Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Chevron's Panna Maria Mill Process DescriptionBy John D. Hanks
INTRODUCTION Chevron's Uranium Mill is located near Panna Maria, Texas; 70 miles southeast of San Antonio. Designed by Kaiser Engineering, the Mill will process a nominal 2500 dry T.P.D. of uranium bearing ore containing 15% uncombined moisture. Earl Torgerson, San Mateo, California, is the consulting metallurgist on process design. Feed to the plant consists of a mixture of high, medium and low grade sandy day ore; the average grade of the ore will be 0.7% throughout the life of the project. The ore is delivered to the mill via truck and stored by type in individual piles on a flat storage area. The ore is fed by conveyor to a semi-autogenous grinding mill. The SAG mill discharge slurry is pumped either to a storage tank or to the first of five mechanically agitated leach tanks where both H2SO and NaC103 are added. Following leaching, the slurry is mixed with thickener No. 2 overflow before being pumped to a six-thickener, countercurrent decantation circuit where the solution containing uranium is separated from the leach residue. The residue is washed essentially free of solubilized U308 values at the sixth thickener and discharged to an adjacent tailings pond. The first thickener overflow, containing approximately 0.4 grams U308 per liter, is filtered for clarification and sent to the liquid ion exchange (solvent extraction) section. The pregnant aqueous solution is mixed with organic solvent containing amine on which the complex uranyl sulfate ions are absorbed. The immiscible aqueous and organic solutions are mixed and separated in each of the four stages of solvent extraction. The final pregnant organic is directed to a stripping section. A strip solution containing (NH4)2S04 (ammonium sulfate) and NH4C1 (ammonium chloride) is contacted and separated from the organic in each of the four mixer-settler units. The strip solution is mixed with NH3 and the uranium precipitates along with trace amounts of sulfate, chloride, and ammonia. After washing in a thickener, the uranium precipitate or yellowcake is centrifuged and dried in a multiple hearth roaster. Overflow from the yellowcake thickener is recycled back to the stripping section of the solvent extraction circuit. The dried yellowcake concentrate contains more than 98% U308; diluents include H20, ammonia, chloride, etc.. Impurity concentratons in the product are sufficiently low, after drying, to permit direct shipment to refinement installations. ORE RECEIVING Ore from one or more mines will be stored on a pad adjacent to the uranium processing mill. Ore stored in the area may total 200,000 tons or more, which is equivalent to over a two month treatment reserve for the mill. In addition to providing surge capacity, the proposed storage facility permits natural oxidation of the ore and affords an area which, in turn, improve plant U308 recovery and reduces consumption of oxidizing reagents. The uranium bearing ore is segregated at the storage area into several distinct types. One group can be identified by its sandy, clay-like matrix and will be distinguished by its U308 concentration of high, medium, or low. Other ores contain substantial quantities of carbonaceous shale, typical of ore in the area. Feed is recovered from any one or combination of piles, in accordance with operating requirements and recovery factors. The run-of-mine ore, at 15% moisture, is transferred to a stationary, 24-inch by 24-inch grizzly. Undersize material falls into a 280-ton surge hopper located below grade, while oversize material is removed for preliminary size reduction. A sump-pump is located at the reclaim hopper to recover excess mositure and ore spillage for processing. Plant feed is continuously drawn from beneath the hopper at an average rate of 120 tons per hour by means of an apron feeder. The hopper is equipped with a low level safety system to protect the apron feeder assemble. The ore is transferred to a belt conveyor, elevated and discharged into a semi-autogeneous grinding (SAG) mill. Water addition at the discharge point is automatically controlled by a feed rate, moisture analyzer system located on the belt conveyor. GRINDING Minus 24-inch ore, at a rate of 120 mosit tons per hour and cyclone underflow at a rate of 137 moist tons per hour are combined with a controlled 186 gallons per minute fresh, warm plant process water. The mixture, at an average 68% solids, is fed to the SAG mill. The viscous mass is subjected to grinding at a temperature moderately above ambient resulting from use of the 140ºF well water. The 16.5'x5.0' Marcy Mill is driven by a 500 H.P. A.C. Motor. The mill will rotate at 73.4% of critical speed or 14.06 R.P.M. Eight percent of the mill's volume will be occupied by steel grinding balls; 22% by pulp. The mill is designed to rotate in either direction, in order to obtain maximum lifter and liner life. The SAG mill is equipped with a trommel having ½ -inch slots for removal of oversize material at its discharge and the large or oversize material is collected and either recirculated periodically or discarded. The undersize slurry is diluted to 64% solids with the addition of hot well water or mine water to the mill discharge sump. The flow is automatically controlled utilizing data from a gamma density meter. The slurry from the mill discharge sump is pumped to hydrocyclones to classify the particles. Underflow from the cyclones, at 80% + 28 mesh, is recycled to
Jan 1, 1979
-
Choice of Geophysical Methods in Prospecting for OreBy Hans Lundberg, Basil T. Wilson, H. Steuart Scott
FOR the benefit of those readers who may not be in close touch with present practices in the geophysical prospecting for ore, brief reference will fiat be made to the advantages and shortcomings of the methods to be discussed. Magnetic and electric methods are generally accepted as the most useful for ore prospecting. By magnetic methods, magnetic intensities that are not normal may be recorded and outlined. From these can he located concentrations of such highly magnetic minerals as magnetite or pyrrhotite, which sometimes occur in such large masses that they are of economic value in themselves. More often. however, these magnetic min¬erals are associated with others, such as copper, zinc, lead, gold, and silver, which, if existing in sufficient concentration and quantity, may constitute valuable ore bodies. It is therefore only when pyrrhotite and magnetite are present in these bodies that the magnetic method can be used to indicate their presence.
Jan 1, 1945
-
How Design Improvements Boost Walking Draglines' ProductivityBy Tegner C. Johnson
Just a few years ago, my company was referred to as the Marion Steam Shovel Company. Though we still make shovels, both two and eight-crawler types, the eight-crawler stripping shovel appears to have been replaced by the walking dragline for overburden removal and in some cases for the mineral as well. The walking dragline appeared in the coal fields in the early 1930's. It is popular because it can cope with overburden depths in excess of 100 ft and with blasted sedimentary rock, all at an O & O (ownership and operational) cost of ±10[c] per bank cu yd (bcy).
Jan 10, 1974
-
Part IV – April 1969 - Papers - Tensile Ductility of Steel Studied with UltrasonicsBy W. F. Chiao
With the application of dislocation damping theory an attempt was made to determine whether the generation and extension of dislocations is inherently more difficult in a brittle steel than in a ductile steel. A ductile steel was compared with a brittle stee1 by simultaneously measuring the ultrasonic attenuation and velocity during tensile test, and the density of free dislocations and their mean loop length were then calculated as a function of strain. The results showed that in the ductile steel there was always a large generation of dislocations and great extension of loop length occurring at some stage within the early plastic region. In contrast, the brittle steel showed very little or no such sudden changes in dislocation dynamic states after the onset of plastic deformation. Furthermore, a strong temperature dependence of dislocation dynamic states was also observed in the ductile steel and a hypothesis was suggested that a thermally activated process of dislocation rearrangement could occur at higher deformation temperatures. The activation energy of dislocation rearrangement at room temperature was estimated as about 2030 cal per mole.C. DUCTILITY is an indispensible property in the application of engineering materials, especially steel. During the past two decades the theoretical and experimental approach to the understanding of flow and fracture of metals has been constantly undergoing changes and progress." while the fracture behavior of metals can be influenced by many factors such as chemical Composition,3 second-phase particle mor-phology,4 and dislocation arrangement,5 it is now a general belief that the fundamental understanding of the ductile-brittle fracture phenomena of solid materials must stem from the study of dislocation dv-namics developed under stress conditions.6,7 Most of the traditional ductility tests, such as Charpy impact test, slow bend test, and tensile fracture test, cannot by themselves reveal directly the mechanisms of ductile to brittle transition of materials. In the experimental investigation of tensile ductility it would be ideal to be able to study directly the dynamics of dis-locations in a bulk specimen during the process of deformation. Since the ultrasonic pulse technique is the only satisfactory method for studying dislocations and the fine details of deformation characteristics in metals in the course of a tensile test, it would appear that a comparative study of ultrasonic attenuation changes during tensile tests of metallic materials exhibiting different ductility might be very informative. So far no work comparable to this study has appeared in the literature. Recent progress in both theory and experiment has indicated the feasibility of studying the dislocation mechanisms of ductility behaviors by ultrasonic measurements during tensile test. Granato and Lucke8 have developed a quantitative theory that enables the calculation of dislocation density and their average loop length from the measurements of ultrasonic attenuation and velocity, and several investigators, including Chiao and Gordon,9'10 have shown that simultaneous ultrasonic measurements can be successfully made during a tensile test. Furthermore, many investigators11-13 have repeatedly proposed in the past several decades that deformation and fracture are mutually self-exclusive, and that the ability or inability of a material to deform plastically, i.e., to generate dislocations, is a major factor in determining whether the material will be ductile or brittle. Thus, in the present work an attempt was made to determine whether the generation and extension of dislocations is inherently more difficult in a brittle steel than in a ductile steel. This article is principally concerned with the study of the relation between the propagation of ultrasonic waves and tensile deformation in a steel series which displays quite different toughness at room tempera-turk. changes in attenuation and velocity of ultrasonic waves have been measured as a function of strain during the deformation process. The results have been interpreted in terms of the vibrating string model for dislocation damping as developed by Granato and Lucke, and it has been found that some of the more subtle predications of the model are in good agreement with the experiments. This would be especially meaningful because most of the previous experiments in testfying the model were carried out with single crystals of high-purity materials and little work has been done with polycrystalline steel alloys. EXPERIMENTAL PROCEDURES AND RESULTS Specimen Materials. The tensile specimens used throughout this experiment were of two compositions selected from a series of Fe-Mo-0.77 pct Mn-0.22 pct C steels prepared for a ductile-brittle fracture transition study. One steel contains 0.21 pct Mo and the other 1.03 pct Mo. These two compositions were chosen for the present study because they possess quite different toughness properties at room temperature. The 0.21 pct Mo steel is quite ductile while the 1.03 pct Mo steel is rather brittle, as measured by the standard Charpy impact test. The alloys had been prepared by vacuum induction melting and chill casting in steel molds. The ingots were hammer-forged into 1/2-in.-sq bars from which tensile specimen blanks were cut. These blanks were first normalized under argon atmosphere at 1700°F and then reaus-tenitized and isothermally transformed at 1050°F to a bainitic microstructure. The chemical compositions, heat treatments, hardness measurements, and Charpy transition temperatures of the two steels are listed in Table I.
