Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Institute of Metals Division - The Nb-Sn (Cb-Sn) System: Phase Diagram, Kinetics of Formation, and Superconducting PropertiesBy E. Buehler, H. J. Levinstein
The temperature ranges in which the three inter-metallic phases in the Nb-Sn system form have been determined and the composition and structure of two of the three phases has been established. The kinetics of the formation of Nb3Sn in cored wire samples has been studied in the temperature range of 800° to 1050°C. From 800°to 950°C the rate of formation increases by four orders of magnitude. The rate-controlling step for the formation process in this temperature range appears to be the diffilsion of tin through NbSn. At higher temperatu~es a change occurs in the mechanism of the formation process such that up to a temperature of 1050°C the rate of formation of Nb3Sn does not increase above the rate observed at 950°C. For temperatures helow 950°C the current-carrying capacity of the wire increases with increased percent reaction reaching a maximum value when the formation process is 90 to 95 pct complete. The maximum current-carrying capacity obtainable in this temperature range is independent of the temperature. Above 950°C tlze current-carrying capacity obtainable in the wire decreases with increasing temperature of formation. A model is proposed which accounts for the ohserved behavior. RECENTLY, Buehler et a1.l reported the results of an investigation of the process variables which influence the superconducting properties of Nb3Sn-cored wire. These results indicated that at least four variables affect the properties of the manufactured wire. These include composition, particle size of the starting powder mix, temperature of heat treatment, and time of heat treatment. In order to understand completely the role of these variables, it is necessary to have an accurate knowledge of the phase equilibria in the Nb-Sn system. At the present time, phase-equilibrium diagrams for the Nb-Sn system have been published by a number of investigators.2-5 The diagrams differ as to the number of phases present, the composition of the phases, and the temperature range of stability of the phases. The present investigation was undertaken in order to resolve these differences. Since the investigation of Buehler et al. demon- strated that the length of time at the temperature of heat treatment affected the superconducting properties of Nb3Sn, it is apparent that it is necessary to understand the kinetics of the formation process as well as the equilibrium conditions before a complete understanding of the system is possible. As a result, the kinetics of formation of the various phases in the system were also studied in this investigation. EXPEFUMENTAL PROCEDURE Diffusion couples and sintered powdered compacts were employed in the phase-diagram investigation. The diffusion couples were made by filling 1/8-in.-ID monel-sheathed niobium tubes with tin. The monel sheath was employed to facilitate drawing.' The tubes were then drawn to a tin-core diameter of 32 mils. Samples approximately 3 in. long were then cut from the drawn composite. The tin was drilled out of the ends to a depth of 1/4 in. and niobium-wire plugs were inserted into the ends and peened over. The monel was removed by etching in concentrated nitric acid, after which the samples were sealed in evacuated quartz bulbs and heat-treated in a resistance-wound tube furnace. The samples were quenched into ice water upon removal from the furnace. The diffusion couple samples were examined metallographically employing a chemical etching solution consisting of 10 ml of saturated chromic acid per g of NaF. In addition, two anodizing solutions were used for phase-identification purposes. The first was the picklesimer7 solution; the second consisted of equal parts by volume of 30 pct H2O2 and concentrated NH4OH to which 1 g of NaF was added per 25 ml of solution. The anodizing conditions for the second solution were 2 v and 100 ma with a tin cathode. The powdered compacts were made by pressing previously mixed powders of 99.9 pct pure Sn and 99.6 pct pure Nb supplied by the United Mineral Co. into cylinders 3/8 in. in diameter by 1/2 in. long. The cylinders were then sealed in quartz tubes and heat-treated in the same manner as the diffusion couples. The samples were examined metallographically and by X-ray diffraction techniques. Since it was desirable to be able to correlate the kinetic data with current-carrying capacity, the type of specimen chosen for this part of the investigation had to be a compromise between the optimum system for studying kinetics and one which was suitable for making current-carrying capacity
Jan 1, 1964
-
Institute of Metals Division - Ductile Fracture of AluminumBy W. A. Backofen, G. Y. Chin, W. F. Hosford
The ductile fracturing process was studied in single-crystal and poly cvystalline aluminum deformed in tension over a temperature range from 295° to 4.2°K. At temperatures as low as 77°K, the fracture of "inclusion-free" material, including zone-refined aluminum, was by rupture (-100 pct RA). At 4.2 OK, fracture was brought on by adia-batic shear. Metallographic examination did not disclose any voids or slip-band microcracks, thus negating for inherently ductile metals any mechanism of void nucleation by vacancy condensation or of cracking due to dislocation pile-ups. In Izigh-purity aluminum not treated to be inclusion-free, fracture at temperatures as low as 45°K was of the double-cup type and a result of void formation. The reduction-of-area decreased as temperature was lowered, corresponding to the earlier appearance of voids. Such behavior was rationalized in terms of a larger increase, with