properties of polycrystal-line and polyphase alloys. This paper describes one group of results of an experimental program designed for the study of the surface tension in solid metals. As a by-product of this work, considerable information has been obtained on the rate and nature of the flow of a metal at temperatures approaching the melting point and under extremely low stresses, a field of mechanical behavior heretofore scarcely touched by metallurgists. The importance of this additional information to students of powder metallurgy need not be stressed. Theoretical Considerations Interfacial tension arises from the condition that an excess of energy exists at the interface between two phases. Gibbs proves that this energy is a partial function of the interfacial area; thus: ?F/?s = ? where ?F/?s is the rate of change of free energy of the system with changing surface area, at constant temperature, pressure and composition, and ? is the interfacial tension, or interfacial free energy per unit area. If one of the phases is the pure liquid or solid, and the other the vapor of the substance, ? may properly be termed "surface tension," and is a characteristic of the solid or liquid. The attempt of a body to lower its free energy by decreasing its surface gives rise to a force in the surface which is numerically equal in terms of unit length to the free energy per unit area of the surface. Thus ? may be expressed either in erg-cm-² or in dyne-cm-1. Similarly, surface tension may be determined either by a thermo-dynamic measurement of the surface energy or by a mechanical measurement of the surface force. We have chosen the latter approach. Tammann and Boehme4 determined the surface tension of gold by measuring the amount of shrinkage or extension of thin weighted foil at various temperatures and interpolating to zero strain. The method is of questionable accuracy because of the tendency of foil to form minute tears when heated under tension. Their assumption of F = 2W?, where W is the width of the foil, is unsound, as the foil can decrease its surface area by transverse as well as by longitudinal shrinkage. Although their experimentation was meticulous, the paper does not include details of the sample configuration required for recalculating ? on a correct basis, even if such a calculation were possible. In the experimental procedure chosen here, a series of small weights of increasing magnitude are suspended from a series of line copper wires of uniform cross-section. This array is brought to a temperature at which creep is appreciable under extremely small stress. If the weight overbalances the contracting force of surface tension, the wire stretches; otherwise, it shrinks. The magnitude of the strain is determined by the amount of unbalance, so a plot of strain vs. load should cross the zero strain axis at w = F?. If balance is visualized as a thermodynamic equilibrium, the critical load is readily calculated. At constant temperature, an infinitesimal change in surface energy should be equal to the work done on or by the weight: ds = wdl [A] For a cylinder, s = 2pr2 + 2prl [2] If the volume remains constant, r = vV/pl [31 s = 2vpl+2V/l [4] ds = vpv/l - 2V/l²) dl [5] Substituting [5] into [I] gives for the equilibrium load, w = ?(z/rV- 2V/12) [6] and, again expressing V in terms of r and l, w = pr?(1 - 2r/l [7] Here the end-effect term, 2r/l, is neglected for thin wires in subsequent work. Eq 7 can be confirmed by means of a stress analysis. If the x-axis is chosen along the wire, then the stress is 2pr? - w pr² pr2 [8] A cylinder of diameter dis equivalent to a sphere of radius r, insofar as radial surface tension effects are concerned.³ Thus xv = 2?/d = ?/r = sz [9] For the case of zero strain in the x direction, the strain will also be zero in the y and z directions. Since the wire is under hydrostatic stress, Eq 8 and 9 are
Jan 1, 1950
-
Extractive Metallurgy Division - Effect of Chloride on the Deposition of Copper, in the Presence of Arsenic, Antimony, and BismuthBy C. A. Winkler, V. Hospadaruk
PREVIOUS papers from this laboratory have discussed the effect of chloride ion on the cathode polarization during electrodeposition of copper from copper sulphate-sulphuric acid electrolytes, in the presence and absence of gelatin. The steady state polarization'" was found to decrease sharply and pass through a minimum with increasing chloride ion concentration in the presence of gelatin. The minimum shifted to higher chloride ion concentrations and to higher polarization values with increase in current density or gelatin concentration, while an increase of temperature shifted the minimum toward lower halide concentrations and lower polarizations. Since these observations were made in acid-copper sulphate electrolytes that contained no other addend than gelatin, there was obviously the possibility that they were not applicable to deposition of copper from commercial electrolytes that contain a variety of other substances in relatively small amounts. In particular, it was of interest to determine whether the presence of arsenic, antimony, or bismuth in the electrolyte would materially alter the behavior. Experiments have now been made under a variety of conditions with systems containing these cations, and the results are summarized in the present paper. Experimental Polarization measurements were made at 24.5oC in a Haring cell in the manner described previously.' Electrolytes were made with doubly-distilled water, and contained 125 g per liter of copper sulphate and 100 g per liter sulphuric acid, both of reagent grade Eimer and Amend gelatin from a single stock was used throughout. Chloride ion was introduced as reagent grade sodium chloride, and arsenic, antimony, and bismuth by dissolving the chemically pure metal in hot concentrated sulphuric acid and adding appropriate amounts of the solutions to the electrolyte. Each cathode, of 1/16-in. thick rolled copper, was first etched in 40 pct nitric acid and washed thoroughly with distilled water. The surface was then brought to a standard condition4~9 by electrodeposition from an acid-copper sulphate electrolyte containing no gelatin, at a current density of 3 amp per sq dm for 30 min, followed by deposition at a current density of 2 amp per sq dm for l hr. As in previous studies, the cathode polarization eventually attained a steady-state value (15 to 75 min) such that further change in polarization did not exceed 0.2 mv per min. The polarization values recorded are those for the steady states. "Excess weights" were determined with arsenic and antimony present in the electrolyte, as the difference between the weights of the deposits obtained in the presence of these cations and those obtained in their absence, with the two cells connected in series. When gelatin was present along with the arsenic or antimony, it was also added to the electrolyte in the cell in series. Results and Discussion The results of the study are summarized in Figs. 1 to 6. From Fig. 1, top, it is evident that the presence of arsenic or antimony alone results in an increase of polarization, while bismuth alone causes a decrease. The presence of gelatin (25 mg per liter) rather drastically modifies all three cation effects, as indicated in the lower panels of the same figure. The addition of chloride ion, when no gelatin is present, causes comparable decreases in polarization in the presence of antimony and bismuth, but a relatively larger decrease when the electrolyte contains arsenic. It is interesting to note that the decrease in polarization brought about by addition of chloride when both arsenic and antimony are present parallels the behavior with arsenic alone, while the polarization in the electrolyte containing the cation mixture, without chloride added, corresponds to that for an electrolyte containing only the antimony cation. Similarly, the polarization at zero concentration of chloride in electrolyte containing arsenic and bismuth is that corresponding to an electrolyte containing arsenic alone. From Figs. 3a, 4a and 4b, it is clear that, in the presence of gelatin at a level of 25 mg per liter, the effect of chloride in the presence of arsenic and antimony, or a mixture of the two, becomes quite analogous to that observed in the absence of added cations. When both bismuth and gelatin are present (Fig. 5), the decrease in polarization with increased chloride concentration is virtually absent. This is perhaps a reflection of the large decrease in polarization brought about by the bismuth itself in the presence of gelatin. The shifts of the minimum in the polarization-chloride concentration curves brought about by changes of temperature (Fig. 3b), gelatin concentration (Figs. 3c and 4c) and current density (Fig. 3d) when the metal cations were present are all similar to the corresponding shifts observed in their absence." The approximately linear "excess weightv-anti-mony concentration relation recorded in Fig. 6 would seem to indicate that antimony is codeposited with copper to a considerable extent. On the other hand, only very limited amounts of arsenic appear to be adsorbed or codeposited.
Jan 1, 1954
-
Industrial Minerals - American Potash & Chemical Corp. Main Plant CycleBy M. L. Leonardi
THE Searles Lake orebody is located in the north- west corner of San Bernardlno County. It is a dry lake bed with an exposed salt surface covering an area of 12 square miles. Recoverable mineral values are contained in the mother liquor below the surface of the lake. Stratification in the lake bed has separated the brine into two bodies which dlffer in composition. Although liquor is processed from both bodies, this paper will discuss only the upper structure brine. Fig. 1 illustrates a typical cross-section of the two commercial orebodies. The orebody is composed of a porous salt deposit 70 to 90 ft deep. The upper structure is separated from the lower orebody by a 12 to 16-ft thick impervious mud seam, as shown in Fig. 1. These salt structures are composed of 55 pct solid-phase salts and 45 pct voids which are filled with the original mother liquor. The brine wells are drilled to the separating mud seam and cased to wlthin 10 ft of the bottom. This is done to draw the brine horizontally from the bottom of the structure. It is pumped with multistage centrifugal pumps Into the plant at the rate of 3 milllon gal per day. The first process that was successful was developed by Charles P. Grimwood for the recovery of potash. The first evaporator unit was built in 1916. In the early twenties, Dr. Morse worked out a process for the recovery of borax. This made the cycle more efficient, as the end liquor could be sent back to the evaporators rather than being sewered. In 1926 the American Potash & Chemical Corp. was formed as a new company, and the entire plant was remodeled. The plant at that time produced only potash, borax, and boric acid. Since then the American Potash & Chemical Corp. has added processes for the production of USP boric acid, refined potash, sulphate of potash, soda ash, salt cake, lithium concentrates, Pyrobor (Na2B4O7) bromine, phosphoric acid, and lithium carbonate. The main plant cycle may be depicted as a closed cycle, see Fig. 2. The raw material, brine, enters the cycle to be mixed with the end liquor, known as ML2, from the pentahydrate borax crystallizers. The mixture of these two forms evaporator feed. Evaporator feed is pumped to the evaporators where it is concentrated, with respect to potash and borax. In the same operation water vapor, sodium chloride, salt trap salt, and clarifier salt are removed from the cycle, see Fig. 3 for potash plant product. The evaporators produce a concentrated liquor which contains approximately 19.5 pct KCI. This liquor is diluted as it enters the potash plant to keep all salts, except potash (KCI, 97.0 pct) in solution. Here the moist potash leaves the cycle at 100°F. The end liquor, known as ML1, is pumped to the borax pentahydrate crystallizers, where crude borax pentahydrate is crystallized and removed as solid phase. The ML2 is sent back to pan feed to be reconcen-trated, see page 207. Note that the only water to leave the cycle is in the form of vapor and moisture in the solid phase products crystallized. Thus there is a constantly cycling volume of liquor to which brine is added. Since the volume of liquor cycled does not increase, the brine is, in effect, evaporated to dryness. This would be true if there were no liquor losses. But, as in all processes, there are always unavoidable and accidental losses which reduce the volume of cycling liquors. The losses must be made up with brine. The concentration process is the beginning and the end of the cycling liquors. In this process there are three evaporator units of the triple effect counter-current type, that is, there are three pans in each unit and the heat flows in one direction while the liquor flows the other way through the evaporator pans, see Fig. 4. During the evaporation process a great deal of sodium chloride, burkeite, some sodium carbonate monohydrate, and a little lithium-sodium phosphate are crystallized. The volume of these salts is so great that they must be removed as they are formed or the process would come to a standstill. Brine and recycled mother liquor No. 2 enter the third effect evaporator pan from the evaporator feed storage tanks, see Fig. 5. A steady flow of liquor is removed from the bottom of the No. 3 pan and is pumped through the No. 3 cone of the salt trap, a clear liquor being returned to the NO. 3 pan. A portion of this clear liquor is pumped to the second effect pan. This process is repeated in each pan. The liquor from the No. 2 pan is pumped through the No. 2 salt trap cone and returned to the No. 2 pan.