Jan 1, 1970
-
Part III – March 1968 - Papers - Evaluation of Bulk and Epitaxial GaAs by Means of X-Ray TopographyBy Eugene S. Meieran
The effects of methods of crystal growing, wafer sawing, polishing, routine handling, diffusion, and epitaxial growth on the defects in GaAs are reviewed and studied using reflection and transmission X-ray topographic techniques. In general, it was found that boat-grown crystals exhibited fewer defects than Czochralski crystals, although all crystals showed large numbers of precipitates visible when examined in the electron microscope. Mechanical surface treatments such as sawing and mechanical polishing introduce damage to a depth of about 5 µ, most of which can be removed by suitable chemical or chem-mechanical polishing. In addition, defects can be introduced through routine handling of wafers, for example with metallic tweezers. These defects can be quite severe, and have been observed 20 µ below the wafer surface. Defects can also be introduced through diffusion and epitaxial growth. These defects, which include precipitates, growth pyramids, stacking faults, dislocations, and so forth, can be detrimental to device fabrication. It is shown that wafers or films which appear defect-free optically can contain defects visible in the X-ray topographs. WHILE the use of GaAs in the semiconductor industry has increased very rapidly in the last few years, due mainly to the recent development of many important GaAs devices,1,2 the major limit to the production of commercial quantities of many GaAs devices remains a severe lack of suitable materials technology. This lack is apparent in two critical areas. First, production quantities of high-quality GaAs crystals, reproducibly doped and precipitate-free, simply are not available commercially, although some reasonable quality material is available on a limited first-come, first-serve basis. Second, in comparison to silicon technology, little is known about the effects of processing variables on the defects either present in as-grown GaAs or introduced through processing and handling of wafers. These areas are now receiving some attention from semiconductor device manufacturers, who are studying defects in GaAs in order to better understand how either to prevent their occurrence or to cope with their existence. Most investigations of the defects in GaAs have been made by optical microscopy3-5 or transmission electron microscopy techniques.'-' Recently, however, the imaging techniques of X-ray topography, electron mi-croprobe analysis, and scanning electron microscopy are being applied to the study of GaAs.9-14 In the case of X-ray topography, a one-to-one image is obtained that must be photographically enlarged. In compensa- tion, the defects within entire wafers may be imaged by simple scanning (Lang technique15) if the wafer is reasonably perfect, or by using the scan oscillation technique developed by Schwuttke16 if the wafer is warped or distorted. The purpose of this paper is to both review and extend the general application of X-ray topographic techniques to GaAs. Emphasis will be placed on the effects of growth and process variables on the quality and perfection of both bulk and epitaxial GaAs. Reference to optical or electron microscopy results will be made when useful. Since the effects on defects of a wide variety of processing variables such as crystal growing, sawing, polishing, diffusion, and epitaxial growth will be somewhat superficially reviewed, a fairly extensive bibliography of the most important recent results in these areas is included. However, for completeness, important defects will be illustrated here, although such defects have been previously shown by others. While this paper is concerned with defects rather than with the physics of X-ray scattering, the mechanisms of contrast formation in the topographs will of necessity be briefly mentioned. EXPERIMENTAL GaAs crystals, both boat-grown18 and Czochralski-grown,'8 containing a variety of dopants of various concentrations, were purchased from outside vendors. Wafers were sliced from the crystals using a Hamco ID saw and were mechanically polished using 1 µ diamond paste. Chem-mechanical polishing was done in bromine-methanol as described by Sullivan and Kolb.18 Chemical polishing was done using a modified sulfuric-peroxide solution, 11 parts H2SO4, 1 part 30 pct H2O2, 1 part DI water.5 Zinc diffusion was carried out in a closed tube, using a 10 pct Zn-In source at 825°C for 1 hr. Oxide masking techniques were used to select the area to be diffused. Epitaxial wafers were either purchased or prepared here. All epitaxial runs prepared here were carried out using a Ga-GaAs-AsC13 source in a closed tube at a substrate temperature of 750°C. Wafers were chem-mechanically polished and gas-etched prior to deposition. The X-ray topographs were taken on a Krystallos Lang camera, operating in the transmission scanning geometry (Lang technique15) or in the reflection scanning geometry (modified Berg-Barrett technique20,21). MoKa, radiation was used for all transmission topographs using a Jarrell-Ash 100-µ spot focus. CuKal radiation was used for all reflection topographs using a General Electric CA-7 1-mm spot focus X- ray tube. Topographs were printed from an intermediate contrast inversion film, so the contrast shown in all figures here is the same as that of the original 50-µ-thick emulsion L4 Iiford nuclear plate used to record the topograph.
Jan 1, 1969
-
Part V – May 1969 - Papers - Thermodynamics of Nonstoichiometric Interstitial Alloys. I. Boron in PalladiumBy Hans-Jürgen Schaller, Horst A. Brodowsky
Activity coefficients of boron in palladium were determined at concentrations up to PdB0.23 by reducing B2O3 between 870" and 1050°C in a controlled H2-H2stream and measuring the resulting weight gain. The deviations from ideal behavior closely resemble those of the system Pd-H and are interpreted in terms of three principles: 1) The solute atoms occupy octahedral interstitial positions. 2) They donate their valence electrons to the 4 d and 5s bands of palladium, raising its Fermi energy. 3) The lattice strain energy is lower for two nearesl -neighbor interstitial particles than for two farther separate ones. SOLID solutions of hydrogen in palladium are a useful subject for studying thermodynamic aspects of the formation of alloys and of nonstoichiometric systems.1-3 The activity of hydrogen is readily measurable to a high degree of accuracy,4'5 even at low temperatures where the deviations from ideal behavior are more pronounced, and its simple structure facilitates an interpretation of these deviations in terms of a detailed model. Two effects are discussed to account for the non-ideal properties:3 An "electronic" effect, connected with the rise of the Fermi energy, as electrons of the interstitial hydrogen atoms enter the electron gas of the metal, and an "elastic" effect, due to an interaction of the regions of strain around each interstitial atom. The electronic effect is based on the idea that the lowest energy levels of the dissolved hydrogen atoms are higher than the Fermi energy, so that the electron will not occupy a localized state but enter into the electron band of the metal.6 The elastic effect is based on the observation that dissolved hydrogen distorts and expands the palladium lattice. The hypothesis is put forward that the elastic strain energy is lower for two adjacent dilatational centers than for two separate ones; i.e., they attract each other. The resulting pair interaction can be used to calculate an elastic contribution to the thermodynamic excess functions by means of one of the statistical methods. This model permitted a detailed description of the solution properties of hydrogen in palladium3 and in palladium alloys.798 An extension of the approach to describe the excess functions of substitutional palladium alloys is possible.9 In order to further test and refine the model, an investigation of other interstitial alloys was started. Palladium dissolves considerable amounts of boron in homogeneous solid solution.10 The palladium lattice expands linearly up to nB = 0.23 (nB = B/Pd atomic ratio), the highest concentration studied." The expan- sion, extrapolated for 1 mole of interstitial per mole of palladium, is 17 pct of the lattice constant of pure palladium vs 5.7 pct in the case of hydrogen.12 The fact that the lattice expands rather than contracts is a strong indication that interstitial positions are occupied. According to neutron diffraction experiments, hydrogen occupies the octahedral sites of the fcc lattice.13 Unfortunately, this direct evidence is not available for the Pb-B system, mainly because of the high-reaction cross section of boron with thermal neutrons. However, by way of analogy and on the grounds of the rather close similarities between the two systems to be reported here, it seems safe to attribute octahedral positions to the dissolved boron, too. At higher boron contents, compounds of stoichiomet-ric compositions are reported such as Pd3B, which has the structure of cementite,14 so that a close structural relationship seems to exist with the system r Fe-C. In their study of hydrogen absorption in Pb-B alloys, Sieverts and Briining noted that alloys with an atomic ratio of about nB = 0.16 are no longer homogeneous15 This observation was confirmed in an extensive X-ray investigation.11,16 The phase boundaries of two miscibility gaps were established. One two-phase region was stable below a transition temperature of about 315°C and extended from nB = 0.015 to 0.178. The other one extended from nB = 0.021 to 0.114 slightly above the transition temperature and had an apex at nB = 0.065 and 410°C. All phases involved have the fcc structure of pure palladium with lattice expansions proportional to their boron contents. The occurrence of miscibility gaps, i.e., the coexistence of dilute and concentrated phases, points to an energy of attraction between the dissolved particles, in the Pb-B system as well as in the Pd-H system. The filling up of the electron bands seems to be analogous, too, in the two systems, as indicated by the hydrogen absorption capacit15,17,18 and by the suscepti bility of Pd-B alloys.l8 In both types of experiments, boron acts as an electron donor. A chemical method was used to measure the activity of boron in palladium. Boron trioxide was reduced in a moist hydrogen stream: B2O3 + 3H2 = 2B + 3H3O [l] At known activities or partial pressures of boron trioxide, hydrogen, and water, the activity of boron could be calculated from the law of mass action. The equilibrium concentration of boron corresponding to this activity was determined as the weight gain of the sample. EXPERIMENTAL The samples consisted of small pieces of foil of 0.1 mm thickness and about 100 mg weight. The palladium was supplied by DEGUSSA, Germany, and stated to be