decreasing temperature, in the .flow stress relative to the strength of the inclusion-matrix interface. Evidence for low-temperature adiabatic shear was found in discontinuous flow at 4.2"K, in the transition to a localized shear fracture at low temperatures, and in the suppression of shear fracture with an elastically hard pulling device. A simple analysis for the initiation of adiabatic shew permitted a general correlation of the various contributing factors. It has been pointed out that the duration of shear depends upon effective mass and elastic stiffness of the deformation system. IT has long been recognized that fracture* may Throughout this paper, the term "fracture" is taken to mean any process that results in the separation of a material into two (or more) parts. Thus rupture as it may be encountered in a tension test leading to 100 pct reduction-of-area is included in this category. occur in a ductile mode, and that the process can be of great practical as well as general interest. Much information about ductile fracture has also been accumulated over this period, but only recently has an understanding of mechanism begun to appear. Ludwik,' in 1926, first reported fracture in a tensile specimen starting with a central crack in the necked section. Since then, other studies have disclosed that such cracks may form by the coalescence of voids nucleated in this region where hydrostatic tension is highest.2-4 Rogers and Crussard et al.' have emphasized void formation and reori-entation along localized shear bands as a mode of crack propagation. pines6 has considered the tensile rod as a bundle of fibers joined by weak interfaces, which subsequently separate to allow individual fiber contraction. The notion of cavity growth and coalescence by purely plastic processes was discussed by Cottrell: who added that the tensile reduction-of-area ought not to be sensitive to temperature. On the other hand, it has been observed that the reduction-of-area is greatly increased if tests are carried out at high temperaturesa or under high hydrostatic pressure.' Fracturing anisotropy in wrought products lends support to the idea of void formation from preexisting flaws strongly aligned by earlier processing.''-l2 There is evidence that many voids result from the fracturing of inclusions or separation at the inclusion-matrix interface Another possibility is that voids grow out of pore volume produced in the initial solidification and never fully removed in later working. In general, a structure 3f particles, pores, and weak interfaces can be expected, at least in materials of engineering interest. Vacancy condensation has been suggested as an alternative mechanism of void formation for materials considered to be inclusion-free.13 Yet experience has shown that tensile reduction-of-area increases with purity, to the extreme of rupture as so often observed in single crystals. Adiabatic shear has an important bearing on ductile fracture. It occurs when the decrease of flow stress, as a result of local temperature rise from heat generated during straining, becomes larger than the increase due to strain and strain-rate hardening. As demonstrated by experiments on punching of plates,14 a large temperature rise may be brought about by rapid straining. Adiabatic flow as a result of the high strain rate reached in an ordinary tensile specimen just prior to separation may account for the cone formation in cup-and-cone fracture;14 evidence of such local heating has been presented.15 For geometrical reasons, however, pure sliding along the conical surfaces is unlikely, and separation under tensile forces is probably an important accompanying feature of the shear.7 In deformation processing operations, a high shear-strain rate may exist at boundaries between plas-
Jan 1, 1964
-
Minerals Beneficiation - Energy Input and Size Distribution in Comminution (Mining Engineering, Feb 1960, pg 161)By R. Schuhmann
Distribution of material in the fine sizes of a comminution product generally is well represented by the empirical equation' y = 100 (x/k)a [1] in which y — cumulative percent finer, x = particle size, a -= distribution modulus, and k = size modulus. Charles3 found that the energy consumption in comminution is usefully expressed by another empirical relation, E = Ak(1-D) [2] in which E = energy input per unit volume of material, A = a constant, k = size modulus based on Eq. 1, and n = a constant; (1-n) is the slope of a plot of log E vs log k. Holmes3 has presented energy equations similar to Eq. 2. The constants a and n in Eqs. 1 and 2 have been shown to depend both on the nature of the material and on the comminuting device. Moreover, Charles showed that within experimental error a and n are a — n+1 = 0 [3] Combining Eqs. 2 and 3, E = A k-a [4] In the first sections of this article it is shown that the energy equation, Eq. 4, can be derived directly from the size distribution equation for the fine sizes, Eq. 1. The derivations are made without assuming any of the specific relationships between energy and particle size which have been common in previous literature. For comminution processes in which Eqs. 1 and 4 adequately represent the experimental data, the constant A in Eq. 4 is found to be a simple and useful inverse measure of grindability. That is, A is the energy consumption per unit volume of comminution product finer than unit size as determined from the straight line portion of the log-log plot of the size distribution. These considerations all lead to a unifying hypothesis of comminution mechanism from which both Eq. 1 and Eq. 4 can be derived. Finally, it is pointed out that this hypothesis raises serious questions as to the significance of the Rittinger hypothesis, the Kick