Part X – October 1969 - Papers - Effects of Manganese and Sulfur on the Machinability of Martensitic Stainless Steels

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. W. Kovach A. Moskowitz
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
535 KB
Publication Date:
Jan 1, 1970

Abstract

Studies were undertaken to investigate the effects of manganese content on the machinability and other Properties of a free machining martensitic stainless steel (AISI Type 416). Machinability was found to be significantly improved in steels of high manganese content, and a direct relationship was obtained between machinability and steel Mn:S ratio. As the manganese content of the steel increases, the sulfide Phase present changes from CrS to (FeMn)Cr2S4 to (MnFeCr)S, and finally to MnS. The average sulfide inclusion hardness decreases through the same range of increasing manganese content. The mechanism for machinability improvement is discussed in terms of a soft ductile sulfide affecting deformation in the secondary shear zone. Type 416 containing relatively high manganese for improved machinability shows good general properties. The effects of increasing manganese content on mechanical properties, cold formability, and corrosion resistance are described. THE addition of sulfur is commonly used to improve the machinability of stainless steels. However, little attention has been paid in the past to the composition and characteristics of the sulfur-containing phase or phases present in these resulfurized steels. Recent information on the properties of sulfide phases, and their role in metal cutting, suggests that variations in these phases could have critical effects on machin-ability, as well as important effects on formability and other properties such as corrosion resistance. Manganese, chromium, and iron are strong sulfide forming elements present in stainless steels! of these, manganese has the greatest sulfide forming tendency and iron the least.1"1 The manganese content of resul-furized 13 pct Cr steels, often about 0.5 pct, can be insufficient or only barely sufficient to combine with the sulfur that is present; thus, the precise level of manganese can strongly influence the nature of the sulfide phase. Sulfide phases which may be present in stainless steels have been reported to include CrS, a spinel-type sulfide, chromium-rich manganese sul-fide, and manganese Sulfide.5,6 Detailed phase relationships for the Fel3Cr-Mn-S system have been reported by the present investigators,7 and a portion of this work will be referred to subsequently in this paper. Recent work by Kiessling6 and Chao et a1.8 has shown that sulfide phases can display wide variations in hardness, and may undergo considerable plastic deformation under isostatic loading.9-12 Early theories of metal cutting attributed the influence of sulfur to a lubricating effect. It is now apparent that the influence of the nonmetallic inclusions and their properties on crack initiation, deformation in the shear zones, and boundary films must also be considered in relation to the machining process. This paper presents the results of studies conducted to relate machinability to the various sulfide phases which occur in stainless steels. This work has led to the development of alloys with improved machinability, and has generated information on the effects of inclusions on metal cutting processes. Effects of sulfide inclusions and steel composition on other important metallurgical properties are also discussed. MATERIALS For drill machinability and inclusion studies, 10 lb laboratory heats were melted in an air induction furnace. These heats were made with sulfur contents be tween 0.10 and 0.50 pct and manganese contents be tween 0.05 and 3.0 pct. Residual elements were added to the heats in amounts typical for commercial steels. The typical compositional range covered by the heats is shown below: C Mn P S Si Ni Cr Mo Cu N 0.10 0.05 0.007 (M0 0.40 0.40 13.0 0.20 0.10 0.03 3.0 0750 The laboratory ingots were forged in the temperature range of 1800" to 2100°F to 3/4-in. sq bars, and all bars tempered to a hardness aim of 200 Bhn prior to testing. Because of differences in composition and tempering response, the tempered bars showed some variation in hardness (175 to 275 Bhn) as well as variations in delta ferrite content (0 to 50 pct). Composition, hardness, and delta ferrite content were considered in the analysis of the machinability data. Additional tests involving tool-life evaluation and determination of other properties were conducted on materials from commercially melted and processed 15-ton electric furnace heats. TESTS AND PROCEDURES Machinability of the laboratory heats was evaluated in a drill test. In this test, 1/4-in. diam holes, 0.4 in. deep, were drilled alternately in a test bar and in a standard bar for a total of four holes in each. This sequence was repeated three times using a freshly sharpened drill each time. The average time required to drill a hole in the test bar was compared to that for the standard bar. A drill machinability rating was assigned to the test bar relative to a rating of 100
Citation

APA: C. W. Kovach A. Moskowitz  (1970)  Part X – October 1969 - Papers - Effects of Manganese and Sulfur on the Machinability of Martensitic Stainless Steels

MLA: C. W. Kovach A. Moskowitz Part X – October 1969 - Papers - Effects of Manganese and Sulfur on the Machinability of Martensitic Stainless Steels. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account