Jan 1, 1970
-
Part IV – April 1969 - Papers - Microstructural Stability of Pyromet 860 Iron-Nickel-Base Heat-Resistant AlloyBy C. R. Whitney, G. N. Maniar, D. R. Muzyka
Previous results have shown that Pyromet 860, an Fe-Ni-base heat-resistant alloy, is stable at temperatures as high as 1500°F for aging times as long as 100 hr. This Paper describes the results of long-time creep-rupture testing at 1050" to 1400°F at various stress levels. Times as long as 37,660 hr were employed. The effects of time, temperature, and stress on the precipitates and their morphologies were studied by optical and electron microscopy, X-ray and electron diffraction, and microprobe techniques. phase, containing cobalt, nickel, and molybdenum, was detected after extended exposures from 1200" to 1400°F and careful study was performed to describe the kinetics of its formation in this alloy. µ phase formation apparently has little effect on the elevated-tem-perature properties of Pyromet 860. For times as long as 500 hr at 1300°F and below, with µ phase present, m significant effects on ambient temperature properties were noted. For longer times at 1300°F and after 1400°F exposure, the effects of u phase on ambient temperature tensile strength properties are not clear due to y' effects and grain boundary reactions. Electron-vacancy, N,, numbers were calculated using different methods described in literature and correlated with the present findings. In the selection of alloys for use in gas turbine applications, structural stability ranks as a primary criterion. High-temperature strength and cost are also of major concern. With these factors in mind, Pyromet 860 alloy, an Fe-Ni-base superalloy was designed. This alloy combines the cost advantages of Fe-Ni-base alloys such as A-286, 901, and V-57 with improved strength and structural stability'1,2 and no tendency to form the embrittling cellular 77 phase. A previous study3 reported on the stability of Pyro-met 860 at temperatures from 1375" to 157 5°F and times up to 100 hr. That study showed that the y' precipitates increased in size and separation and decreased in number with an increase in time or aging temperature. No deleterious phases were found to occur. In the present work, samples from four production heats were subjected to long-time creep-rupture testing at 1050" to 1400°F at various stress levels. Various heat treatments were used on the starting samples and tests were run up to 37,660 hr. The effects of time, temperature, and stress on the precipitates and their morphologies were studied by optical and electron microscopy, X-ray and electron diffrac- tion, and microprobe techniques. Electron vacancy numbers, Nv , calculations were made by TRW.4 Experimental results are correlated with the Nv data used to predict occurrence of intermetallic phases such as a phase. EXPERIMENTAL PROCEDURE Mechanical Tests. Material for the present study came from four production size heats of Pyromet 860 alloy, weighing from about 3000 to about 10,000 lb. All of these heats were made by vacuum induction melting plus consumable electrode vacuum remelting. The nominal analysis for this alloy is compared with the actual analysis of the four heats in Table I. Sections of these heats were forged to 9/16-in. round bar,3/4-in. square bar, 3-in. round bar, 4-in. square bar, and a gas turbine blade forging about 16 in, long, about 6 in. wide, and weighing about 20 lb. In general, all forging of this alloy is done from a 2050°F furnace temperature. Longitudinal test blanks were cut from the centers of the smaller bars, from mid-radius positions for the 3- and 4-in. bars, and from the air foil of the gas turbine blade and heat-treated according to the procedures outlined in Table 11. Heat treatment A is the "standard treatment" recommended for this alloy for best all-around strength and ductility. Heat treatment B is a modification of treatment A for improved tensile strength at moderate temperatures. The treatment coded C was designed for treating large sections according to a procedure previously described.' Heat treatment D was developed to yield optimum stress relaxation characteristics at 1050°F for a steam turbine bolting application. After heat treatment, the test blanks were machined either to plain bar creep specimens with a gage diameter of 0.252 in., to combination smooth-notched stress-rupture bars with a plain bar diameter of 0.178 in. and a concentration factor of Kt 3.8' at the notched section, or to notch-only specimens. All specimens conformed to ASTM requirements. Metallography. Most of the creep-rupture tests were continued to failure. A few bars were fractured as smooth or notch tensiles after creep-rupture exposures. After fracturing, ordinary metallographic sections were made primarily in gage areas adjacent to fractures to represent a "high-stress" region and through specimen threads to represent a "low-stress" region. All metallographic sections were made in a longitudinal direction with respect to the test specimen axes. For optical microscopy, the samples were etched in glyceregia (15 ml HC1, 5 ml HNO,, 10 ml glycerol). For XRD analysis, the phases were extracted electrolytically in two media: 20 pct &Po4 in H20 for selective extraction of y' and 10 pct HC1 in methanol for carbides and other phases.
Jan 1, 1970
-
Solution Mining - Solution Mining of Thin-Bedded PotashBy Arcy A., J. G. Davis, D&apos Shock
Results of a pilot operation in the Carlsbad Basin are discussed. After hydrafracing between wells, a block of potash was removed by solution techniques. The distance between frac wells was about 200 ft, the thickness of potash mineralization, 5 ft. By proper manipulation, a feed of concentrate brine was obtained. The ex-periment showed that the thin-bedded potash could be removed by the solution techniques. The details of well construction, method of operation, and removal rates are discussed. Continental Oil Co.'s laboratory research on the fundamentals of potash solution mining has been expanded by means of a series of field tests, and subjects such as well completion and hydraulic fracturing were added to the investigation. Both single-well and multi-well systems were studied in the field work. Discussion Background: The current paper discusses one field test in which potash was solution mined by a two-well system from a thin sylvinite zone. The potential economic value of solution mining evolves from (1) the use of drilled holes and solution techniques instead of excavated shafts and caverns and (2) the ability to mine both land and marine deposits through any type of overburden geology and below conventional mining depths. Recent interest has been focused on potash' and other soluble minerals, such as trona. Solution extraction minerals, such as copper and uranium, are also worthy of important consideration. In addition, many of the techniques are directly applicable to the construction of horizontal underground storage carverns in salt. There are two general approaches to potash solution mining. The first is to mine on a single-well basis, in which the same well bore is used for both injection and production. This method is slow, and the areal extent may be quite limited in other than very thick ore zones. The second, and the preferred approach, is to mine on a multi-well basis in which the solvent is circulated between wells. This technique, if applied in a manner which allows the ore zone to be mined from the bottom upward, results in nearly all the solution taking place from the cavern roof. Salt removal rates, therefore, are very much higher than from a single-well system.l Wells can be interconnected into a multi-well pattern by several means. One is to join single-well caverns in the lower part of an ore zone. Another is to use the hydraulic fracturing techniques developed in the oil fields.' We preferred the fracture approach because of its potential for creating the greatest area of salt exposure. Test Site Description: The field tests were conducted in New Mexico's Carlsbad Basin, where the potash deposits are flat and uniform over reasonable distances. Here, 12 potash zones are present in the massive Salado Salt section. The specific target was the Third Ore Zone which is about 4 ft thick at our location and about 1150 ft deep. The test pattern was designed in the shape of an equilateral triangle with a fourth well located in the center, 200 ft from each of the vertex wells. This configuration allowed the ore zone to be hydraulically fractured from the center well with good assurance that the fracture would intersect the bore of at least one outside well. Several multi-well test patterns would be available if the fracture connected all wells. Well Completion: Surface casing was set in the top of the Salado Salt at 600 ft to shut off water flows from the surface sands, and the salt section was drilled and diamond-cored to a point below the Third Ore Zone. A drilling fluid made of diesel oil with a small amount of emulsified water was used to drill and core the salt. This fluid was highly successful in preventing enlargement of the drilled hole and in promoting good core recovery. The three outside wells were completed by setting 51/2-in. casing at the base of a streak of anhydrite about 20 ft above the ore zone. Pipe was set high so that the intersection point of the fracture could be detected even if the fracture migrated above the ore zone as it progressed outward from the center well. The center well itself was completed by cementing 51/2-in. casing through the Third Ore Zone. Cement bond logs run on the center well have shown excellent bonding. Fracturing Practice: A mechanical tool was used to cut a notch through the casing and into the salt at a point about 1 ft below the ore zone in the center well. The purpose of this notch was to fix the point of fracture entry into the salt. The fracturing was done with water at injection rtaes as high as 30 bbl per min. The salt parted at 1450 psi; and it required only 5 min for the fracture to reach the well which was 200 ft to the south. It took about 5 min more to reach the other two wells. Caliper surveys were run to locate the point of fracture entry in the three outside wells. The fracture appears to have drifted downward slightly, entering the outside wells at the top of a streak of carnallite 8 or 9 ft below the ore zone. A cross section of the wells selected for the multi-well test is shown in Fig. 1. The figure includes KC1 values based on core analysis and the trace of the fracture plane between the wells.