hypothesis, and other theories in which energy numbers are systematically assigned to various size fractions of comminution products in order to calculate theoretical energy consumptions. Derivation of the Energy Equation from the Size Distribution Equation: For simplicity, consider the comminution of 100 volumes of a feed material of relatively uniform particle size. The comminution process may be considered as the summation of many individual and independent comminution events. The extent of comminution is most easily expressed as the number of comminution events, z. In the first derivation, the key assumption is that the characteristics of the comminution events in a given crushing or grinding process are substantially constant and do not vary with the progress of the comminution process. Accordingly the characteristics of an average comminution event may be defined. In one such event, a quantity of energy $E is applied to a single particle of size f and volume $v. The crushing of this particle produces fine particles with a size distribution similar to that given by Eq. 1: yw=100(x/ka)a0 [51 In this equation yo, a0, and k0 are used to characterize the product of an individual comminution event rather than the product of the comminution process as a whole. In using Eq. 5, we will not be concerned with values of x close to the feed size f and will therefore assume only that the equation is applicable to the finest sizes of the material. In 100 volumes of total product, the actual volume of product finer than x from a single comminution event, or dy, is given by The total volume of material below size x, resulting from z events, is then given by y = z(dy) =z(dv) (x/ka)a0 =" Eq. 7 reduces to Eq. 1 when we let a, = a and [8a] z =100/dv (ka/k )1 or k = ka (zdv/100)-1/a [8b] Eq. 8a shows that the distribution modulus of the comminution product is the same as for the product of an individual comminution event. Eq. 8b shows how the size modulus of the comminution product k varies with the extent of comminution as measured by the number of events, z, or as measured by the fraction of the feed actually subjected to com- minution1 zdv/100. The energy input to 100 volumes of total feed, or 100E, is the sum of the energy inputs for all the comminution events: 100E =z (dE) [9]
Jan 1, 1961
-
Reservoir Engineering–General - Effect of Bank Size on Oil Recovery in the High-Pressure Gas-Driven LPG-Bank ProcessBy J. W. Lacey, F. H. Brinkman, J. E. Faris
This paper presents an analysis of the high-pressure, gas-driven LPG-slug process, based on fluid flow tests in areal models. Two types of tests were made. One series was made in low-pressure models which permitted observation of fluid movement. Three completely misci-ble analog fluids were used. A second series of tests was made in high-pressure models using methane, propane and a light refined oil saturated with methane at room temperature and 1,550 psig. Under the test conditions of room temperature and a pressure level of 1,550 psig, the phase diagram for the fluids used is similar to those for many of the field systems where the process is considered for use. A method for using these laboratory data to calculate field performance of the process is outlined. As a result of this work, it is concluded that small banks of LPG (5 per cent HV or less) are not effective in increasing oil recovery in horizontal reservoirs. Znstead, where small banks are used, the driving gas quickly penetrates the LPG bank because of fingering and channeling; and from this point on, the process behaves essentially as an immiscible gas-injection project. The validity of this conclusion was substantiated by: (1) laboratory studies of the effect of rate, model size and mobility ratio on miscible displacement in areal models; and (2) calculation of field recovery, which compared closely with actual field recovery. INTRODUCTION Field applications and pilot tests of the gas-driven, LPG-bank, oil-recovery process are on the increase. Most of these tests are employing small banks (2% to 5 per cent hydrocarbon volume) of LPG, which is miscible with both the driving gas and the oil in place, in an effort to attain an effective yet economical miscible displacement of oil by gas. The expectation of miscible displacement with small banks is based on the concepts that: (1) lengths of solvent-oil mixed zones, measured during miscible displacements in long slim cores, are representative of those that will occur in the field; and (2) areal sweep efficiencies5 measured in electrolytic model studies are applicable to miscible displacement in reservoirs. Our experimental evidence indicates that the mixed-zone lengths and sweep efficiencies mentioned are not applicable to miscible displacement in reservoirs. In this paper we present an evaluation of the gas-driven, LPG-bank oil-recovery process based on fluid flow experiments in areal models. These results are used to predict the performance of a field pilot test of this process, and the results are compared with the actual test results. THE EFFECTIVENESS OF LPG BANKS The effectiveness of LPG banks of various sizes in accomplishing miscible displacement of oil by gas was determined by displacement tests in a model representing one-quarter of a confined five-spot pattern. The model, 12 X 12 X 1/4 in. in size, was packed uniformly with glass beads. It was operated at a pressure of 1,550 psig and at room temperature; the fluids used were methane, propane and refined oil saturated with methane at 1,550 psig. The saturated oil had a viscosity of 1.2 cp at room temperature. The results of these tests are shown in Fig. 1, where recovery is plotted as a function of the volume of fluid injected for: (1) an immiscible-gas drive with an