Jan 1, 1955
-
Iron and Steel Division - Ionic Nature of Liquid Iron-Silicate SlagsBy M. T. Simnad, G. Derge, I. George
Measurements of current efficiency on iron-silicate slags in iron crucibles showed that conduction is about 10 pct ionic in slags with less than 10 pct silica and about 90 pct ionic in slags with more than 34 pct silica, increasing linearly in the intermediate range. The balance of the conduction is electronic in character. Silicate ions are discharged at the anode with the evolution of gaseous oxygen. Transport experiments show that the ionic current is carried almost entirely by ferrous ions, which may be assigned a transport number of one. THERE has been increased evidence in recent years that the constitution of liquid-oxide systems (slags) is ionic.1-3 The principal studies designed to establish the structure of liquid slags have been by electrochemical methods', " and conductivity measurements1,6,7 which also have indicated the presence of semiconduction in several silicate systems1,4-0 and in pure iron oxide.' It is well known that many slag-forming metallic oxides have an ionic lattice type in the solid state, and their properties are determined to a large extent by the lattice defects and ion sizes. As Richardson8 as pointed out, the detailed models of liquid slags cannot be found on thermodynamic data only but "must rest on a proper foundation of compatible structural and thermodynamic knowledge, combined by statistical mechanics." A careful thermodynamic study of the iron-silicate slags has been carried out by Schuhmann with Ensio9 and with Michal.10 They obtained experimental data relating equilibrium CO2: CO ratios to slag composition and made thermodynamic calculations of the activities of FeO and SiO, and of the partial molal heats of solution of FeO and SiO2 in the slags. It was found that the activity-composition relationships deviate considerably from those to be expected from an ideal binary solution of FeO and SiO2. However, the partial molal heat of solution of FeO into the slags was estimated to be zero. Their experimental results were correlated with the constitution diagram for FeO-SiO2 of Bowen and Schairer,11 with the results of Darken and Gurry" on the Fe-O system, and with the work of Darken"' on the Fe-Si-O system. All these studies were found to be consistent with one another. The variation of the mechanism of conduction with composition in the liquid iron-oxide-silica system in the range from pure iron oxide to silica saturation (42 pct SiO2) in iron crucibles was reported in a preliminary note." The current efficiency, or conformance to Faraday's law, showed some ionic conductance at all compositions, the proportion increasing with the concentration of silica. The current-efficiency experiments since have been extended. Furthermore, transport-number measurements have been completed in silica-saturated iron silicates to determine the nature of the conducting ions. Experimental Current Efficiency in Liquid Iron Oxide and Iron Silicates using Iron Anodes: This study was carried out by passing direct current through slags in the range from pure iron oxide to iron oxide saturated with silica (42 pct silica), using pure iron rods as anodes and the iron container as the cathode. A copper coulometer was included in the circuit to indicate the quantity of current passed during electrolysis. Assuming that the cation involved is Fe-+, the theoretical quantity of iron lost from the anode according to Faraday's law may be calculated and when compared with the actual loss observed, gives an indication of the extent to which Faraday's law has been obeyed. It also gives an indication of the presence and extent of ionic conduction in the melt. Preparation of the Slags: About 100 g of chemically pure Fe,O, powder is placed in an iron pot which is heated by induction until the contents liquefy. In this way, FeO is produced according to the reaction Fe2O3 + Fe = 3 FeO. More Fe2O3 or SiO, powder is added and, when a sufficient quantity of molten slag is obtained, the induction unit is turned off, the pot withdrawn, and the molten slag poured on to an iron plate. Homogenization and Electrolysis of the Slag: Apparatus—After considerable development, the setup illustrated in Fig. 1 proved to be quite satisfactory. A is an Armco iron cylinder, 1 in. ID and 1/8 in. wall, consisting of three sections placed one on top of the other. The bottom section is a pot about 5 in. long with a small hole drilled in its bottom to allow withdrawal of gases during evacuation of the apparatus. The middle section is 6 in. long and consists of a pot which serves as the slag container, while the top section is a hollow-cylinder continuation of the slag-container pot. The height of this latter section is about 5 in., giving an overall length of approximately 16 in. The iron cylinder is constructed in this way for ease of fabrication, the individual sections becoming welded together after the
Jan 1, 1955
-
Part VII – July 1968 - Papers - Grain Boundary Penetration of Niobium (Columbium) by LithiumBy Che-Yu Li, J. L. Gregg, W. F. Brehm
Oriented, oxygen-doped niobium bicrystals were tested in liquid lithium. The grain boundaries were attacked preferentially. The depth of the penetrated zone varies as (time)2. The penetration was aniso-tropic, had a high activation energy, and increased with the increased oxygen doping level. A possible model was proposed to account for the experimental observations. 1 HE grain boundary penetration of a metallic system by liquid metal has been studied by several investigators. Their results are summarized by Bishop.' Most of these works show that the penetration by liquid metal corresponds to the phenomenon of liquid metal wetting. In the case of a grain boundary, wetting will occur when twice the solid-liquid interfacial tension is smaller than the grain boundary tension resulting in the replacement of the grain boundary by two new solid-liquid interfaces. Other possibilities exist; for example, the atoms of the liquid metal may diffuse into the grain boundary region due to chemical potential gradient. The gradient can be produced by impurity segregation or simply be due to the increase in solubility in the grain boundary region. The penetrated grain boundary in these cases may remain solid at the test temperature. The Nb-Li system has been of considerable interest because of its possible technological applications. For fundamental interest it provides a possibility of studying the grain boundary penetration process which is not controlled by the wetting mechanism. The pure niobium is not attacked by the liquid lithium, but if niobium containing more than 300 to 500 ppm oxygen by weight is exposed to liquid lithium, corrosion occurs at the solid-liquid interface and preferentially at grain boundaries. Previous investigators2-' have proposed that this preferential corrosion at grain boundaries is caused by oxygen segregation there, with subsequent inward diffusion of lithium to form a Li-Nb-0 compound. These investigators also found that the corrosion could be retarded by adding 1 pct Zr to the niobium to precipitate the oxygen as ZrO2 upon proper heat treatment. However, there are no quantitative data on the kinetics of the grain boundary penetration process to test the validity of the proposed corrosion mechanism. In this work an investigation of this penetration process in oriented bicrystals was made as a function of the oxygen doping level in the bulk niobium and the grain boundary orientation. A possible model for the penetration process based on the experimental results was proposed. EXPERIMENTS Oriented niobium bicrystals were grown by arc-zone melting oriented single-crystal seeds.7 These bicrystals contained simple tilt boundary. The [001] directions in the two grains were tilted about a common [110]. The bicrystals were 31/2 in. long and 5 by 4 in. in cross section with the straight, symmetric, planar grain boundary longitudinally bisecting the crystal rod. The bicrystals were doped with oxygen by anodically depositing a layer of Nb2O on the surface in a 70 pct HNO solution at 100 v, using a stainless-steel cathode. The specimens were homogenized by annealing in evacuated quartz tubes at 127 5°C. Oxygen content of the niobium was measured from microhardness values, after DiStefano and Litmman.' Supplementary checks were made with vacuum-fusion analysis.7 Individual test specimens cut from the doped bi-crystal rods, about by by % in. in size, were tested inside double jacket sealed capsules. The inner jacket was niobium, the outer was stainless steel. The niobium inner jacket eliminated the problem of dissimilar-metal mass transfer.' The lithium (99.8 pct pure, obtained from Lithium Corp. of America) was handled only in a purified argon atmosphere in a Blickman stainless-steel glove box. After introduction of lithium, the capsules were sealed by welding. Further detailed experimental procedures are given in Ref. 7. The capsules were heat-treated in vertical Marshall resistance furnaces. Temperatures were controlled to When heating above 1100°C, it was necessary to seal the furnace work tube and flow argon through to prevent failure of the stainless-steel outer jacket of the capsule. Tests were made on 6" 2", 16" 2, and 33" i2" bicrystals at oxygen levels up to 2600 ppm by weight in the 6' and 16" crystals and with 1300 ppm oxygen in the 33' crystals. The oxygen levels were controlled to 100 ppm. Most of the quantitative data were obtained from 16" bicrystals between 800" and 1050°C. The capsules were quenched into water after the test and cut open with a water-cooled abrasive wheel. The capsules were then submerged in water, which dissolved the lithium and freed the specimen. Measurement of the depth of the penetrated zone in the grain boundary was done either on metallographically prepared surfaces or directly on the grain boundary plane after the specimen was fractured in tension in the grain boundary plane. The depth of penetration measured by both methods agreed well. Further details describing these techniques have been reported elsewhere.'p7
Jan 1, 1969
-
Industrial Minerals - Texas White Firing BentoniteBy Forrest K. Pence
Bentonite deposits are known to occur in Texas within the Jackson group of formations. This group represents the uppermost Eocene age sediments found in the coastal plain area of Texas. It outcrops across this area of the state in a narrow band of some 4 to 20 miles width. The outcrop pattern roughly parallels the present Gulf of Mexico shore line and is some 100 miles inland from the Texas shore, Fig 1. The principal bentonite deposits are found in the areas where this outcrop pattern cuts across the south-central Texas counties of Karnes, Gonzales, and Fayette. In these deposits, the better quality bentonite is found in the lower or bottom layers of the volcanic ash deposits in which they occur. Some of these better quality benton-ite~ develop very light colors upon firing and therefore justify their being classified as "white firing." The deposits in Karnes and Gonzales Counties apparently occur in commercial quantity, whereas the white firing strata so far uncovered in Fayette County have been too thin to be classified as yet as "commercial." A study of the ceramic properties of the weathered ash in Gonzales and Karnes Counties was reported in 1941.' Commercial development of the deposit in Gonzales County, 7 miles east of Gonzales, Texas. was started earlier by the Max B. Miller Co. for the purpose of marketing the material as a bleaching clay, and this operation has developed to very sizable proportions. In recent years, this company has offered a specially selected grade of the Gonzales material as a suspending agent in glaze slips. The white firing property especially adapts the material to use in white cover coat enamels. The strata in the deposit are practically horizontal and consist from top to bottom of approximately 2 ft of soil overburden, 10 ft of brown bentonite, 2 ft of coarse white bentonite, and 4 ft of waxy white bentonite overlying a he grained sandstone. The & being made in the quarry