Jan 1, 1971
-
Part II – February 1969 - Papers - Tensile Properties of Unidirectionally Solidified AI-Cu AI2 Eutectic CompositesBy A. S. Yue, A. E. Vidoz, F. W. Crossman
Tensile specimens were prepared from a single grain of an epitaxially grown Al-CuAl2 eutectic ingot. The eutectic lanzellae were oriented parallel and perpendicular to the tensile axis of the specimens. Since the composite was of the eutectic composition, the aluminum-rich matrix could dissolve up lo 5. 7 wt pct Cu in solid solution and, therefore, was amenable to strengthening by precipitation hardening. The tensile properties of the eutectic single crystals were determined at room temperature as functions of interlamel-lar spacing, platelet orientation, and thermornechanical trealment. The obserced variations in composite stress and modulus with respect to the level of' composite strain are discussed in terms of premature fracture of CuAlz platelets, a distribution function for the strength of the lamellae, and unequal strains due to localized fracture of' platelets. The discontinuous fiber composite model of Kelly and Tyson is modgied to account for a changing distribution of fiber lengths during composite loading. The tensile properties at elevated temperatures were determined for the direc-tionally solidified eutectic oriented with platelets parallel to the tensile axis. The observed properties are attributed to the onset of plasticity of the CuAL2 phase above 150°C. DURING the investigation of whisker- and fiber-reinforced metallic matrix composites in recent years, two major problem areas have developed: 1) The fabrication of the composite involves tedious handling techniques in order to obtain a unidirection-ally aligned and uniformly spaced set of whiskers in the metal matrix. 2) Due to weak interfacial bond strengths or because of the formation of additional embrittling phases at the metal-fiber interface during long-time exposure or fabrication at elevated temperatures, many composite systems have exhibited considerably lower strengths than those predicted by a law of mixtures analysis.' These problems have been bypassed by the technique of growing whiskers and plates of high-strength materials in a ductile metal matrix by controlled unidirectional eutectic solidification.2 The tensile properties of directionally solidified A1-CuA12 eutectic are presented here. This alloy consists of a ductile aluminum matrix, containing up to 5.7 wt pct Cu in solid solution, which is amenable to precipitation hardening by heat treatment and a reinforcing high modulus CuAlz intermetallic phase. The two phases are present in the form of alternating platelets or lamellae. The microstructural stability of this unidirectionally solidified alloy at elevated temperatures has been studied extensively.3.4 and preliminary tensile and bend tests have been reported. 5-7In the present investigation the tensile properties of the A1-CuA1, eutectic have been studied as a function of several ther-momechanical variables: solidification rate. heat treatment. rolling at elevated temperatures. and lamellar orientation. It was felt that the uniformity of structure and excellent interfacial bonding would give tensile properties concomitant with the metal matrix composite theory of strengthening proposed by Kelly and coson. 8-9 The tensile properties that were obtained point to a wide distribution of strengths for the CuAlZ platelets, which leads to large deviations from the predicted mechanical behavior for this composite. EXPERIMENTAL PROCEDURE Epitaxial Growth of Eutectic Alloy. The A1-CuA1, eutectic alloy was prepared by an epitaxial growth process. Sections of a master alloy ingot (total impurity content <0.008 pct) were placed in an alundum boat, melted. and directionally solidified to obtain a multigrained plate 12 by 2 by 4 in. This plate was tapered at one end to mate with a seed crystal 1; in. long and 4 by $ in. square. Then the seed-plate combination was placed in an alundum boat which sat in a quartz tube passing through the center of a horizontal resistance wound tube furnace. A dried argon atmosphere was maintained. The temperature gradient in the furnace was such that the liquid-solid interface of the eutectic alloy was located near the end of the furnace and could be observed through the quartz tube. Single-crystal plates were formed by melting the material back to the midpoint of the seed crystal of the desired platelet orientation and then epitaxially growing the plate from the seed by withdrawing the alundum boat from the furnace at a constant rate. This technique was used to produce aluminum and CuA12 lamellae parallel and perpendicular to the transverse direction on the plate. Metallographic examination showed that both phases were continuous across the original liquid-solid interface. It was also possible to grow a plate from two seeds placed side by side: and, although the lamellae of one seed were oriented at 90 deg to those of the second seed, the interface between the two grains remained parallel to the growth direction along the entire ingot length. Maintenance of a straight intergranular boundary during the solidification process was possible as long as both seeds were oriented with their original growth direction parallel to the solidification direction of the plate. Eutectic plates were directionally solidified at rates of 0.2, 1.0. and 4.7 cm per hr and sectioned transversely to the solidification direction to determine the apparent inter lamellar spacing of the lamellae. Metallographic examination was also employed
Jan 1, 1970
-
PART V - The Annealing of Deformation Twins in ColumbiumBy C. J. McHargue, J. C. Ogle
Lightly deformed columbiun single crystals which contained only parallel hoins or purullel and intersecting trains were annealed at 1000' and 1600"C. No re-crystallizntion occurred in specimens hawing only parallel twins. Only noncoherent twin boundaries nzipated at 1000°C but both coherent and noncoherent ones moved al 1600°C. Recrystallization occurred within a few minutes at twin intersections at 1000°C. The orientation 01 the recrystallized grains differed front that of both the matrix and deformation twins, but could he derired by (110) and/or(112) rotations. ALTHOUGH twinning in metals has been extensively studied, there have been no definitive studies of the annealing behavior of crystals containing deformation twins. Some effects observed after annealing deformation twins have been summarized by Cahn1 and Hall2. Any or all of these phenomena are observed: 1) The twins may contract so that the sharp edges of the lens become blunted, and eventually the twin may disappear entirely. 2) The twins may balloon out at an edge, giving rise to a large grain having the same orientation as the twin. 3) The specimen may recrystallize; i.e., new grains are nucleated and grow at the expense of the twins and the crystal immediately adjoining the twin. Such grains have orientations which are not present before. Contraction has been observed in iron,3 titanium,3, 4 beryllium,5 zinc,8, 7 Fe-A1 alloy,' and uranium.9 Long anneals at high temperatures are required to have any appreciable effect in these metals and only thin twins are absorbed. Lens-shaped twins are absorbed from the edges: the thin, almost parallel-sided twins are usually punctured in several places and each piece contracts independently. Absorption is very gradual and no sudden cooperative jumps have been observed. The expansion of a twin into a larger grain of identical orientation is unusual, but such growth has been observed in iron,"'" zinc,6 and uranium." Crystals which have been deformed simultaneously by slip and twinning recrystallize first in the area adjacent to the twin. New grains appear faster where the twins intersect: but isolated twins, especially if thick, can also give rise to new grains. This type of recrystallization occurs in zinc.6, 7, 12, 13 and beryllium.14 Reed-Hill noted, in a single crystal of magnesium, the nucleation of a recrystallized grain at a twin intersection which had the same orientation as the second-order twin and which grew into the highly strained matrix.15 Short-time annealing has been reported to cause no change in the deformation twins in vanadium,16 columbium, 17, 18 tantalum,19 tungsten,'' and zinc.7 The purpose of this investigation was to note the effects of annealing on the coherent and noncoherent boundaries of deformation twins in columbium and to locate the nucleating sites for recrystallization. The orientation relationships, which the new recrystallized grains have with the parent crystal and the deformation twins, were also determined. EXPERIMENTAL PROCEDURE Single crystals of columbium were obtained by cutting large grains from electron-beam-melted buttons which contained 10 to 50 ppm C, 10 to 100 ppm O,, 1 to 10 ppm H2, and 10 to 15 ppm N2. The crystals were hand-ground and chemically polished until all grain boundaries were removed. The specimens were mounted in an epoxy resin and a face of each crystal was mechanically polished on a Syntron polisher using Linde A and then Linde B polishing compounds. After all faces were mechanically polished, the crystal was electrolytically polished to remove all distortion due to cutting and grinding. Laue photographs were taken of all faces of the crystals to determine the quality and orientation of each crystal. The crystals were compressed about 10 pct at -196 C in a specially constructed compression cage with an Instron tensile machine. Each crystal was separated from the top and bottom anvils by teflon films which acted as a lubricant. With the specimen crystal in position, the entire cage was cooled to -196°C by being submerged in a Dewar containing liquid nitrogen. The crystals were compressed at a rate of 0.02 in. per min and the load was recorded on a strip-chart recorder. After deformation the crystals were mechanically polished on 600-grit paper and Pellon cloth with Linde A and Linde B polishing compounds. The crystal faces were chemically polished and then etched. The twin planes were identified metallographically from an analysis of the twin traces on two surfaces. Annealing was carried out by placing each crystal in a columbium bucket made from the same electron-beam-melted material as the crystal itself and suspending the bucket by a tantalum wire in a quartz tube. After a vacuum of 10-7 Torr was attained, a furnace at 1000" or 1600 C was raised into position and the crystals held for various lengths of time. The crystals were repolished and etched after annealing to remove any surface contamination. Approximately 0.010 in. was removed during this process. The resulting surface was examined metallographically for microstructural changes due to annealing. A microbeam Laue camera mounted on a Hilger Micro-focus X-ray unit was used to determine the Orientstions of the recrystallized grains. This X-ray micro-beam camera had a 0.002-in.-diam collimator and incorporated the ideas of both and and chisWik21 and Cahn.22
Jan 1, 1967
-
Technical Papers and Notes - Institute of Metals Division - Work-Hardening in the Latent Slip Directions of Alpha Brass During Easy GlideBy W. D. Robertson, W. L. Phillips Jr.
