Part V – May 1969 - Papers - Thermodynamics of Nonstoichiometric Interstitial Alloys. I. Boron in Palladium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Horst A. Brodowsky Hans-Jürgen Schaller
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1854 KB
Publication Date:
Jan 1, 1970

Abstract

Activity coefficients of boron in palladium were determined at concentrations up to PdB0.23 by reducing B2O3 between 870" and 1050°C in a controlled H2-H2stream and measuring the resulting weight gain. The deviations from ideal behavior closely resemble those of the system Pd-H and are interpreted in terms of three principles: 1) The solute atoms occupy octahedral interstitial positions. 2) They donate their valence electrons to the 4 d and 5s bands of palladium, raising its Fermi energy. 3) The lattice strain energy is lower for two nearesl -neighbor interstitial particles than for two farther separate ones. SOLID solutions of hydrogen in palladium are a useful subject for studying thermodynamic aspects of the formation of alloys and of nonstoichiometric systems.1-3 The activity of hydrogen is readily measurable to a high degree of accuracy,4'5 even at low temperatures where the deviations from ideal behavior are more pronounced, and its simple structure facilitates an interpretation of these deviations in terms of a detailed model. Two effects are discussed to account for the non-ideal properties:3 An "electronic" effect, connected with the rise of the Fermi energy, as electrons of the interstitial hydrogen atoms enter the electron gas of the metal, and an "elastic" effect, due to an interaction of the regions of strain around each interstitial atom. The electronic effect is based on the idea that the lowest energy levels of the dissolved hydrogen atoms are higher than the Fermi energy, so that the electron will not occupy a localized state but enter into the electron band of the metal.6 The elastic effect is based on the observation that dissolved hydrogen distorts and expands the palladium lattice. The hypothesis is put forward that the elastic strain energy is lower for two adjacent dilatational centers than for two separate ones; i.e., they attract each other. The resulting pair interaction can be used to calculate an elastic contribution to the thermodynamic excess functions by means of one of the statistical methods. This model permitted a detailed description of the solution properties of hydrogen in palladium3 and in palladium alloys.798 An extension of the approach to describe the excess functions of substitutional palladium alloys is possible.9 In order to further test and refine the model, an investigation of other interstitial alloys was started. Palladium dissolves considerable amounts of boron in homogeneous solid solution.10 The palladium lattice expands linearly up to nB = 0.23 (nB = B/Pd atomic ratio), the highest concentration studied." The expan- sion, extrapolated for 1 mole of interstitial per mole of palladium, is 17 pct of the lattice constant of pure palladium vs 5.7 pct in the case of hydrogen.12 The fact that the lattice expands rather than contracts is a strong indication that interstitial positions are occupied. According to neutron diffraction experiments, hydrogen occupies the octahedral sites of the fcc lattice.13 Unfortunately, this direct evidence is not available for the Pb-B system, mainly because of the high-reaction cross section of boron with thermal neutrons. However, by way of analogy and on the grounds of the rather close similarities between the two systems to be reported here, it seems safe to attribute octahedral positions to the dissolved boron, too. At higher boron contents, compounds of stoichiomet-ric compositions are reported such as Pd3B, which has the structure of cementite,14 so that a close structural relationship seems to exist with the system r Fe-C. In their study of hydrogen absorption in Pb-B alloys, Sieverts and Briining noted that alloys with an atomic ratio of about nB = 0.16 are no longer homogeneous15 This observation was confirmed in an extensive X-ray investigation.11,16 The phase boundaries of two miscibility gaps were established. One two-phase region was stable below a transition temperature of about 315°C and extended from nB = 0.015 to 0.178. The other one extended from nB = 0.021 to 0.114 slightly above the transition temperature and had an apex at nB = 0.065 and 410°C. All phases involved have the fcc structure of pure palladium with lattice expansions proportional to their boron contents. The occurrence of miscibility gaps, i.e., the coexistence of dilute and concentrated phases, points to an energy of attraction between the dissolved particles, in the Pb-B system as well as in the Pd-H system. The filling up of the electron bands seems to be analogous, too, in the two systems, as indicated by the hydrogen absorption capacit15,17,18 and by the suscepti bility of Pd-B alloys.l8 In both types of experiments, boron acts as an electron donor. A chemical method was used to measure the activity of boron in palladium. Boron trioxide was reduced in a moist hydrogen stream: B2O3 + 3H2 = 2B + 3H3O [l] At known activities or partial pressures of boron trioxide, hydrogen, and water, the activity of boron could be calculated from the law of mass action. The equilibrium concentration of boron corresponding to this activity was determined as the weight gain of the sample. EXPERIMENTAL The samples consisted of small pieces of foil of 0.1 mm thickness and about 100 mg weight. The palladium was supplied by DEGUSSA, Germany, and stated to be
Citation

APA: Horst A. Brodowsky Hans-Jürgen Schaller  (1970)  Part V – May 1969 - Papers - Thermodynamics of Nonstoichiometric Interstitial Alloys. I. Boron in Palladium

MLA: Horst A. Brodowsky Hans-Jürgen Schaller Part V – May 1969 - Papers - Thermodynamics of Nonstoichiometric Interstitial Alloys. I. Boron in Palladium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account