is approximately one-half mile in length. Only the bottom 4 ft of waxy bentonite is being recovered, the upper layers being stripped and wasted, Fig 2. It may appear somewhat surprising that the very bottom strata appears to have been the one most completely altered. To confirm this, samples from top to bottom of the various strata were studied microscopically by R. F. Shurtz. Professor of Ceramic Engineering, University of Texas. His interpretation is to the effect that the lower part of the seam was deposited at a much earlier date than the top, and that the lower part was chemically altered to a considerable extent before the upper part of the seam was laid down. The conclusion to be derived from these examinations may be stated briefly to he that the alteration in these strata or parts of strata has proceeded independently of the alteration in other parts of the strata during a considerable geological period. The presence of gypsum and iron stain throughout all of the strata indicates that alteration is now proceeding more or less uniformly throughout. It is contended that the alteration of the original ash to montmorillonite is not a result of the presently operating processes. A deposit which occurs approximately 7 miles southeast of Falls City and just south of the village of Casta-howa, has been explored and leased by J. R. Martin, of San Antonio. Mr. Martin has conducted mining and marketing operations in bentonite for a period of many years and asserts that the white firing strata found in this deposit occurs in commercial quantities. His pit, which is shown in Fig 3, exposes 2 ft of soil overburden, approximately 5 ft of white bentonite having coarse texture, and approximately 5 ft of waxy white bentonite which in turn overlies a brown sandy clay. Here, as in the Gonzales deposit, the most completely altered portion is found at the bottom of the seam, as per following report of microscopic examination by Mr. Shurtz. Sample No. 1: This sample was taken from the top stratum which is one foot thick. It is grayish in color and it contains visible fossilized plants. The color is probably the result of fine carbonaceous material in the rock. Under the microscope the sample is seen to consist of glass and feldspar; the amount of glass predominating. Both these substances are slightly altered. No montmorillonite or other clay mineral can be identified definitely; however, the products of the slight alteration mentioned are probably montmorillonite or mineral gel. Sample No. 2: This sample was taken from the stratum second from the top. This stratum is fourteen inches thick. The sample is light gray. It shows numerous veinlets of greenish translucent material ranging from one-eighth inches wide down to the limit of visibility with the unaided eye. It has the smooth, sub-conchoidal fracture characteristic of some bentonites. Microscopically the sample consists mainly of aggregates of clay minerals. The birefringence of the aggregates is lower than would be expected if the
Jan 1, 1950
-
Part VIII – August 1968 - Papers - Vacuum Decanting of Bismuth and Bismuth AlloysBy J. J. Frawley, W. J. Childs, W. R. Maurer
The object of this investigation was to determine the growth habit of bismuth and bisrrtuth alloy dendrites as a function of supercooling. To do this, techniques were developed to increase the amount of supercooling in bismuth and bismuth alloys. For pure bismuth, the growth habit was dependent on the amount of supercooling. At low amounts of supercooling, about 10" C, prismatic dendrites were obtained. With increased supercooling, about 20 C, a hopper growth habit was observed. In many cases where hopper growth had occurred, the hopper dendrites were twinned during the growth process. This twinned surface enable prismatic dendrites to nucleate and grow by a twin plane mechanism. When the amount of supercooling was increased to about 25 °C, the growth habit was a triplanar growth. With still greater supercooling, about 3s°C, a branched growth habit occurred. The exposed planes on the prismatic, hopper,, triplane, and branched dendrites have been determined. The growth habit of the dendrites which grew along the crucible wall was found to have the (111) as the exposed plane, with <211> growth direction. It is apparent that dendritic growth of a metal is dependent on its purity and the solidification variables present. One of the solidification variables is the degree of supercooling. Supercooling, although often observed, has not been studied extensively until recent years. For dendritic growth to occur in a pure metal, the metal must be thermally supercooled. After the dendrites grow into the supercooled melt, the heat of solidification raises the temperature of the specimen to the melting point of the material and the remaining liquid will solidify at this temperature. Decanting is the removal of this remaining liquid before complete solidification. This removal of the remaining liquid after recalescence had occurred is a great aid in the study of dendritic growth. In this investigation, decanting was accomplished by a vacuum-decanting technique . Other investigators1-5 have studied the growth characteristics of various low-melting-temperature pure metals and alloys as a function of supercooling. However, large degrees of supercooling were not included. For their study of dendritic growth of lead, Weinberg and chalmersl employed a decanting technique which was achieved by pouring off the remaining liquid, exposing the solid/liquid interface. This method was employed later by Weinberg and Chalmers2 for the investigation of tin and zinc dendrites. The method for obtaining a solid/liquid interface was improved by Chalmers and Elbaum. They employed a triggered spring which was attached to the solidifying section of the specimen. Upon activation, the spring jerked the solid interface away from the liquid melt. In the study of growth from the supercooled state, a metal of low melting point which exhibited a high degree of supercooling was desired. Bismuth gave very consistent supercooling when a stannous chloride flux was employed. The maximum supercooling obtained was 91°C, with an average supercooling of between 65" and 75°C. The consistency of supercooling greater than 50°C was very high. The use of vacuum to aid in the rapid decanting of molten metal has proven to be very successful in this investigation. The vacuum gives a rapid decantation, usually leaving the solidified metal structure sharply defined. The purpose of this investigation was to study the effects of supercooling and the effects of alloy additions on the growth habit of bismuth dendrites. The structure of bismuth has been variously defined as face-centered rhombohedral, primitive rhombohedral, and hexagonal. However, bismuth has only one plane with threefold symmetry, the (111) plane, and the crystal-lographic structure is considered a 3kn structure. MATERIALS The bismuth which was employed in this investigation was obtained from the American Smelting and Refining Co. of South Plainfield, N. J. The accompanying spectrographic analysis data indicated the bismuth to be 99.999+ pct pure. The tin was obtained from the Vulcan Materials Co., Vulcan Detinning Division, Sewaren, N. J. It was classified as "extra pure". Nominal analysis was 99.999+pct. In order to prevent contamination of the bismuth melt from the atmosphere, an anhydrous stannous chloride (Fisher certified reagent grade) was added to each melt. The fluxing action obtained from the use of the chloride provided a large amount of supercooling in the specimen. APPARATUS A 30-kw, 10,000-cps motor-generator set, connected to a 6+-in.-diam air induction coil, was employed to melt and superheat the specimens. The temperatures were recorded by means of a chromel-alumel thermocouple and a potentiometric recorder. The thermocouples were 0.003 in. in diam, and were encapsulated with Pyrex glass to prevent the thermocouple from acting as a nucleating agent and also from contaminating the melt. Fig. 1 illustrates the vacuum-decanting apparatus when a liquid flux was employed. A standard 30-ml Pyrex beaker was placed on top of an asbestos insulating block. A 5-mm-ID Pyrex tube with aA-in. spacer tip attached to its end was used for the decanting tube. The spacer tip contributed significantly to a successful decanting operation. The tip located the opening of the decanting tube about -^ in. from the bottom of the
Jan 1, 1969
-
Institute of Metals Division - Bend Plane Phenomena in the Deformation of Zinc MonocrystalsBy J. J. Gilman, T. A. Read
FOLLOWING the deformation 01 zinc monocrys-tals, sharply bent basal planes are observed near several types of inhomogeneities. Three of these in-homogeneities have characteristics which are quite regular so that they can be studied and analyzed. These are compressive kink bands, "deformation bands," and the inhomogeneities near end restraints. The present paper describes experiments in which "deformation bands" were artificially produced, and bend plane phenomena are discussed in terms of dislocation theory. Also, two new bend plane phenomena are described. The importance of bend plane phenomena in the deformation of crystals is not widely recognized. Many phenomena may be explained in a manner similar to the discussion in this paper. Jillson1 has pointed out that the "punching effect" in zinc is a bend plane phenomenon and is not caused by prismatic slip.' Bowles3 has suggested that they may be involved in diffusionless phase changes. Cahn4 has discussed the role of bend plane formation in the polygonization of zinc. Experimental Work Tensile Kink Bands: Because of the geometrical similarity between "deformation bands" and "kink bands" (compare Fig. 1 of this paper with Fig. 1 of the paper by Hess and Barrett"), the band shown in Fig. 1 of this paper will be called a "tensile kink band," and that shown by Hess and Barrett will be called a "compressive kink band." It is felt that the term "deformation band" should be reserved for banded structures in polycrystalline materials such as iron." Tensile kink bands seem to form spontaneously in aluminum crystals deformed by tensile loading.7-10 In zinc and cadmium crystals they do not form in good, carefully loaded specimens.'." However, tensile kink bands can be produced artificially in zinc crystals. The present authors did this by scratching one of the flat surfaces of triangular crystals transversely with a sharp needle. Natural tensile kink bands caused by inhomogeneities sometimes appeared in deformed crystals which were identical in appearance with the artificially produced ones. Zinc monocrystals were grown by the Bridgman method in graphite molds. Chemically pure zinc (99.999+ pct Zn) was used and the molds were sealed inside evacuated pyrex tubes during growth. The crystal cross sections were equilateral triangles with a typical base of 0.210 in. The artificial kink band shown in Fig. 1 is typical of tensile kink bands in zinc. The band lies between two bend planes which run from upper right to lower left and is inclined oppositely to the slip bands which are sharply bent at the two bend planes. The general form of the artificial tensile kink bands was independent of the scratch depth (1 to 5 mils deep) and also independent of which side was scratched. These variables did cause variations, however. Deep scratches produced more localized kink bands than light scratches. Also, if the angle between the slip plane traces and a transverse scratch varied appreciably among the three sides, then localization of the resulting kink bands also varied. Furthermore, if the slip direction lay nearly parallel to the scratched side, the band was more developed near the scratched side than at the opposite edge. Scratches produced tensile kink bands for crystal orientations from xo = 15" to x, = 75". Fig. 2 shows a scratched crystal after deformation. One triangular side lies in the plane of the photograph. The right hand tensile kink band was produced by a transverse scratch on the upper right side. The next two kink bands were the result of scratches on the front surface. The kink band at the left was caused by a scratch on the lower back side. All four bands have the same general form. A longitudinal scratch was also made on the crystal shown in Fig. 2 to determine the effect of a scratch on the critical shear stress. The critical shear stress of the scratched region was 33.9 g per sq mm compared to 24.4 g per sq mm for the un-scratched region above it. Fig. 3 shows Laue patterns of the crystal shown in Fig. 2. Fig. 3a shows the pattern of the undeformed crystal. The orientation was x, = 21°, A, = 31". After deformation, Fig. 3b was made of the homogeneously deformed portion of the crystal. The spots are compact but split into two halves. This region was elongated 45 pct and its orientation was x = 14", X = 20"; the sine law predicts x = 14", A = 20.5". Fig. 3c was taken near the center of the middle tensile kink band of Fig. 2. The pattern shows a range of orientations and polygonization in this region. The spread in orientation was due to the fact that the basal planes were curved (see Fig. 1) rather than flat as in the ideal case. Some may also have been the result of elastic distortions and "local curvatures." The orientation range was x = 23" to 32", A = 30" to 42". It is apparent from Fig. 3 that the material inside and outside the kink band rotated in opposite directions with respect to the tension axis during deformation. The orientation calculated from the ideal configuration of Fig. 9,