Stress-strain curves were obtained for single crystals of alpha brass in tension and in direct shear. Specimens were strained various amounts in a given slip direction, unloaded, and immediately strained in a second slip direction 60°, 120°, or 180' from the original slip direction. Crystals strained in tension and direct shear had comparable critical resolved shear stresses and stress-strain curves. The density of slip lines in direct shear and in tension was essentially the same. The stress-strain curves obtained in shear were independent of initial orientation, choice of {111 } slip plane, choice of <110> slip direction, prior annealing temperature, and rate of cooling after annealing. There was no recovery after annealing for 4 hr at room temperature or 200°C; recovery was observed after 4 hr at 400°C. The crystals showed no asterism and mechanical properties were completely recoverable up to 20 pct strain. It was found that there is a barrier to slip in all latent close-packed directions, and that the magnitude of these barriers, evaluated at 3 pct strain, is proportional to prior strain and independent of the choice of latent direction in the {111} plane. The formation of Cottrell-Lomer barriers is discussed as a possible explanation for the hardening of the latent systems. AN idealized concept of plastic deformation indicates that a single crystal should yield at some stress that is dependent on crystal perfection and it should then continue to deform plastically by the process of "easy glide," which is characterized by a linear stress-strain curve and a low coefficient, ds/dE, of work-hardening. Hexagonal metal crystals generally conform to this ideal concept of laminar flow. In face-centered cubic metals the range of easy glide is always restricted in magnitude and it is strongly dependent on orientation, composition, crystal size, shape, surface preparation, and temperature. Since one of the principal differences between the two crystal systems, both of which deform by slip on close-packed planes, is the existence of secondary (latent) slip planes in the face-centered cubic crystals, it has been proposed that the transition from easy glide to turbulent flow, characterized by rapid linear hardening, is due to slip on secondary planes intersecting the primary plane.'-.; However, the characteristic differences between individual face-centered cubic metals remain to be explained; in particular, it is not clear why the range of easy glide should vary so greatly in different metals and alloys similarly oriented for single slip. An investigation and comparison of different metals with respect to latent hardening on the primary slip plane should provide some of the information required to specify the necessary and sufficient conditions governing the transition from easy glide to turbulent flow. But, in order to accomplish this purpose, plastic strain must be produced by simple shear in a chosen plane and in a predetermined direction by some form of directed shear apparatus, the results of which must be correlated with the corresponding tension experiments. Two such experiments have been performed previously with zinc and with aluminum. Edwards, Washburn, and Parker" and Edwards and Washburn7 found that the strain-hardening coefficients in two latent directions in the basal plane of zinc were the same as in the primary direction. However, to initiate and propagate slip in either the [2110] or the [1210] direction, following primary slip in the [1l20] direction, it was necessary to increase the stress above that required to continue slip in the primary direction; when the direction of shear was reversed 180 deg plastic strain began at a much lower stress than that required to initiate slip in the original direction and the stress to propagate slip in the reverse direction was lower than the stress to continue slip in the forward direction, indicating a permanent loss of strain-hardening. Rohm and Kochendorfer observed softening in aluminum for all latent close-packed planes and directions. They also found that the critical resolved shear stress obtained from their direct shear apparatus was 50 pct lower than the value obtained from conventional tension tests, that the stress-strain curve was linear at 50 pct plastic strain, and that slip lines were not visible at strains less than 30 pct. At present it is uncertain whether these diverse results correspond to real differences in work-hardening characteristics of the close-packed planes of aluminum and zinc or to differences in experimental technique. In view of Read's analysis '" of the stress distribution in the experimental arrangement of Rohm and Kochendorfer, there is some reason to question the significance of the latter results. In order to resolve this problem it is necessary to re-valuate the direct-shear technique and either repeat the previous measurements or investigate a third system. The latter choice seemed most likely to produce significant results with respect to work-hardening, and accordingly, it was decided to examine the hardening characteristics of the latent slip directions in alpha-brass. The choice of alpha-brass was dictated by the fact that easy glide is more extensive in this alloy than in any other face-centered cubic metal or alloy and, presumably, more nearly like the idealized hexagonal system. Experimental Procedure Crystals were made in graphite by the Bridge-man method in the form of cylinders, 11/2 in. diam and 8 to 9 in. long. Material for the crystals was 70/30 brass containing the following impurities:
Jan 1, 1959
-
Drilling and Production Equipment, Methods and Materials - Method of Establishing a Stabilized Back Pressure Curve for Gas Wells Producing from Reservoirs of Extremely Low PermeabilityBy C. W. Binckley, F. R. Burgess, E. R. Haymaker
A method of establishing stabilized back-pressure curves for gas wells producing from formations of extremely low permeability is presented. Actual well performance under many different operating conditions is shown by the stabilized back-pressure curve. By use of the method. it is possible to conduct back-pressure tests with a critical-flow prover on wells that stabilize slowly, and save approximately 88% of the gas ordinarily vented to obtain satisfactory test data, with a great reduction in time required for testing. INTRODUCTION The reasons for establishing dependable back-pressure curves on gas wells have been pointed out by previous publications. The publication most referred to. of course, is the United States Bureau of Mines Monograph 7, titled "Back-Pressure Data on Natural Gas Wells and Their Application to Production Practices". The technique generally established therein has been accepted and used by many engineers; and, when proper tests are conducted, the results can be used for the analysis and solution of several practical problems concerning field operation and development. Even where formations of low specific permeability are encountered, the determination of a well's actual performance by the back-pressure test method permits the engineer to analyze many problems in individual well operation and also to predict necessary future field development. Such problems as the determination of the ability of a well to produce into a pipe line at a predetermined line pressure, the design of gas gathering systems and meter settings, and the determination of the time and the number of wells required to be drilled to meet future market obligations, can be solved, in part., by the use of a reliable back-~ressure curve. In addition, the computed well delivery rates determined by data from backpressure tests ordered by state regtilatory bodies, when compared with the true back-Pressure curve, permit the operator to ascertain whether such data represent unstable or relatively stabilized delivery rates for given pressure conditions of the well. The technique of back-pressure testing, as described in this report, was developed by Phillips Petroleum Company engineers from data obtained during a testing program that started in 1944 and has been continued to date. Three hundred and eleven back-pressure tests were conducted on 299 wells located in the southern part of the Hugoton Field. The gas-bearing zone is composed of several dolomitic formations of the Permian Age; the important ones are the Herington, Upper Krider, Lower Krider, and Winfield. The average bottom-hole temperature is approximately 91 °F.. and the initial wellhead shut-in pressures range from 400 to 440 psig. The spacing pattern is 640 acres per well with each well located near the center of the section. The range of back-pressure potentials on wells tested was from 500 to 23,000 Mcfd. All gas wells were acidized, and the quantity of acid used, expressed in 1574 hydrocloric acid, varied from 12,000 to 22,000 gallons per well. The quantity and concentration of each treatment depended on the stage, the formation being treated, and experience gained from previously completed wells. The gas in the Hugoton Feld is a "dry" gas. It has a gasoline content of approximately 0.25 gallons per thousand cubic feet, as determined by charcoal test, and its specific gravity averages about 0.71 as compared to air (air = 1.00 at 60°F.). Of the wells tested, 71 were completed with 7" casing, 3 with 9 5/8" casing, and 1 with 6%" casing set on top of the upper producing formation with the well bore through the gas bearing formations being open hole. Two hundred and twenty-four were completed with 5 1/2'' O.D. casing set through the gas bearing formations and perforated. For the purpose of establishing reliable back-pressure curves in the area, Phillips Petroleum Company personnel has computed data on the basis of 24-hour flows per point. Early in the program, many tests were actually permitted to flow 24 hours to obtain data for each plotting point, at great expense in man power and time. Presently, however, such tests have been replaced by tests of short duration flows which can be made to effect results that correspond to the tests obtained by flows of much longer duration. METHOD When a gas well producing from a reservoir of low permeability is opened for production through a constant size orifice, both the rate of flow and working pressure decline. first at a high rate and later at a lower rate until after several hours the decline becomes difficult to ascertain. In this paper the rae of flow and working pressure are considered to be stabilized when it becomes difficult to observe changes in working pressure during a period of three hours by the use of a deadweight pressure gage. Stalibization of pressure in the literal sense is never obtained in a producing gas well. In formations of low permeability. such as those in the Hugo-ton Field, most wellhead working pressures approach stabilization closely enough to be used satisfactorily in the determination of a back-Pressure potential curve after flow periods of 24 hours. We shall therefore describe the backpressure curve calculated from ohserved rates of flow and working pressure at the end of 24-hour flow periods.
Jan 1, 1949
-
Drilling and Production Equipment, Methods and Materials - Method of Establishing a Stabilized Back Pressure Curve for Gas Wells Producing from Reservoirs of Extremely Low PermeabilityBy E. R. Haymaker, C. W. Binckley, F. R. Burgess
A method of establishing stabilized back-pressure curves for gas wells producing from formations of extremely low permeability is presented. Actual well performance under many different operating conditions is shown by the stabilized back-pressure curve. By use of the method. it is possible to conduct back-pressure tests with a critical-flow prover on wells that stabilize slowly, and save approximately 88% of the gas ordinarily vented to obtain satisfactory test data, with a great reduction in time required for testing. INTRODUCTION The reasons for establishing dependable back-pressure curves on gas wells have been pointed out by previous publications. The publication most referred to. of course, is the United States Bureau of Mines Monograph 7, titled "Back-Pressure Data on Natural Gas Wells and Their Application to Production Practices". The technique generally established therein has been accepted and used by many engineers; and, when proper tests are conducted, the results can be used for the analysis and solution of several practical problems concerning field operation and development. Even where formations of low specific permeability are encountered, the determination of a well's actual performance by the back-pressure test method permits the engineer to analyze many problems in individual well operation and also to predict necessary future field development. Such problems as the determination of the ability of a well to produce into a pipe line at a predetermined line pressure, the design of gas gathering systems and meter settings, and the determination of the time and the number of wells required to be drilled to meet future market obligations, can be solved, in part., by the use of a reliable back-~ressure curve. In addition, the computed well delivery rates determined by data from backpressure tests ordered by state regtilatory bodies, when compared with the true back-Pressure curve, permit the operator to ascertain whether such data represent unstable or relatively stabilized delivery rates for given pressure conditions of the well. The technique of back-pressure testing, as described in this report, was developed by Phillips Petroleum Company engineers from data obtained during a testing program that started in 1944 and has been continued to date. Three hundred and eleven back-pressure tests were conducted on 299 wells located in the southern part of the Hugoton Field. The gas-bearing zone is composed of several dolomitic formations of the Permian Age; the important ones are the Herington, Upper Krider, Lower Krider, and Winfield. The average bottom-hole temperature is approximately 91 °F.. and the initial wellhead shut-in pressures range from 400 to 440 psig. The spacing pattern is 640 acres per well with each well located near the center of the section. The range of back-pressure potentials on wells tested was from 500 to 23,000 Mcfd. All gas wells were acidized, and the quantity of acid used, expressed in 1574 hydrocloric acid, varied from 12,000 to 22,000 gallons per well. The quantity and concentration of each treatment depended on the stage, the formation being treated, and experience gained from previously completed wells. The gas in the Hugoton Feld is a "dry" gas. It has a gasoline content of approximately 0.25 gallons per thousand cubic feet, as determined by charcoal test, and its specific gravity averages about 0.71 as compared to air (air = 1.00 at 60°F.). Of the wells tested, 71 were completed with 7" casing, 3 with 9 5/8" casing, and 1 with 6%" casing set on top of the upper producing formation with the well bore through the gas bearing formations being open hole. Two hundred and twenty-four were completed with 5 1/2'' O.D. casing set through the gas bearing formations and perforated. For the purpose of establishing reliable back-pressure curves in the area, Phillips Petroleum Company personnel has computed data on the basis of 24-hour flows per point. Early in the program, many tests were actually permitted to flow 24 hours to obtain data for each plotting point, at great expense in man power and time. Presently, however, such tests have been replaced by tests of short duration flows which can be made to effect results that correspond to the tests obtained by flows of much longer duration. METHOD When a gas well producing from a reservoir of low permeability is opened for production through a constant size orifice, both the rate of flow and working pressure decline. first at a high rate and later at a lower rate until after several hours the decline becomes difficult to ascertain. In this paper the rae of flow and working pressure are considered to be stabilized when it becomes difficult to observe changes in working pressure during a period of three hours by the use of a deadweight pressure gage. Stalibization of pressure in the literal sense is never obtained in a producing gas well. In formations of low permeability. such as those in the Hugo-ton Field, most wellhead working pressures approach stabilization closely enough to be used satisfactorily in the determination of a back-Pressure potential curve after flow periods of 24 hours. We shall therefore describe the backpressure curve calculated from ohserved rates of flow and working pressure at the end of 24-hour flow periods.
Jan 1, 1949
-
Part V – May 1969 - Papers - The Kinetics of Dissolution of Synthetic Chalcopyrite in Aqueous Acidic Ferric Sulfate SolutionsBy J. E. Dutrizac, R. J. C. MacDonald, T. R. lngraham
When sintered disks of synthetic chalcopyrite (CuFeS2) were leached in acidified aqueous solutions of ferric sulfate, the following reaction stoichiometry was obtained: CuFeS2 + 2Fe2(SO4)3 = CuSO4 + 5FeSO4 + 2S Over the temperature range from 50º to 94ºC, the reaction displayed parabolic kinetics. The parabolic rate constant for the dissolution of copper is given by the equation: log.k(mg2/cm4-hr)= 11.850 - 3780/T The activation energy for the dissolution process is 17 ± 3 kcal per mole. The parabolic kinetics have been attributed to the progressive thickening of a sulfur film on the surface of the chalcopyrite. When the leaching solutions contain less than 0.01 molar Fe+3 , the Fe concentration influences the rate of leaching, probably through a mechanism involving the diffusion of ferric sulfate through the sulfur layer. At higher Fe+3 concentrations, the rate control in the leaching. reaction has been attributed to the diffusion of ferrous sulfate through the sulfur. The rate of reaction is insensitive to changes in acid concentration and in disk rotation speed. ThE reaction of acidic ferric sulfate solutions with various sulfide minerals is of practical interest for both bacterial and heap leaching. This leaching medium is generally used with low-grade ores that cannot be treated profitably by conventional means. In both bacterial leaching1-3 and heap leaching, the active agent for sulfide dissolution is ferric sulfate. Although the reactions of ferric sulfate with chalcocite, covellite, and bornite have been investigated,4*7 the kinetics of leaching chalcopyrite with ferric sulfate have not been thoroughly studied. This paper reports a study of that reaction. EXPERIMENTAL Reagent-grade sulfur was purified by the method of Bacon and FanelliB and then it was vacuum-distilled to remove any soluble magnesium salts that had been introduced during the purification procedure.9 From stoichiometric quantities of the purified sulfur and hydrogen-reduced electrolytic copper sheet (99.90 pct Cu), CuS was synthesized at 450°C in a vacuum-sealed, pyrex vessel. About 24 hr was required for the completion of the reaction. A similar procedure involving hydrogen-reduced iron wire (99.90 pct Fe) was used to synthesize FeS1.002. A 2-furnace arrangement was required. The iron was heated to 800°C while the sulfur was maintained at about 400°C. Although the reaction to consume the sulfur was rapid, the material required additional heating (1 week) in a sealed silica ampoule at 800°C before it was homogenized. X-ray powder diffraction analysis confirmed that the copper sulfide was covellite and that the iron sulfide was troilite. The composition of the iron mineral was confirmed by wet chemical analysis. The two sulfides were ground to minus 100 mesh, weighed in equimolar amounts, mixed thoroughly, and pressed into pellets at 80,000 psi. The pellets were vacuum-sealed in pyrex ampoules and then sintered for 3 days at 550°C after an initial heating at 450°C for a few hours. The pellets were then cooled, polished with 3/0 emery paper, rinsed in acetone, and stored. The material had the characteristic brassy color of chalcopyrite and was shown by X-ray diffraction to be CuFeS2. Microscopic examination of the polished surfaces revealed small inclusions of pyrite (approximately 0.5 vol pct) as the only impurity. The presence of small amounts of a second iron compound will not alter the amount of dissolved copper but might increase the amount of ferrous ion slightly. It was calculated that dissolution of all of the pyrite and 100 mg of Cu (a typical value) would change the expected ferrous concentration by only 4 pct. Microscopic examination of a pellet after leaching revealed that the pyrite was not preferentially solubilized; only those pyrite grains at the surface were attacked. Hence, the pyrite is unlikely to alter the rate of copper dissolution. The chalcopyrite disks were about 1.7 mm thick and 27 mm in diam. They were about 80 pct of theoretical density, and for this reason their true reaction area was somewhat larger than the 5.8 sq cm area presented by the polished face. The disks were cemented to lucite cylinders in such a way that only the polished face was exposed. The disks were then leached by methods previously described.6,7 RESULTS AND DISCUSSION Stoichiometry and Kinetics. The initial experiments were directed to the problem of resolving the stoichiometry of the leaching reaction. Disks of CuFeS2 were leached at 80°C for various periods of time in acidified ferric sulfate solutions that were protected from oxidation by a cover of flowing nitrogen. When the disks had been partly leached, they were removed, their soluble salts were washed out, and then they were treated with CS2 in a Soxhlet extraction apparatus. The ratio of elemental sulfur to dissolved copper thus obtained was approximately 2 to 1. After the extraction of elemental sulfur from the pellet, the residue consisted of unreacted chalcopyrite only. For runs in which an appreciable amount of copper was dissolved, the ratio of ferrous ion to cupric ion in the solution was
Jan 1, 1970
-
Part II - Papers - The Nature of Transition Textures in CopperBy Y. C. Liu, G. A. Alers
measurements of the anisotropy in Young's modulus produced in copper by rolling 95 pct reduction in thickness below room temperature have been carried out in order to study the dependence of the texture on rolling temperature. The results clearly show the transition from a copper-type texture to a brass-type texture as the temperature of rolling is lowered. The intermediate textures observed can be described very well as a simple mixture of the two terminal textures. These results cormbined with other texture measurements make possible afresh review of the experimental facts velating to rolling textures in fee metals and, as a consequence, a critical examination of the current theories is presented. PREVIOUS experiments have shown that the transition from the copper- to the brass-type rolling texture is clearly displayed and can be quantitatively analyzed by measurements of the anisotropy of Young's modulus.' Application of this method to the Cu-Zn alloy system showed that the description of the texture transition as a gradual rotation of the grains from the orientation characteristic of the copper texture to the {110}(112) texture of brass2 was inconsistent with the data. Instead, the data suggested that the texture within the transition region could be described as a simple mixture of the two terminal textures.5 Unfortunately, it was difficult to establish this point conclusively because of the inadequacy of corrections for the composition dependence of the single-crystal elastic constants. Since a rigorous establishment of the nature of this texture transition is essential to our understanding of the formation of rolling textures in fee metals, it is clearly important to undertake an investigation in which the composition dependence of the elastic constants would not enter. A suitable composition-independent texture transition is provided by the well-established variation in the rolling texture of copper with rolling temperature. This temperature-dependent texture transformation has been studied by smallman' in several fee alloys and by Müller5 and others"' in copper. They observed that the texture characteristic of copper rolled at room temperature changed to a brass-type texture when the rolling temperature was lowered to 77°K. Although it is not possible to decide unequivocally from the published pole figures whether or not the 77°K rolling texture of copper is entirely of the brass type,' this complication does not affect the main purpose of the present investigation. In addition to establishing the nature of the texture within the transition region, the modulus data should also provide a determination of the temperature at which the transition occurs as well as the temperature range over which the transition extends. This information when combined with the modulus data on Cu-Zn alloys would then provide a considerable body of new information on textures in fee metals. Since these modulus results and the data obtained from pole-figure studies must be internally consistent, it is appropriate to compile a brief summary of the experimental observations based on all available methods rather than on the pole-figure data alone as has been done in the past. The primary purpose of such a summary would be to yield a more precise definition of the experimental facts on the rolling textures of fee metals, and thus greatly facilitate our evaluation of various proposed theories in this field. The final section of this paper is devoted to this compilation of consistent, experimental facts and their application to the various theories. EXPERIMENTAL PROCEDURE Two 18-lb ingots of cathode copper of 99.99 pct purity were induction-melted under a nitrogen atmosphere in a graphite crucible and chill-cast into a steel mold. The ingots were repeatedly cold-rolled and annealed (I hr at 500°C) into slabs about 1 1/8 in. thick. Blocks 3 1/4 in. wide, 2 1/4 in. long, and 1.000 in. thick were machined from each slab. The rolling schedule used was the same as in the previous investigation1 and the final thickness of the sheet was 0.050 in. with a rolling reduction of thickness of 95 pct instead of 97.5 pct as in the previous work.' The compositions and temperatures of the cold baths used for the low-temperature rolling were as shown in Table I. After each pass the rolled strip was immediately immersed in the cold bath for about 1 min or until the bubbling of the bath had subsided. The modulus data were taken within 2 hr after the rolled strip was warmed to room temperature for the first time, so that effects due to recrystallization were minimized. The modulus specimens were in the shape of flat bars, 3 in. long, 4 in. wide, and 0.050 in. thick, cut with their long dimensions oriented at 15-deg intervals between the rolling direction and the transverse direction. The values of Young's modulus were deduced from measurements of the frequency at which these long narrow bars were set into longitudinal, resonant vibration as previously described.9 To excite the mechanical vibrations in the specimen, an electromagnetic drive similar to that employed by Thompson and lass" was used. The maximum in the amplitude of
Jan 1, 1968
-
Institute of Metals Division - Kinetics of the Reactions of Zirconium with O2., N2, and H2By E. A. Gulbransen, K. F. Andrew
The gas-metal reactions of zirconium are very interesting. The metal is extremely stable at room temperature to reactions with the several gases present in air and the metal will stay bright indefinitely. However, at temperatures of several hundred degrees higher the metal reacts readily with oxygen, nitrogen and hydrogen. This behavior, in addition to the fact that zirconium is one of the higher melting point metals which might have high temperature applications under the proper conditions, resulted in the work reported in this communication. There are several factors which indicate that zirconium might have good oxidation resistance at elevated temperatures. These are: (1) the high melting point of approximately 1860°C, (2) the high melting point of the oxide of approximately 2675°C, (3) the high degree of thermodynamic stability of the oxide to chemical reaction and the low decomposition pressure of the oxide and (4) the possible formation of a continuous oxide film since the volume ratio of oxide to metal is greater than unity. The unfavorable factors are: (1) the metal reacts to form nitrides, hydrides and carbides, (2) the oxide is soluble at elevated temperatures in the metal and (3) the oxide ZrO2 undergoes crystal structure transformations at high temperature. The oxidation resistance of this metal is not only a question of the rate of film formation but is complicated by the fact that the oxide and other reaction products dissolve in the metal which in turn will affect the physical and mechanical properties of the metal. The protection of the metal to nitride formation must be considered separately from the oxide problem. One unfavorable factor is that the volume ratio of the nitride to the metal is about unity. This indicates that a discontinuous film might be formed. This paper will present measurements on the rates of reaction of the metal with O2, H2 and N2 over a wide