Jan 1, 1954
-
Part X – October 1969 - Papers - Effects of Manganese and Sulfur on the Machinability of Martensitic Stainless SteelsBy C. W. Kovach, A. Moskowitz
Studies were undertaken to investigate the effects of manganese content on the machinability and other Properties of a free machining martensitic stainless steel (AISI Type 416). Machinability was found to be significantly improved in steels of high manganese content, and a direct relationship was obtained between machinability and steel Mn:S ratio. As the manganese content of the steel increases, the sulfide Phase present changes from CrS to (FeMn)Cr2S4 to (MnFeCr)S, and finally to MnS. The average sulfide inclusion hardness decreases through the same range of increasing manganese content. The mechanism for machinability improvement is discussed in terms of a soft ductile sulfide affecting deformation in the secondary shear zone. Type 416 containing relatively high manganese for improved machinability shows good general properties. The effects of increasing manganese content on mechanical properties, cold formability, and corrosion resistance are described. THE addition of sulfur is commonly used to improve the machinability of stainless steels. However, little attention has been paid in the past to the composition and characteristics of the sulfur-containing phase or phases present in these resulfurized steels. Recent information on the properties of sulfide phases, and their role in metal cutting, suggests that variations in these phases could have critical effects on machin-ability, as well as important effects on formability and other properties such as corrosion resistance. Manganese, chromium, and iron are strong sulfide forming elements present in stainless steels! of these, manganese has the greatest sulfide forming tendency and iron the least.1"1 The manganese content of resul-furized 13 pct Cr steels, often about 0.5 pct, can be insufficient or only barely sufficient to combine with the sulfur that is present; thus, the precise level of manganese can strongly influence the nature of the sulfide phase. Sulfide phases which may be present in stainless steels have been reported to include CrS, a spinel-type sulfide, chromium-rich manganese sul-fide, and manganese Sulfide.5,6 Detailed phase relationships for the Fel3Cr-Mn-S system have been reported by the present investigators,7 and a portion of this work will be referred to subsequently in this paper. Recent work by Kiessling6 and Chao et a1.8 has shown that sulfide phases can display wide variations in hardness, and may undergo considerable plastic deformation under isostatic loading.9-12 Early theories of metal cutting attributed the influence of sulfur to a lubricating effect. It is now apparent that the influence of the nonmetallic inclusions and their properties on crack initiation, deformation in the shear zones, and boundary films must also be considered in relation to the machining process. This paper presents the results of studies conducted to relate machinability to the various sulfide phases which occur in stainless steels. This work has led to the development of alloys with improved machinability, and has generated information on the effects of inclusions on metal cutting processes. Effects of sulfide inclusions and steel composition on other important metallurgical properties are also discussed. MATERIALS For drill machinability and inclusion studies, 10 lb laboratory heats were melted in an air induction furnace. These heats were made with sulfur contents be tween 0.10 and 0.50 pct and manganese contents be tween 0.05 and 3.0 pct. Residual elements were added to the heats in amounts typical for commercial steels. The typical compositional range covered by the heats is shown below: C Mn P S Si Ni Cr Mo Cu N 0.10 0.05 0.007 (M0 0.40 0.40 13.0 0.20 0.10 0.03 3.0 0750 The laboratory ingots were forged in the temperature range of 1800" to 2100°F to 3/4-in. sq bars, and all bars tempered to a hardness aim of 200 Bhn prior to testing. Because of differences in composition and tempering response, the tempered bars showed some variation in hardness (175 to 275 Bhn) as well as variations in delta ferrite content (0 to 50 pct). Composition, hardness, and delta ferrite content were considered in the analysis of the machinability data. Additional tests involving tool-life evaluation and determination of other properties were conducted on materials from commercially melted and processed 15-ton electric furnace heats. TESTS AND PROCEDURES Machinability of the laboratory heats was evaluated in a drill test. In this test, 1/4-in. diam holes, 0.4 in. deep, were drilled alternately in a test bar and in a standard bar for a total of four holes in each. This sequence was repeated three times using a freshly sharpened drill each time. The average time required to drill a hole in the test bar was compared to that for the standard bar. A drill machinability rating was assigned to the test bar relative to a rating of 100
Jan 1, 1970
-
Metal Mining - Testing of Roof-Bolting Systems Installed in Concrete BeamsBy Rudolph G. Wuerker
MUCH descriptive matter has appeared on the subject of suspension roof supports, or roof bolting, as it is more commonly called. The widespread introduction of roof bolting into coal mines and metal mines is truly phenomenal. Mine operators were quick to recognize the advantages of supporting wide openings without hindrance to machine maneuverability and ventilation. Although suspension roof support has long been installed at St. Joseph Lead Co. mines in southeast Missouri,'" its application to coal mining presented new problems, such as proper anchorage and bearing for the bolts, bolt diameter, and spacing of bolts. After continuous testing and experimenting at the mines, standard roof-bolting materials were determined.'!' The study reported in this paper is not concerned with such details as bolt diameter, which may be considered already solved in practice. In the tests discussed here, small models patterned on actual bolts were found to function in the same way and as satisfactorily as their prototypes. The aim of these tests was rather to investigate the influence of roof-bolting systems on the stress distribution around mine openings and to study the fracture patterns obtained in actual testing. Little was found about this in the literature, as testing of suspension roof methods and quantitative measurements are only now coming to the fore. Several suggestions and actual measurements have been made to evaluate critically the functioning of roof bolting systems, single roof bolts, and parts thereof. Outstanding among them is Bucky's outline of structural model tests.'" Since none of the suggested testing equipment was available, however, for the experiments discussed below, a different approach was chosen. The response of a mine roof under stress has often been compared to that of a beam. The slow coming down and bending through of beam or plate-like banks of shale, sandstone, or top coal is a familiar occurrence, extensively cited in the literature." It was felt that testing of roof-bolt systems installed in a concrete beam which was loaded in bending would be a fair approximation of the behavior of a mine roof underground. Another school of thought considers the roof behavior over an underground opening in connection with the stress distribution all around a circular or rectangular opening. This is more accurate, and leads to the concept of a dome-shaped zone of material destroyed under tensile stress. This is likewise a common sight in unsupported roadways where the continuous fall of roof results in what has been called the natural outline of roof fracture. This theory could not be tested and is treated separately in Appendix B. It is important to note that according to both assumptions the immediate roof fails in tension; the use of a beam in these tests, therefore, should give information valid for either of the two theories. With the testing equipment at hand it was possible to load concrete beams 6xlx0.5 ft under two-point loading, giving an equal bending moment over the center part in which the model bolts were installed. A comparison was made of the ultimate loads needed to break plain beams and beams in which roof bolts were installed. Arrangements were made with: 1—plain beams; 2—bolts with plate washers, some with holes drilled at 90" angles and others with holes drilled at 45" angles; 3—bolts with channel irons underneath; 4—bolts in holes filled afterward with cement; and 5—bolts anchored in a stronger stratum. The foregoing arrangement is made in order of increasing strength, as assumed from the theory of reinforced concrete. Likewise, laminated beams with wooden model bolts and with combinations of the foregoing set-ups were tested. All in all, 21 experiments were made out of the much greater number of combinations possible. There were, too, some trial tests. Enough observations from this limited number were made to interpret the behavior of mine roof, supported by various types of suspension bolts, at fracture. In present-day concepts, which have been proved by mathematical derivations and stress analyses, any opening driven underground will change the distribution and magnitude of the stresses existing around it. It does not matter whether the stresses become visible, as in rocks whose strength is less than the forces acting upon them, or whether they are invisible, as in the gangways lacking evidence of rock pressure. In this latter case the rocks can withstand changes in stress-distribution. To consider the mine roof as a beam, there are, with transversal loading, tensile stresses in the lower fiber and compressive stresses in the upper layers above the neutral axis of the beam. Beams of brittle material such as rock and concrete fail exactly as shown in Fig. 1. Nearly all model beams showed the same fracture pattern as that of a tension crack. The influence of support, by roof bolting or conventional
Jan 1, 1954
-
Institute of Metals Division - The Deformation of Single Crystals of 70 Pct Silver-30 Pct ZincBy W. L. Phillips