temperature and pressure range. The reaction in high vacuum and the stability of the several compounds formed will be presented. The results are correlated with fundamental rate theory and with the physical and chemical structure of the metal and film. Literature Although many papers have been published on the chemical reactions of zirconium with various gases, comparatively few are concerned with the protective nature of the metal and its reactions at normal pressures. The studies in the pressure range below 0.01 mm of Hg gas pressure are largely of interest in the nature of the adsorption of gases by hot filaments in high vacuum apparatus. The reactions of zirconium in this pressure range have been reviewed by Fast8 and by RaynOr.27 In spite of certain differences of opinion as to the maximum adsorption temperatures for various gases, the low pressure range is qualitatively understood. Some of these papers will be mentioned briefly here. 1. LOW PRESSURE Ehrke and Slack' find that oxygen reacts above 885°C and hydrogen above 760°C. Nitrogen does not react up to a temperature of 1527°C. Fast9 on the other hand observes that oxygen is absorbed above 700°C and nitrogen at temperatures exceeding 1000°C. Hydrogen is absorbed from 300" to 400°C and liberated between 500" and 800°C. It is readsorbed at 862°C and released above 862°C. Hukagawa and Nambo22 find a rather complicated picture for the absorption of oxygen. A rapid initial absorption is found between 180" to 230°C. Further oxygen is not taken up until a temperature of 450°C is reached. The optimum temperature for complete absorption is 650" to 700°C. Nitrogen is found to be completely adsorbed at 600°C. However some of the gas is evolved at higher temperatures. Their data on the absorption of hydrogen indicate some of the gas is removed at 550°C. Guldner and Wooten17 in a study of the low pressure reactions of zirconium with various gases observed that the reaction with oxygen occurs at temperatures above 400°C and that the oxide is formed. The reactions with carbon monoxide and carbon dioxide occur rapidly at temperatures of about 800°C with the oxide and carbide being formed. Zirconium reacts at temperatures of 400°C slowly and at 800°C rapidly to form the nitride and with hydrogen and water at 300°C to form the hydride and a mixture of the oxide and hydride respectively. 2. NORMAL PRESSURE DeBoer and Fast3 in a study of the electrolysis of oxygen in zirconium find that the metal absorbs up to 40 at. pct of oxygen without forming a new phase. The solubility of nitrogen in the lattice has been studied by de Boer and Fast4 and Fast10 and is found to be considerable. At higher temperatures the oxide dissolves in the lattice at an appreciable rate according to Fast10 and the zirconium surface becomes active. De Boer and Fast4 and Hägg18 have studied the solubility of hydrogen and find that at room temperature the solubility corresponds to ZrH1.95 Desorption occurs on lowering the pressure. Hydrogen is stated to be more soluble in the ß-form and the
Jan 1, 1950
-
Part VIII – August 1968 - Papers - Effects of Elastic Anisotropy on Dislocations in Hcp MetalsBy E. S. Fisher, L. C. R. Alfred
The elastic anisotropy factors, c4,/c6,, c3,/cll, and c12/cl,, for hcp metal crystals vary significantly among the dgferent unalloyed metals. Significant variations with temperature are also found. The effects of elastic anisotropy on the dislocation in an elastic continuum with hexagonal symmetry have been investigated by computing the elasticity factors for the self-energies of dislocations in fourteen different metals at various temperatures where the elastic moduli have been reported. For most of the metals the effects of the orientation of the Burgers vector, dislocation line, and glide plane are small and isotropic conditions can be assumed without significant error. Significant effects of anisotropy are, however, found in Cd, Zn, Co, Tl, Ti, and Zr. The elasticity factors have been applied in the calculations of dislocation line tensions, the repulsive forces between partial dislocations, and the Peierls-Nabarro dislocation widths. It is predicted that the increase in elastic anisotropy with temperature in titanium and zirconium makes edge dislocations with (a), (a + c), and (c) Burgers vectors unstable in basal, pyramidal, and prism planes, respectively. The probability of stacking faults forming by dissociation of Shockley partials in basal planes also decreases with increasing c4,/c6, ratio, when the stacking fault energy is greater than 50 ergs per sq cm. The widths of screw dislocations with b = (a) in titanium and zirconium increase very significantly in prism planes and decrease in basal planes as c4,/c6, increases. The effects of elastic anisotropy on various dislocation properties in cubic crystals have received considerable attention during the past few years. In the case of cubic symmetry the departure from isotropic elasticity depends entirely on the shear modulus ratio, A = 2c4,/(cl, —c12); i.e., the medium is elastically isotropic when A = 1. Foreman1 showed that an increase in the ratio A produces a systematic lowering of the dislocation self-energy for a given orientation and Poisson's ratio. ~eutonico~, has shown that large anisotropy can have a marked effect on the formation of stacking faults by the splitting of glissile dislocations in (111) planes of fcc and (112) planes of bcc crystals. ~iteK' made similar calculations for (110) planes of bcc metals. Both studies of bcc metals showed that the large A values encountered in the alkali metals tend to reduce the repulsive forces between Shockley partial dislocations. In fcc metals, however, A does not vary over the large range encountered in bcc metals; consequently, the effect of A on the forces between Shockley partials is masked somewhat by the differences in Poisson's ratio between metals. The effect of A on the line tension of a bowed out pinned dislocation has also been investigated for cubic crystals, first by dewit and Koehler5 and more recent- ly by Head.6 In both cases the line energy model is applied and the core energy is not taken into account, thus making the conclusions somewhat tenuous with regard to the physical interpretation. Nevertheless, the fact that a large A decreases the effective line tension is clearly evident and the tendency for large A to produce conditions that make a straight dislocation unstable (negative line tensions) also seem evident. Head, in fact, shows visual microscopic evidence that stable V-shaped dislocations occur in 0 brasse6 For hcp metals the definition of elastic anisotropy is more complex and, furthermore, significant deviations from an isotropic continuum are found among a number of real hcp metals, especially at higher temperatures. The present work was carried out to survey the effects of elastic anisotropy on the elasticity factors, K, that enter into the calculations of the stress fields around a dislocation core. Some isolated analytical calculations have previously been carried out for several hcp metals but they are restricted in the dislocation orientations and temperature.8'9 The present computations are based on single-crystal elastic moduli that have appeared in the literature and consider various orientations requiring numerical computations. The results are then applied to survey the effects of temperature on the dislocation line tension and dislocation splitting in hcp metals. PROCEDURE Anisotropy Factors. The degree of elastic anisotropy in hcp crystals cannot be described by a single parameter, such as the A ratio in cubic crystals. The following three ratios must be simultaneously equal to unity in order to have an elastically isotropic hexagonal crystal: The magnitudes of these ratios at several temperatures, as computed from the existing data for the elastic moduli of unalloyed hcp metals, are given in Table I. There are no cases of complete elastic isotropy, but the large anisotropy ratios encountered in the cubic alkali metals are also missing. There are, however, several significant differences among the hcp metals, the most notable being the relatively small A and B ratios in zinc and cadmium and the differences in the magnitudes and temperature dependences of A. It has been noted that the temperature dependence of A has a consistent relationship to the occurrence of the hcp — bcc tran~formation. For cadmium, zinc, magnesium, rhenium, and ruthenium, A is less than unity at 4'~ and, with exception for rhenium, decreases with increasing temperature. In the case of rhenium, A has essentially no temperature dependence between 923' and 1123"~, so that it is clear that A does not approach unity at higher temperatures. Cobalt is similar to the above-mentioned group of metals in that it also does
Jan 1, 1969
-
Coal - Fine Coal DryingBy G. A. Vissac
The drying of fine coal involves special techniques, which are discussed and analyzed. Types of dryers employing these techniques are described. Calculations are presented for new methods of dealing with the entrained dust that is always present in fine coal drying operations. NEW conditions, new requirements, and new methods have increased the demand for more efficient and more economical methods of drying fine coal. Dewatering of larger sizes may reduce the surface moisture to 8 or 9 pct. It is more difficult, however, to dewater sizes below 1/4 in., and some filter cakes still contain as much as 20 or 25 pct moisture. Increased freight rates and stricter consumer specifications have resulted in a demand for further reductions in moisture content. This can be obtained only by heat drying. Most modern methods of heat drying disperse or spread the mass of coal to be dried, in an atmosphere of dry hot gases. The more intimate the contact between coal particles and hot gases, the quicker and more efficient the drying operation will be. Two different techniques are generally employed, using either a fluidized condition or an entrained condition of the coal to be dried. Fluidized Condition Fluidization of a body of sand was defined and explained by Fraser and Yancey in a paper published in 1926.' This condition was artificially obtained and maintained by proper regulation of the rate of air flowing through the sand body. "The sand bath 'boils' uniformly on the surface," they write, "and feels like a fluid." The fluidization technique was also described and analyzed by Steinmetzer2 in connection with the operation of an air cleaning table. His main conclusions are as follows: "Fluidity is, for the particles involved, the possibility of motion with minimum friction. . . . Then fluidity requires the introduction of various forms of energy capable of neutralising frictions. Two solutions can be used— air and/or mechanical motions (such as the shaking motion of the carrying deck of the air table). The combination of mechanical and air energy will give the widest margins of size ratios and of bed thickness, translated in capacity per unit area of the carrying table." Richardson and Langston3 have indicated results obtained with a dryer working with a fluidized bed. They used a vertical tube type of dryer, however, without the assistance of any mechanical energy, and without any lateral motion of the fluidized bed. The capacity of such a dryer is too limited for practical applications, since the speed of the acceptable air currents is held to the speed of fall of the particles involved. Capacities as low as 182 Ib of coal per hr per sq ft of dryer area are indicated. As stated by Richardson: "A basic limitation to a fluidised bed dryer is that the velocities of the gas must be held within a definite range; with velocities of 10 ft per second, all coal minus 6 mesh in size will be entrained, and the operation is then similar to that of a Flash dryer." A fluidized bed must be virtually static. The coal particles simply kept in suspension offer a minimum resistance to the flow of gases, insuring the most favorable conditions for rapid evaporation of surface moisture. However, very wet fine coal, i.e., over 12 pct of surface moisture, will be delivered in the forms of mud balls, or as a soggy, sticky mass, almost impossible to disperse, sticking and acting as a wet blanket on the deck. Strong currents of gases and wide deck perforations will be required to punch holes in the wet mass and gradually loosen and fluidize it. The mechanics of fluidizing a bed of coal in a gas medium for the purpose of obtaining the most efficient drying condition are entirely similar when the fluid used is water and the purpose is to break up and distend a bed of coal to be cleaned so that perfect stratification according to densities will be insured. Purely mechanical energy is used in the basket-type jig, water pulsations in the piston and in the Baum-type jigs. A combination of mechanical motion and of air pulsation offers the most efficient and favorable conditions. Entrained Condition The most critical factor to be considered in the design of a dryer employing the entrained condition technique is the speed of the hot gases to be circulated in the drying column. With insufficient gas velocity, excessive amounts of the largest sizes will drop to the bottom of the dryer column without being thoroughly dried. On the other hand, high gas velocity will cause degradation, dust losses, and high power consumption. Figs. 1 and 2, reproduced from Hanot,4 show the relative importance of speed and temperature for various sizes of particles. It can be seen, for instance, that to maintain in unstable equilibrium particles of 1/4-in. size in a gas current at 500°C, a speed of 30 meters per sec, or 6000 fpm, will be required. For % -in. particles an almost prohibitive speed of 45 meters per sec, or 9000 fpm, will be necessary. In practice, maximum gas velocities of 3000 fpm are recommended; since power increases as the cube of the velocity, it can be seen that beyond certain limits such dryers would not be economical. If the particles were moving at the same speed as the hot gases they would remain in the same