Stress-strain curves were obtained for single crystals of 70 pct Ag-30 pct Zn tested in tension and shear. Samples tested in tension and shear had comparable resolved shear stresses and stress-strain curves. The {111} <110> slip system was observed. It zoas found that the9.e is a barrier to slip in both latent close -packed directions and that the magnitude of these barriers is proportional to prior strain during easy glide. It was observed that cross-slip in tension and shear was most frequent in crystals with an initial orientation near <100> "Oershoot" zoas observed in tension. The amount of this "overshoot" was independent of initial orientation. AN idealized concept of plastic deformation indicates that a single crystal should yield at some stress that is dependent on crystal perfection and it should then continue to deform plastically by the process of easy glide which is characterized by a linear stress-strain curve and a low coefficient, d/dy, of work hardening. Hexagonal metal crystals generally conform to this ideal concept of laminar flow. In fcc metals the range of easy glide is always restricted in magnitude and it is strongly dependent on orientation, composition, crystal size, shape, surface preparation, and temperature. Since one of the principal differences between the two crystal systems, both of which deform by slip on close packed planes, is the existence of latent slip planes in the fcc crystals, it has been proposed that the transition from easy glide to turbulent flow, characterized by rapid linear hardening, is due to slip on secondary planes intersecting the primary plane.ls Several theories have been proposed to explain the linear hardening and parabolic stages of the stress -strain curve.6"10 The easy-glide region is the least understood of the three stages. The stress-strain characteristics of Cu-Zn, which shows a long easy-glide region, have been extensively investigated."-" In light of recent ideas on dislocations, cross-slip, effect of solute atoms, and stacking fault energy, it was felt that the certain features of this earlier work might be compared with another alloy, Ag-30 pct Zn, which also exhibits a long easy-glide region. Tension and shear stress at room temperatures were employed. The results obtained, together with some interpretation of the observations, are described below. EXPERIMENTAL PROCEDURE The silver and zinc used for mixing the alloys were 99.99 pct pure. The two components were weighed to within 0.1 pct of the weights required fo the alloy composition. They were then placed in a closed graphite mold and the mold and contents were heated in 100°C stages from 500' to 900°C with sufficient time and vigorous agitation at each stage provided to dissolve the silver. The crucible was then heated to 1150°C and agitated violently before being quenched in oil. The resulting alloy rod was machined free of sur face defects and then placed in a graphite mold designed for growing single crystals. The graphite mold was closed with a graphite plug and was encased in a pyrex glass tube which was connected to a vacuum system. The tube and mold assembly were placed in a furnace; the tube was evacuated and the furnace was rapidly heated to a temperature sufficient for fusing and sealing the glass. The glass-encased evacuated mold and contents were then lowered through a vertical furnace. The top section of the furnace was held at 100 °C above the melting point of the alloy. The lowering rate was 1.5 in. per hr. The tension specimens were 1/4 in. diam; the shear specimens were 1/2 in. diam. These specimens were then removed from the mold, etched, and chemically polished with hot (60°C) Chase etch reagent (Crz03-4.0 g, NH4C1-7.5 g, NHOs-150 cc, HzS04-52 cc, and Hz0 to make 1 liter). In preparation for tensile testing, the specimens were carefully machined to a diameter of about 0.200 in. to permit a gage length of 6 in., annealed for 16 hr at 800' to reduce coring, and then cleaned and polished. A modified Bausch-type shear apparatus which has been described previously18 were employed. The gage length was 1/8 in. This shear apparatus was placed in an Instron tensile testing machine. EXPERIMENTAL RESULTS A) Tension. Several specimens were extended at room temperature to determine the effect of initial orientation on the stress-strain curves of Ag-30 pct Zn. The initial orientation and the resolved shear stress supported by the active slip system at various total strains are plotted in Fig. 1. The critical resolved shear stress, t,, initial rate of work hardening, d/dy, and length of the easy-glide region are independent of orientation. The arrival at the symmetry line is shown by an arrow in Fig. 1. During the easy-glide region of the stress-strain
Jan 1, 1963
-
Part IV – April 1969 - Papers - An Investigation of the Formation and Growth of G. P. Zones at Low Temperatures in Al-Zn Alloys and the Effects of the Third Elements Silver, Silicon,and MagnesiumBy M. Murakami, Y. Murakami, O. Kawano
The formation and growth of Guinier-Preston zones in Al-Zn alloys containing 4.4, 6.8, 9.7, and 12.4 at. pct zn have been studied by the X-ray small-angle scattering method. Particular attention was paid to the effects of small amounts of third elements silver, silicon, and magnesium on the formation and growth of G.P. zones. It was noticed that an appreciable number of G.P. zones were formed during the course of rapid cooling and that the size, volume fraction, and number of these G.P. zones were influenced by the existence of the third elements. During subsequent aging it was also found that the addition of both silver and silicon lowered the temperature for the growth of G.P. zones, whereas the addition of magnesium raised it. These results were explained in terms of the mutual interactions among zinc atoms, vacancies, and the third elements. A number of studies on the formation and growth of Guinier-Preston zones in Al-Zn alloys have been reported.1-4 Panseri and Federighii have found that the initial stages of zone growth take place at temperatures as low as around -100°C. For investigation of the mechanism of the initial stages of zone growth, growth studies must be carried out at low temperatures. In order to investigate the possibility of the formation of G.P. zones by the nucleation mechanism or the spinodal decomposition during quenching which was reported by Rundman and Hilliard,5 the examination of the as-quenched structure must be performed. In this paper the investigation of the early stages of the formation and growth were determined by means of the X-ray small-angle scattering method. With this technique, change of X-ray scattering intensities was measured while quenched specimens were heated slowly from liquid-nitrogen temperature to room temperature. At as-quenched state and after heated to room temperature, investigation of zone size, volume fraction, and zone number per unit volume was carried out. Measurements on these specimens yielded information on the early stages of zone formation and growth. Measurements were made also on specimens quenched to and aged at room temperature. From these measurements the previously reported model6 for the later stages of growth is confirmed; namely, the larger zones grow at the expense of smaller ones. Three elements, silver, silicon, and magnesium, were chosen as the third elements for the following reasons: Silver. In the binary A1-Ag alloy the spherical disordered 77' zones were observed immediately after quenching.7 Therefore, in the Al-Zn-Ag alloys, it is suggested that silver atoms might induce cluster formation during quenching. Also, since the migration energy of the zinc atoms was found to be raised by the addition of silver atoms,' silver atoms may have a great effect of the zinc diffusion, especially during low-temperature agings. Silicon. The effects of the addition of silicon atoms were found to be marked, especially at low-tempera-ture aging. In the binary Zn-Si system, no mutual solid solubilities between silicon and zinc9 and no in-termetallic compounds10 are reported to exist. Shashkov and Buynov11 investigated the behavior of silicon atoms in Al-Zn alloys and showed that silicon was not in the G.P. zones. The interaction between silicon atoms and vacancies is strong enough to increase the quenched-in vacancy concentration.* Magnesium. Magnesium atoms are reported to trap quenched-in vacancies and after much longer aging times these trapped vacancies will become free and act as diffusion carriers.13 Therefore at intermediate aging times, the diffusion of zinc atoms in Al-Zn-Mg alloys will be slower than in the binary Al-Zn alloys, whereas at longer times zinc diffusion will become faster. EXPERIMENTAL PROCEDURE The alloys used in this investigation had compositions of 4.4, 6.8, 9.7, and 12.4 at. pct Zn with or without 0.1 and 0.5 at. pct Ag, Si, or Mg. The alloys were prepared from high-purity aluminum, zinc, silver, silicon, and magnesium, with each metal having a purity better than 99.99 pct. The analyzed composition of the specimens is given in Table I. The measurements of the X-ray small-angle scattering were carried out with foils of 0.20 mm thick. The change of the scattering intensity was always measured at the fixed scattering angle of 20 = 2/3 deg. This angle exists nearly on the position of the intensity maximum. The value of the interparticle interference function14 which has large effect in this range of angles may not change abruptly in the case of the spherical shape of small zones. Therefore, from the above considerations, it is concluded that an increase of the intensity measured at this constant angle corresponds to an increase of the average radius and volume fraction of G.P. zones. The specimens were homogenized at 500°, 450°, and 300°C for 1 hr in an air furnace. For the study of the formation and growth at low temperatures, the foil
Jan 1, 1970
-
Geology - Nuclear Detector for Beryllium MineralsBy T. Cantwell, N. C. Rasmussen, H. E. Hawkes
Beryl is a mineral that may be difficult to distinguish from quartz by casual field inspection. The easily recognized green color and hexagonal crystal form of coarse-grained beryl are by no means universal, even in beryl from pegmatitic deposits. If it occurred as a fine-grained accessory mineral in an igneous rock, it would almost certainly escape detection unless samples were submitted for petrographic or chemical analysis. There may be substantial deposits of some beryllium mineral, other than beryl, that has been overlooked because that mineral also closely resembles the common rock-forming minerals. A reliable and simple method of identifying beryllium minerals and determining the beryllium content of a rock would be helpful in exploration. This article describes preliminary experiments in applying nuclear reaction to the qualitative identification of beryl and to the semiquantitative determination of the beryllium content of rock samples. Gaudin,1,2 the first to apply a nuclear reaction in detecting beryllium minerals, developed a method that irradiates the sample with gamma rays, which react with beryllium nuclei to produce neutrons. The neutrons are then measured with standard equipment. The cross section for this reaction is about 1 millibarn. The cross section is a measure of the probability that a reaction will take place, for example, between a beryllium nucleus and an incident gamma ray or alpha particles.3-5 At 1-millibarn cross section for the reaction, satisfactory performance required a source strength of the order of 1 curie (3.7 x 10"' disintegrations per sec, where each disintegration releases one or more gamma rays). The reactions will not take place if the gamma radiation is below a minimum energy, in this case 1.63 mev. The size of the source and the energy of the radiation made heavy shielding necessary for these experiments, both to reduce the background count of the neutron counter and to safeguard personnel. The original discovery of the neutron by Chad-wick in 1932 resulted from experiments with another nuclear reaction, induced by bombarding beryllium with alpha particles in which the products are carbon-12 and neutrons. The equation for this reaction is as follows:' " ,Be" + ,He'? 6C12 + 8,n' [1] re-particle neutron In the above nuclear equation (Eq. 1), the sub- script number indicates the number of protons in the nucleus (the atomic number) and the superscript the total number of neutrons and protons (approximately the atomic mass). For the alpha-neutron reaction the cross section is about 250 milli-barns, or 250 times that of the gamma-neutron reaction used by Gaudin. The positively charged alpha particle is repelled by the positive charge of the beryllium nucleus; it must, therefore, have a certain minimum energy in order to approach close enough to the beryllium nucleus to react. For reaction with the beryllium nucleus, the lower limit of the alpha-particle energy is 3.7 mev. The alpha-neutron reaction, with polonium-210 as an alpha source, was selected for the present experiments. Alpha particles are emitted by polonium-210 at 5.30 mev, which is adequate for the reaction with beryllium. Furthermore, this isotope of polonium emits alpha particles with negligible associated gamma radiation, thus eliminating the necessity of shielding. The half-life of polonium-210 is 138 days. Inasmuch as alpha particles carry a possible charge and are large compared with most nuclear particles, their energy is rapidly dissipated in passing through matter. Their range in standard air is 3.66 cm,3 and they penetrate only a few tens of microns into a mineral sample. The short range in air can be minimized by preparation of a flat sample surface that can be brought very close to the alpha source during analysis. On the other hand, short range of alpha particles in air lessens the radiological health hazard and makes it possible to use this method without shielding. It must be emphasized, however, that the alpha emitters are potentially very dangerous if they enter the human body. Polonium must be handled with extreme caution. The literature has reported experiments on the yield of neutrons from reaction of alpha particles with beryllium nuclei. Feld" reports that in intimate mixtures of polonium and beryllium, 3 x 106 eutrons per sec are produced per curie of polonium. Elsewhere in the same reference it is stated that a sandwich-type source yields about one third as many neutrons as an intimate mixture. A table of neutron yields for full energy polonium alpha-particles on thick targets as reported by Anderson7 is the basis of Table I. From Table I it can be deduced that the elements most likely to interfere, i.e., those that also produce neutrons when bombarded by alpha particles, are boron and fluorine. These data also show that it will probably not be possible to determine very small quantities of beryllium in rocks because of the masking effects of the major elements, sodium, magnesium, and aluminum. The neutrons emitted in the alpha reaction are detected by another nuclear reaction. Either of the
Jan 1, 1960
-
Iron and Steel Division - Aluminum-Oxygen Equilibrium in Liquid IronBy N. A. Gokcen, J. Chipman
Aluminum and oxygen dissolved in liquid iron were brought into equilibrium with pure alumina crucibles and atmospheres of known H2O and H2 contents to study the reactions: 1—Al2O3(s) = 2 Al + 3 0; 2—Al2o3(s) + 3H2(g) = 2Al+ 3H2o(g); and 3—H2(9) +O = H2O(g). Aluminum strongly reduces the activity coefficient of oxygen and similarly oxygen reduces that of aluminum. Values of the product [% All" • [% O]3 are much smaller than those found in previous experimental studies and are of the order of magnitude of the calculated values. ALUMINUM is the strongest deoxidizer commonly A used in steelmaking, but the extent to which it removes dissolved oxygen has been debatable. The relationship between aluminum and oxygen has not been determined reliably not only on account of the usual experimental difficulties at high temperatures but also because of uncertainties in the analyses of very small concentrations of oxygen and aluminum. The earliest experimental attempt of Herty and coworkers' was followed by a more systematic study of Wentrup and Hieber.' These authors added aluminum to liquid iron of high oxygen content in an induction furnace and considered that 10 min was sufficient to remove the deoxidation products from the melt. Parts of the melts thus obtained were poured into a copper mold and analyzed for total aluminum and oxygen (soluble plus insoluble forms), assuming that the insoluble parts were in solution at the temperatures from which samples were taken. It is conceivable that the furnace atmosphere in their experiments, consisting of mainly air at 20 mm Hg pressure, was a serious source of continuous oxidation and therefore that their oxygen concentrations were correspondingly high. Scattering of their data was explained to be well within the maximum inaccuracy of 10°C in the temperature measurements and errors of ±0.002 pct each in the oxygen and total aluminum analyses. Maximum and minimum deoxidation values, i.e., values of the product [% All' . [% O] differed by factors of 10 to 15; mean values of 9x10-11 and 7.5x10-9 ere reported at 1600" and 1700°C, respectively. Hilty and Craftsv determined the solubility of oxygen in liquid iron containing aluminum, using a rotating induction furnace. Pure alumina crucibles used in their experiments contained the liquid iron which in turn acted as a container for slags of varying compositions consisting mainly of Al2O3, Fe2O3, and FeO. The furnace was continuously flushed with argon, and additions of aluminum and Fe2O3 were made in the course of each experimental heat. The inner surfaces of their alumina crucibles were covered with a substance other than pure Al2O3, containing both iron oxide and alumina. Although frequent slag additions can change the composition of slag in the liquid iron cup formed by rotation, the inner surface of the crucible must depend upon the transfer of oxygen or aluminum through the liquid iron for any adjustment in composition. It is not clear that their metal was in equilibrium with the crucible wall, but it is clear that it was not in equilibrium with Al2O3. Their deoxidation product, [% A].]" • [% O]3, varied by a factor of more than 50; the average values of 2.8x10- and 1.0x10-7 were selected for temperatures of 1600" and 1700°C, respectively. Aside from the experimental determinations, attempts have been made to calculate the deoxidation constant for aluminum indirectly from thermody-namic data. Schenck4 combined the thermodynamic data for Al2O3 and dissolved oxygen in liquid iron by assuming an ideal solution. His calculated values are 2.0x10-15 and 3.2x10-13 at 1600" and 1700°C, respectively. Later, Chipman5 attempted to correct for the deviation from ideality and derived an expression which led to deoxidation values of 2.0x10-14 and 1.1x10-12 at 1600" and 1700°C, respectively. The errors in these treatments originate mainly from inaccuracies of thermal data and uncertainties regarding the activity coefficients of dissolved oxygen and aluminum. The purpose of this investigation was to study the equilibria represented in the following reactions in the presence of pure alumina: Al2O3(s) = 2Al + 3O K = aAl2.ao3 [1] Al2O3(s) + 3H2(g) = 2Al + 3H2O(g) H2O K2 = aAl2(H2O/H2 ) [2] H2(g) +O = H2O(g) K3 = 1/ao (H2) [3] The experimental method consisted of melting pure electrolytic iron, usually with an initial charge of aluminum, in pure dense alumina crucibles under a controlled atmosphere of H,O and H2 and holding
Jan 1, 1954
-
Coal - Thermal Metamorphism and Ground Water Alteration of Coking Coal Near Paonia, ColoradoBy Vard H. Johnson
IN 1943 the U. S. Bureau of Mines undertook drilling in an effort to develop new reserves of coking coal in an area near Paonia, Colo., as a part of an attempt to alleviate the shortage of known coking coal of good quality in the western United States. Geologic mapping of the area was undertaken by the U. S. Geological Survey with the purpose of first furnishing guidance in location of drillholes and later aiding in interpreting the results of the drilling. The drilling program was under the general supervision of A. L. Toenges of the U. S. Bureau of Mines. J. J. Dowd and R. G. Travis were in charge of the work in the field. Geologic mapping was started by D. A. Andrews of the Geological Survey in the summer of 1943 and was continued from the spring of 1944 to 1949 by the writer. The first few holes drilled failed to locate coking coal, but in the summer of 1944 coking coal was discovered by drilling 6 miles east of Somerset, Colo., the site of present mining. In the succeeding years, 1945 to 1948, 100 to 150 million tons of coal suitable for coking were blocked out by drilling. The ensuing discussion of the geologic controls on the distribution of coking coal in the area is based on the geologic mapping as well as the drilling done in the Paonia area, more complete descriptions of which have appeared or are in process of publication."' In order that the possible geologic controls affecting the present distribution of coking coal may be considered, it is necessary to discuss briefly the indicators of coking quality coals. Coking Coal Coal that cokes has the property of softening to form a pastelike mass at high temperatures under reducing conditions in the coke oven. This softening is accompanied by the release of the volatile constituents as bubbles of gas. After release of the contained gases and upon cooling, a hard gray coherent but spongelike mass remains that is referred to as coke. This substance varies greatly in physical properties and, to be suitable for industrial use, must be sufficiently dense and strong to withstand the crushing pressure of heavy furnace loads. Western coals have a generally high volatile content and therefore form a satisfactory coke only when they attain a rather high fluidity during the process of heating arid distillation in the coke oven. When this high degree of fluidity is developed, the volatile constituents escape and leave a finely porous coke. On the other hand, when the degree of fluidity is low the product is an excessively porous and therefore physically weak mass that is called char." Small quantities of oxygen present in coal are believed to decrease the fluidity of the material during the coking process and to favor the development of char rather than coke. In consequence, coal chemists have for some time considered the possibility of developing an index to coking qualities by inspection of chemical analyses of coals.' A formula has now been developed that does permit a rough preliminary estimate of the cokability of coal on the basis of the analysis on an ash and moisture-free basis. Coals may be eliminated as possible coking fuels if the oxygen content is greater than 11 pct. Similarly the ratio of hydrogen to oxygen must be greater than 0.5 and the ratio of fixed carbon to volatile constituents must be greater than 1.3. If the coal, on the basis of these limiting factors, appears to have possible coking qualities, the following formula permits determination of the coking index: a+b+c+d Coking index = -------- 5 a equals 22/oxygen content on ash and moisture-free basis, b equals two times the hydrogen content divided by oxygen content on moisture and ash-free basis, c equals fixed carbon/l.3 x volatile matter, and d equals the heating value on moist, ash-free basis/13,600. Coking indices higher than 1.0 suggest that the coal will coke, and indices above' 1.1 indicate good coking tendencies. Although generally usable, this formula 'is not completely satisfactory because the percentage of oxygen shown in ultimate analyses is derived only by difference; i.e., by subtracting the sum of the percentages of the constituents determined analytically from 100 pct. Although the coking index indicates the coking tendencies of coal, it is necessary to make physical tests of coke before its industrial value can be determined. The U. S. Bureau of Mines has developed a standard procedure for determining the approximate strength of coke that would be formed from a given coal. In this test one part of ground coal, mixed with 15 parts of carborundum, is baked to form a standard briquette. The weight, in kilograms, necessary to crush the briquette is termed the agglutinating index. This test determines the relative fluidity attained in the coking process by measuring the cementing strength of the coal in the briquette. A
Jan 1, 1953
-
Part X – October 1969 - Papers - Use of Slag-Metal Sulfur Partition Ratios to Compute the Low Iron Oxide Activities in SlagsBy A. S. Venkatadri, H. B. Bell