Jan 1, 1954
-
Institute of Metals Division - Electron Current Through Thin Mica FilmsBy Malcolm McColl, C. A. Mead
Thin films (of mica have unique attributes that are exceptionally good for studies of high-field conduction mechamisms in thin-film insulators and the quantum mechanical tunneling of electrons from metal to metal. The principal advantages of using mica films are that the films are crystalline and the cleavage planes occur every 10Å. This property results in films whose thicknesses are integral multiples of 10Å and whose surfaces are uniformly parallel over sizable areas. Hence, very well-defined metal -mica-metal structures are possible. Furthermore, the fact that the insulator is split fro??! a bulk sample allows the index of refraction, dielectric constant, forbidden energy gap, and trapping levels and their density- to be obtained directly from measurements performed on thick samples Of mica rather than requiring that these properties be interred from the conduction characterrsties alone. In the work to he described, all the cleaving was done in a high vacuum just prior to the evaporation of metal elertrodes so as to avoid air contamination at the interfaces. Results of these studies indicate that the current through the 30 and 40Å films exhibited quantitative agreement with the theoretical voltage and temperature dependence derived by Strallon for the tunneling of electrons directly from metal to metal. Thicker films at room temperature exhibited volt-ampere curves suggesting Schottky emission of electrons from the cathode into the conduction band of mica. However, the thermal activation energy was smaller than that found from other measurements, and the experimsntal Schottky dielectric constant was larger than the square of the index of refraction. These facts would indicate that the electrons were being injected into polaron stales ill the iusulator. At low temperatures and high fields, the current through the thicker films did not exhibit the Fowler -Nordheim dependence as would be predicted by a simple extention of the theory of field emission into a vacuum. THE mechanism of electrons tunneling through insulating films has received considerable attention in the last few years due to the devices possible utilizing tunneling'-4 and the success of tunneling in the study of superconductivity.5,6 Until the recent paper by Hartman and chivian7 on the study of aluminum oxide, there had been no reported successful quantitative experimental fit to the theory. Their method of fabrication necessarily results in a polycrystalline insulator, the stoichiometry of which is nonuniform from one side to the other. This structure also introduces complications to the shape of the barrier which is set up by the insulator since the insulator possesses a spatially nonuniform band structure and dielectric constant. Due to these facts an analysis of the data in terms of a pviori barrier shape is of questionable validity. The use of muscovite mica not only overcomes these disadvantages but, as an insulating thin film, provides physical properties (dielectric constant. trapping levels and their densities, forbidden energy gap, and so forth) that are identical to the easily measured values of the bulk sample. Furthermore, it is a single-crystal insulator whose cleavage planes (10Å apart8,9) provide uniformly parallel surfaces of well-known separation. This material is therefore ideally suited to the study of electron-transport phenomena. Von Hippel10 using a 6.5-µ-thick sample was the first to observe the high-field conductivity (=5 x l06 v per cm) of mica. No attempt was made to develop an empirical formula, but Von Hippel concluded from intuitive arguments that the current was being space-charge limited by trapped electrons. Mal'tsev11 in a more recent investigation at high fields observed a dependence of the conductivity a on the field F of the form exp(ßF1/2). This dependence was attributed to the Frenkel effect,12,13 a Schottky type of emission from filled traps. No mention in the English abstract was made of the thicknesses of his samples or, and more important, of how well the value of ß fit Frenkel's theory. In 1962 Foote and Kazan14 developed a technique for splitting mica to a thickness of less than 100Å and observed a dependence of the current density j on the field of the form j = jo exp(ßF1/2) on a thin sample thought to be 40Å thick. Assuming that this was a Schottky emission process and that the appropriate dielectric constant for such a mechanism would be closer to a low-frequency value of 7.6, Foote and Kazan calculated from ß an independent thickness of the mica of 36Å. No further investigation was made of the phenomenon. However, the work reported in this paper indicates that the film measured by Foote and Kazan was probably 60Å thick, the error arising from the measurement of the very small metal-insulator-metal diode areas that were used, along with the diode capacitance and dielectric constant, to calculate the thickness. In the research reported in this paper, Foote and Kazan's technique was modified to cleave muscovite in a vacuum of 10-6 Torr, immediately after which metal electrodes were evaporated creating Au-mica-A1 diodes. Aluminum was chosen because of its strong adhesion to mica, as necessitated by the
Jan 1, 1965
-
Part II – February 1968 - Papers - Dynamic Nucleation of Supercooled MetalsBy J. J. Frawley, W. J. Childs
The dynamic nucleation of supercooled bismuth and Bi-Sn alloys has been studied over a frequency range of 15 to 20,000 cps. For low-frequency vibration, a minimum vibrational energy was required for enhancement of nucleation. Above this critical energy, the dynamic supercooling was less than static supercooling showing that vibration promoted nucleation. The amount of dynamic supercooling continued to decrease with increasing vibrational energy until a minimum or threshold value was reached. This minimum value of supercooling for nucleation remained constant joy all further increases in vibrational energy. For higher frequencies, similar results were observed. This behavior has been related to the necessity of cavitation for dynamic nucleation. When a liquid is cooled to a temperature below its equilibrium melting point, the solid phase is more thermodynamically stable. However, for solidification to occur, a two-step process, nucleation and subsequent growth of the solid phase, must occur. When a liquid is supercooled, that is cooled below the equilibrium melting point, the controlling process for solidification to begin is the rate of nucleation. Once nucleation has occurred, the solidification process is controlled by the rate of growth. Nucleation can be induced by two factors: either by a catalyst or by the use of mechanical shock. Numerous investigators1-4 have studied the effect of nucleation catalysis but much less systematic study has been made of nucleation by mechanical shock waves. The influence of vibrations on grain size in castings and ingots has been studied by many authors but no clear understanding of the mechanism or accurate prediction of the effect has been presented.5 It would be intuitively expected that the further the departure from equilibrium (i.e., the greater the supercooling), the easier it would be to induce nucleation. This has been quantitatively demonstrated both by walker6 and later by Stuhr,7 that the greater the degree of supercooling the easier it is to nucleate by a shock wave. Stuhr also attempted to obtain the mechanical energy required for nucleation of bismuth as a function of supercooling. He vibrated a crucible containing supercooled metal at low frequencies and various amplitudes and noted the corresponding dynamic supercooling obtained. The amount of supercooling was inversely proportional to the mechanical energy applied. Limitation of his experiment was the problem of the confinement of the liquid in the crucible without splashing and minimizing other unwanted modes of vibration. Tiller et al.8,9 did similar work on tin and Sn-Pb alloys using an electromagnetic stirring device. Their conclusions were that the magnitude of the magnetic field strength did not affect the amount of undercooling at which nucleation was initiated. While conclusive experimental results have been lacking to explain this effect of mechanical vibration on inducing nucleation, a number of theories have been proposed. Two of these theories are discussed below. 1) The Change in Melting:- Point Locally Due to the Change in Pressure (Clapeyron Equation). According to Vonnegut10 the most plausible explanation for the nucleation of a supercooled melt by cavitation is the effect of changing the melting point by a change in pressure. For materials where the volume decreases on solidification, an increase in pressure raises the melting point; for materials which expand on solidification, the melting point is raised for a decrease in pressure, i.e., rarefaction. Using the Clapeyron equation, the melting point of a metal can be calculated as a function of pressure. If it is assumed that the equation can also be used to calculate the temperature of nucleation of a supercooled melt as a function of pressure (i.e., the temperature of heterogeneous nucleation will increase with pressure at the same rate as the melting point), the amount of supercooling required for nucleation will be constant at all pressures as shown in Fig. 1. It is obvious that an isothermal change which results in an increase in melting point results in an equal increase in supercooling. This increase in supercooling may now be sufficient for nucleation. A pressure of 80,000 atm was calculated, using the Clapeyron equation, as the pressure required to increase the temperature of nucleation of nickel by 200°C. According to Lord Rayleigh,11 this very large pressure could be generated for a very brief period of time by the collapse of a cavity. This pressure wave is radiated in all directions from the collapsed cavity. If the temperature of the melt is slightly below its equilibrium melting temperature at atmospheric pressure, stable growth can follow; that is, once nucleation occurs, growth becomes the main driving force of the solidification process. This proposal has been extended to water which expands on freezing by assuming that nucleation occurs during rarefaction following the pressure pulse. This negative pressure pulse should follow immediately after the positive pressure pulse with its magnitude approaching the critical tensile strength of the liquid. The negative pressure developed during this period would raise the melting point of water and thus promote nucleation. Hunt and jackson12 have suggested this for water. Similarly, it could be postulated that bismuth which also expands on freezing could be nucleated during the negative pressure pulse. 2) Nucleation by a High-pressure Phase. An extension of the Clapeyron equation to systems where density decreased on freezing at atmosphere pressure has been proposed by Hickling.13 The phase diagram for water initially shows the well-known decrease in
Jan 1, 1969