The equilibrium sulfur distribution between molten iron and Ca0-Mg0-Al203 slags containing iron oxide was investigated at 1550°C. The results were used to derive the iron oxide activities at low iron oxide concentrations in the slag by combining the sulfide capacity data obtained from gas-slag work with the free energies of both the sulfur solution in iron and the iron oxide formation in slag. The derived ferrous oxide activities were compared with values based on Tem-kin's kin's and Flood's ionic models. One difficulty in using these models is that the nature of the aluminate ion in slag is uncertain. Nevertheless, such indirect methods, in particular, those described in the present paper, are of value because of the difficulty of measuring small amounts of oxygen in liquid iron in equilibrium with slag. It is shown that these methods confirm the consistency of thermodynamics data on liquid iron and slags. It is well established that decreasing the iron oxide activity in the slag increases the desulfurization of molten iron at constant slag basicity. This effect is most pronounced at the very low iron oxide activities, characteristic of blast furnace slags. Yet a precise quantitative determination of the significance of low iron oxide contents in slag in blast furnace desulfuri-zation is not possible for the following reasons: a) difficulty of separation of iron "shots" from the slag, and b) errors in chemical analysis of small amounts of iron oxide in slags. In view of these obstacles, one must resort to indirect methods of calculating iron oxide activities. EXPERIMENTAL TECHNIQUE The apparatus for providing the sulfur equilibrium data has been described previously1 and was similar to that used by ell' in connection with the study of slag-metal manganese equilibrium. The procedure consisted of: a) melting about 50 g of Armco iron in a magnesia crucible in a platinum furnace, b) adding a mixture of about 15 g of lime-alumina slag and varying amounts of Fe2O3 and CaS, and c) maintaining the temperature at 1550°C for more than an hour in an atmosphere of argon to enable the sulfur equilibrium to be attained. Several melts were made using lime-alumina slags with basic composition 55, 50, and 45 pct lime. During the experiment the temperature was controlled manually using a Pt/10 pet Rh-Pt thermocouple. After the experiment, the Power was shut off and the flow rate of argon was increased to freeze the melt as quickly as possible. The analysis of sulfur in the metal was carried out by the oxygen combustion method3 using uniform drillings from the top and bottom of the metal button. After crushing and grinding and removal of any iron particles with the aid of a hand magnet, the slag was analyzed for sulfur by the CO2 combustion method.4 The E.D.T.A. method was employed for the analysis of lime5,6 and magnesia,= the ceric sulfate method7 for the analysis of slag iron oxide, and the perchloric acid dehydration method5 for the analysis of silica. The remaining amount was taken to be Al2O3 precipitation with ammonium hydroxide in several preliminary melts had confirmed the propriety of using this simple procedure. RESULTS The activity of iron oxide in binary, ternary, and more complex slags has been the object of numerous investigations, and the two experimental methods for its determination are: 1) Equilibrating the metal with the slag in question and measuring the oxygen content of the metal. The ferrous oxide activity is then given by aFeO L%OJSat where [%0]sat is the oxygen content of the metal in equilibrium with pure iron oxide slag. This method was used by Chipman et al.8,9 2) Equilibrating the slag in iron crucibles with known partial pressures of H2/H2O or CO/CO2 mix-tures.10-12 This method is limited to temperatures between 1265" and 1500°C. The very low oxygen content of the melts in this investigation made it impossible to derive the ferrous oxide activity by the first of these methods. Therefore, the iron oxide activities were computed by means of: Sulfide capacity data from the gas-slag work" Temkin's concept14 Flood's approach15 a FeO from Sulfide Capacity. The method of calculating the aFeO involves the sulfide capacity of the slag (c,), the sulfur distribution coefficient (Ls), the free energy of dissolution of sulfur in iron, and the free energy of formation of iron oxide in the slag. Bell and Kalyanram13 have investigated the sulfur absorption characteristics of lime-alumina slags containing magnesia by the Carter-Macfarlane method16 (based on comparing the sulfide capacity of the slag in question with that of a standard slag of unit lime activity) and have derived lime activity values. The relation between sulfide capacity and their lime activity a'CaO is given by: Cs= 3—: Xa'CaO at 1500°C
Jan 1, 1970
-
Institute of Metals Division - The Crystal Structures of Ti2Cu, Ti2Ni, Ti4Ni2O and Ti4Cu2OBy H. W. Knott, M. H. Mueller
The crystal structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu20 have been determined using powder specimens examined by X-ray and neutron diffraction. Lattice constants have been determined for all four phases using X-ray powder diffraction films. Atom positional parameters of all four phases have been determined from observed neutron intensities. X-ray diffraction calculated intensity data have been presented also for the phase Ti2Cu to point out the particular suitability of neutron diffraction in this case. Interatomic distances have been determined using the positional parameters obtained from neutron diffraction. ALTHOUGH some investigations of the crystal structures have been made of these four compounds previously,'-13 it was the purpose of the present investigation to expand the previous work in order to locate the various atoms, determine their coordinates, and to confirm or to correct some of the previous work. It was convenient to group these four compounds together since they are related chemicallv and/or structurally. The compound Ti2Cu is tetragonil; and Ti2Ni, Ti4Ni2O, and Ti4CU2O are all large fees of the same space group. Ti2Cu has been previously reported as a fee phase by Laves and Wallbaum;1 and Rostoker2 which was possibly the oxide phase, Ti4Cu20. Joukainen, Grant, and Floe;3 and Trzebiatowski, Berak, and Ramotow-ski4 have also reported a phase of this composition. karlsson5 has reported a small fct phase of the composition Ti3Cu which may be the presently discussed Ti2Cu phase. More recently Ence and Margolin6 have reported a small fct phase for Ti2Cu and the present authors7 together with Nevitt8 have briefly reported it to be a bet related to the fct with a co three times the length of the co of the fct and have also reported that this phase has a very limited composition. Further refinements will be reported which have varied some of the parameters of this bct structure slightly. Ti2Ni has been reported as a fee phase by Laves and wallbaum;1 Duwez and taylor;9 Rostoker;2 Poole and Hume-Rothery;10 and Yurko, Barton, and parr.11 In a later paper Yurko, Barton, and parr12 have given the complete structure of this phase based on an X-ray diffraction study which was independently confirmed with neutron diffraction by Mueller and knott.7 Additional crystal structure information will be given. Ti4Ti2O, Ti4Cu2O, and a number of other compounds including Ti4Fe2O have been reported as fcc phases by Rostoker,2 and more recently Nevitt13 has confirmed the Ti4Ti2O phase. Rostoker,2 however has reported diffraction lines for Ti4Fe2O which do not have all odd or all even indices. These lines, therefore, cannot be observed if this compound has a fee structure. This same error has crept into the diffraction results reported for TiNi2O and Ti4Cu20 in the ASTM powder data which has been credited from Rostoker's data. Complete crystal structures of these two phases will be presented. Although all four of these structures have large unit cells and hence do not lend themselves for completely resolved neutron powder patterns, a sufficient number of individual reflections was observed for solving the structure. They also serve as good examples of some of the advantages to be gained by using both neutron and X-ray diffraction techniques. EXPERIMENTAL PROCEDURE All of the alloys were prepared by arc melting. The starting metals had the following purity: Cu 99.999 pct, Ni 99.83 pct, and Ti 99.92 pct. Oxygen was introduced into the two oxide phases as chemically pure TiO2, with the remainder of the titanium coming from the above mentioned metal. All of the sample buttons were annealed in evacuated Vycor tubes, the two binary phases for 5 days at 700°C and the two oxide phases for 3 days at 900°C. Oxygen analyses were performed on all four phases by two independent laboratories with the following amounts of oxygen present in atomic percent; Ti2Cu-0.06, Ti2Ni-1.03, Ti4Ni2O-13.95, and Ti4Cu20-13.87. The stoichiometric amount for the oxide phases is 14.29 at. pct. Since all of the samples were very brittle they were easily reduced to a powder for diffraction measurements. The lattice constants given in Table I were determined for the four compounds from X-ray diffraction patterns of powder samples exposed to filtered copper radiation using a 114.59 mm diam Debye-Scherrer type camera using the Straumanis loading. None of the patterns showed a detectable amount of a second phase. The lattice constants were obtained from an IBM 704 computer program employing a least squares treatment with systematic correction terms as previously reported.14
Jan 1, 1963
-
Coal - Thermal Metamorphism and Ground Water Alteration of Coking Coal Near Paonia, ColoradoBy Vard H. Johnson
IN 1943 the U. S. Bureau of Mines undertook drilling in an effort to develop new reserves of coking coal in an area near Paonia, Colo., as a part of an attempt to alleviate the shortage of known coking coal of good quality in the western United States. Geologic mapping of the area was undertaken by the U. S. Geological Survey with the purpose of first furnishing guidance in location of drillholes and later aiding in interpreting the results of the drilling. The drilling program was under the general supervision of A. L. Toenges of the U. S. Bureau of Mines. J. J. Dowd and R. G. Travis were in charge of the work in the field. Geologic mapping was started by D. A. Andrews of the Geological Survey in the summer of 1943 and was continued from the spring of 1944 to 1949 by the writer. The first few holes drilled failed to locate coking coal, but in the summer of 1944 coking coal was discovered by drilling 6 miles east of Somerset, Colo., the site of present mining. In the succeeding years, 1945 to 1948, 100 to 150 million tons of coal suitable for coking were blocked out by drilling. The ensuing discussion of the geologic controls on the distribution of coking coal in the area is based on the geologic mapping as well as the drilling done in the Paonia area, more complete descriptions of which have appeared or are in process of publication."' In order that the possible geologic controls affecting the present distribution of coking coal may be considered, it is necessary to discuss briefly the indicators of coking quality coals. Coking Coal Coal that cokes has the property of softening to form a pastelike mass at high temperatures under reducing conditions in the coke oven. This softening is accompanied by the release of the volatile constituents as bubbles of gas. After release of the contained gases and upon cooling, a hard gray coherent but spongelike mass remains that is referred to as coke. This substance varies greatly in physical properties and, to be suitable for industrial use, must be sufficiently dense and strong to withstand the crushing pressure of heavy furnace loads. Western coals have a generally high volatile content and therefore form a satisfactory coke only when they attain a rather high fluidity during the process of heating arid distillation in the coke oven. When this high degree of fluidity is developed, the volatile constituents escape and leave a finely porous coke. On the other hand, when the degree of fluidity is low the product is an excessively porous and therefore physically weak mass that is called char." Small quantities of oxygen present in coal are believed to decrease the fluidity of the material during the coking process and to favor the development of char rather than coke. In consequence, coal chemists have for some time considered the possibility of developing an index to coking qualities by inspection of chemical analyses of coals.' A formula has now been developed that does permit a rough preliminary estimate of the cokability of coal on the basis of the analysis on an ash and moisture-free basis. Coals may be eliminated as possible coking fuels if the oxygen content is greater than 11 pct. Similarly the ratio of hydrogen to oxygen must be greater than 0.5 and the ratio of fixed carbon to volatile constituents must be greater than 1.3. If the coal, on the basis of these limiting factors, appears to have possible coking qualities, the following formula permits determination of the coking index: a+b+c+d Coking index = -------- 5 a equals 22/oxygen content on ash and moisture-free basis, b equals two times the hydrogen content divided by oxygen content on moisture and ash-free basis, c equals fixed carbon/l.3 x volatile matter, and d equals the heating value on moist, ash-free basis/13,600. Coking indices higher than 1.0 suggest that the coal will coke, and indices above' 1.1 indicate good coking tendencies. Although generally usable, this formula 'is not completely satisfactory because the percentage of oxygen shown in ultimate analyses is derived only by difference; i.e., by subtracting the sum of the percentages of the constituents determined analytically from 100 pct. Although the coking index indicates the coking tendencies of coal, it is necessary to make physical tests of coke before its industrial value can be determined. The U. S. Bureau of Mines has developed a standard procedure for determining the approximate strength of coke that would be formed from a given coal. In this test one part of ground coal, mixed with 15 parts of carborundum, is baked to form a standard briquette. The weight, in kilograms, necessary to crush the briquette is termed the agglutinating index. This test determines the relative fluidity attained in the coking process by measuring the cementing strength of the coal in the briquette. A
Jan 1, 1953
-
Iron and Steel Division - Structure and Transport in Lime-Silica-Alumina Melts (TN)By John Henderson
FOR some time now the most commonly accepted description of liquid silicate structure has been the "discrete ion" theory, proposed originally by Bockris and owe.' This theory is that when certain metal oxides and silica are melted together, the continuous three dimensional silica lattice is broken down into large anionic groups, such as sheets, chains, and rings, to form a liquid containing these complex anions and simple cations. Each composition is characterized by "an equilibrium mixture of two or more of the discrete ions",' and increasing metal oxide content causes a decrease in ion size. The implication is, and this implication has received tacit approval from subsequent workers, that these anions are rigid structures and that once formed they are quite stable. The discrete ion theory has been found to fit the results of the great majority of structural studies, but in a few areas it is not entirely satisfactory. For example it does not explain clearly the effect of temperature on melt structure,3 nor does it allow for free oxygen ions over wide composition ranges, the occurrence of which has been postulated to explain sulfur4 and water5 solubility in liquid silicates. In lime-silica-alumina melts the discrete ion theory is even less satisfactory, and in particular the apparent difference in the mechanism of transport of calcium in electrical conduction8 and self-diffusion,' and the mechanism of the self-diffusion of oxygen8 are very difficult to explain on this basis. By looking at melt structure in a slightly different way, however, a model emerges that does not pose these problems. It has been suggested5" that at each composition in a liquid silicate, there is a distribution of anion sizes; thus the dominant anionic species might be Si3,O9 but as well as these anions the melt may contain say sis0:i anions. Decreasing silica content and increasing temperature are said9 to reduce the size of the dominant species. Taking this concept further, it is now suggested that these complexes are not the rigid, stable entities originally envisaged, but rather that they exist on a time-average basis. In this way large groups are continually decaying to smaller groups and small groups reforming to larger groups. The most complete transport data 8-10 available are for a melt containing 40 wt pct CaO, 40 wt pct SiO2, and 20 wt pct Al2O3. Recalculating this composition in terms of ion fractions and bearing in mind the relative sizes of the constituent ions, Table I, it seems reasonable to regard this liquid as almost close packed oxygens, containing the other ions interstitially, in which regions of local order exist. On this basis, all oxygen positions are equivalent and, since an oxygen is always adjacent to other oxygens, its diffusion occurs by successive small movements, in a cooperative manner, in accord with modern liquid theories." Silicon diffusion is much less favorable, firstly because there are fewer positions into which it can move and secondly, because it has the rather rigid restriction that it always tends to be co-ordinated with four oxygens. Silicon self-diffusion is therefore probably best regarded as being effected by the decay and reformation of anionic groups or, in other words, by the redistribution of regions of local order. Calcium self-diffusion should occur more readily than silicon, because its co-ordination requirements are not as stringent, but not as readily as oxygen, because there are fewer positions into which it can move. There is the further restriction that electrical neutrality must be maintained, hence calcium diffusion should be regarded as the process providing for electrical neutrality in the redistribution of regions of local order. That is, silicon and calcium self-diffusion occur, basically, by the same process. Aluminum self-diffusivity should be somewhere between calcium and silicon because, for reasons discussed elsewhere,' part of the aluminum is equivalent to calcium and part equivalent to silicon. Consider now self-diffusion as a rate process. The simplest equation is: D = Do exp (-E/RT) [I] This equation can be restated in much more explicit forms but neither the accuracy of the available data, nor the present state of knowledge of rate theory as applied to liquids justifies any degree of sophistication. Nevertheless the terms of Eq. [I] do have significance;12 Do is related, however loose this relationship may be, to the frequency with which reacting species are in favorable positions to diffuse, and E is an indication of the energy barrier that must be overcome to allow diffusion to proceed. For the 40 wt pct CaO, 40 wt pct SiO2, 20 wt pct Al2O3, melt, the apparent activation energies for self-diffusion of calcium, silicon, and aluminum are not significantly different from 70 kcal per mole of diffusate,' in agreement with the postulate that these elements diffuse by the same process. For oxygen self-diffusion E is about 85 kcal per mole,' again in agreement with the idea that oxygen is transported,
Jan 1, 1963
-
Institute of Metals Division - The Origin of Lineage Substructure in AluminumBy P. E. Doherty, B. Chalmers
Subboundaries may be revealed in aluminum by the formation of pits on the surface during cooling from elevated temperatures. The pits do not form in the vicinity of high- or low-angle boundaries. They are attributed to the condensation of vacancies from a super saturation produced during coolirzg. Using the vacancy pit and Schulz X-ray techniques for observing low-angle boundaries, a study was made of the transition from the nearly perfect seed to the striated structuke characterist-ic of aluminum crystals grown from the melt. It was found that the individual striation boundaries develop by the coalescence of very small-angle boundaries, as well as by the addition of individual dislocations. Several mechanisms for the formation of striations are discussed. Evidence was found suggesting that a super-saturation of vacancies exists near a growing interface, and it is proposed that the resulting climb of existing dislocalions produces "half'-loops" at the interface, which combine to form the low-angle striation boundaries. LINEAGE, or "striation" boundaries, have been studied in detail by Teghtsoonian and Chalmers 1,2 in crystals of tin grown from the melt, and by Atwater and Chalmers3 in lead. They found that single crystals grown from the melt consist of regions which are separated by subboundaries that lie roughly parallel to the growth direction. A difference in orientation of 0.5 to 3 deg exists between the striated regions; the misorientation is such that the lattice of one region could be brought into coincidence with the lattice of its neighbor by a rotation about an axis approximately parallel to the direction of growth of the crystal. They observed an incubation distance for the formation of striations which increased with decreasing growth rate. They also found that in any crystal, the sum of all rotations of the lattice in one sense, in going from one striation to the next, is very nearly equal to the sum of all the rotations in the opposite sense. A striation boundary, which is a low-angle grain boundary, can be described as an array of dislocations. If it is assumed that suitable dislocations are introduced into the crystal during solidification, the formation of striation boundaries can be explained as a result of the migration of the disloca- tions into arrays. The formation of arrays is energetically favorable since the energy of an assembly of dislocations can be reduced by the interaction of the stress fields when a suitable array is formed. This investigation presents and interprets new information concerning the nature and origin of striation boundaries in aluminum. EXPERIMENTAL TECHNIQUE Single crystals of high-purity aluminum (Alcoa 99.992 pct) were prepared by horizontal growth from the melt.'' The specimens were subsequently electropolished in a solution of 5 parts methanol to 1 part perchloric acid kept between -10° and 0°C in a bath of dry ice and alcohol. The current density was approximately 6 amps per sq in. Doherty and Davis9 have shown that in aluminum sub-boundaries with misorientations of not less than several seconds of arc may be revealed by the vacancy pit technique. During cooling from elevated temperatures pits form on electropolished surfaces of aluminum crystals as a result of the condensation of vacancies.11 Pits do not form in the vicinity of small- or large-angle grain boundaries, presumably because such boundaries act as sinks for vacancies. Boundaries of misorientations down to 3 sec of arc are revealed as pit-free regions, see Fig. 1. The Schulz X-ray technique12 was used to determine the angular misorientations of subboundaries. In this method, white radiation from a micro-focus X-ray tube is used to produce an image of a fairly large area of a single crystal surface. Subboundaries cause splitting in the diffracted image, see Fig. 2. Misorientations down to about 15 sec of arc may be observed with this technique. OBSERVATIONS AND DISCUSSION Figure 1 shows a striated aluminum crystal grown at 10 cm per hr etched by the vacancy pit technique. An incubation distance of about 1 cm is observed before the initiation of striation boundaries. Fig. 2 is a Schulz X-ray photograph of a striated crystal similar to that shown in Fig. 1. A large area of the crystal was studied by means of a series of photographs. Fig. 2, which is a reflection from the (100) plane, included about the first 4 cm of crystal to freeze. There is an incubation distance of about 1 cm, and a distance of about 2 cm over which the angle of misorientation builds up to its final value of approximately one degree. Some twist component can be seen in Fig. 2 at the right side of the photograph. From Fig. 2 it can be seen that the sum of all rotations of the lattice in one
Jan 1, 1962