oil-to-gas viscosity ratio of 85; (2) three sizes of LPG banks; and (3) two completely miscible displacements with mobility ratios of 85:1 and 10:1. (The miscible displacement data plotted are the averages of several tests.) The results show that a 2½ per cent bank of LPG does not increase oil recovery over that obtained by immiscible-gas drive. The 7 and 17 per cent banks are, respectively, about 30 and 50 per cent effective (with reference to the M = 85 miscible-displacement curve) in increasing oil recovery at the point where 2½ hydrocarbon volumes (HV) of fluid have been injected. The percentage effectiveness of the banks at a given volume of fluid injected is defined as Recovery by Bank — Recovery by Gas Drive Recovery by Miscible Recovery by Flooding Gas Drive We conclude from these results that banks of LPG smaller than about 5 per cent HV in an individual stratum will cause from little to no increase in oil recovery. This finding was substantiated by work in low-pressure models, which permitted visual observation of fluid movements. In these tests, three completely miscible fluids having the same viscosity ratios as those used in
-
PART XI – November 1967 - Papers - A High-Temperature Electromagnetic StirrerBy W. A. Tiller, W. C. Johnston
A high-temperature electromagnetic stirrer is described in which heating and stirring are accomplished by independently controlled power sources. The appavatus is suitable lor use at temperatures up to 1700°C in a variety of ambient atmospheres. Some typical examples of the homogenizatimz capabilities of the system are given. THERE are few processes in solidification that are not markedly affected by motion in the melt during freezing. In many instances, the mechanisms are diffusion-controlled, and the transport in the melt may be greatly accelerated by deliberately stirring the melt. In zone-refining, stirring1 assists the removal of rejected impurities from the interface, so the process proceeds at a faster rate. The transition from a planar to a cellular interface is caused by constitutional undercooling in the melt ahead of the interface: and stirring delays its onset. Stirring is valuable for homogenization of melts: and chemical reaction with sluggish kinetics may be accelerated. Finally, it has been observed that grain refinement is related to motion in the melt. Fine grain castings are usually produced by the addition of catalysts to the -melt,' catalysts which are thought to act simply as hetereogeneous nucleation centers. Even here motion is important. Richards and Rostoker 5 applied ultrasonic vibration to a solidifying A1-Cu alloy which had been innoculated with a catalyst and found that the grain diameter fell linearly with the amplitude, the peak acceleration and the power input to the melt from the transducer. Finally, mechanical and electrical stirring alone have been used to generate a fine-grained structure.6,7 Johnston ef a1.' have carried out a series of systematic investigations of grain refinement by electromagnetic stirring in a number of low melting point alloys. They found, for example, that the number of grains per unit volume in Pb-Sn alloys could be increased several orders of magnitude by stirring an undercooled melt at the moment of recalescence. In general, a relation AT .H = constant prevailed for a given grain size, where AT was the undercooling of the melt and H the field strength. In more recent work, deliberate homogeneous nucleation of slightly undercooled melts established that the mechanism of refinement must be one involving crystal fragmentation and subsequent multiplication, rather than a "shower" of nuclei effect.9 It is the purpose of this note to describe a stirring device suitable for use up to 1700°C. At low temperatures mechanical stirring and direct-current methods are feasible, but at high temperatures the problem of a protective atmosphere and of electrode corrosion rules out such procedures. The most convenient method for high temperatures is to use externally generated ac fields for both stirring and heating. With rf induction heating alone, considerable stirring and agitation can be achieved, but in general the penetration of field into the melt is small, and the stirring cannot be controlled independently of the heating. In the present experiments, separate power sources of different frequencies for heating and for stirring were used. A susceptor design was chosen so that the 450 kc rf heating field was completely absorbed in the susceptor. The stirring frequency, 400 cps, hereafter called the af field, was chosen so that a high penetration of the melt proper was achieved. EXPERIMENTAL APPARATUS The apparatus, Fig. 1, consists of a quartz tube and end plates, surrounded by an rf induction coil and six equally spaced af stirring coils, four of which are shown in full and a fifth in section. Each af stirring coil is a transformer of which the secondary is a single-turn water-cooled copper loop and the primary is composed of two 10 amp-117 v Variac cores as shown. These cores are cooled by forced air, as each of the six pairs will carry maximum currents of 15 amp for short periods. Each set of Variac windings are connected in series, but opposite sets are connected in parallel with a three-phase 400 cps 400-v source. By properly phasing the coils in this way, a rotating field is produced. Capacitors C1, C2, and C3 in Fig. 2 are used to match this inductive load to the generator. Fig. 3 shows a cutaway view of the quartz tube. The sample (1 in. diam by 1 in. high) is placed in a tapered alumina crucible. An axial W-26 pct Re thermocouple, enclosed by a protection tube, is provided. The cruci-
Jan 1, 1968
-
Institute of Metals Division - The Mechanism of Catastrophic Oxidation as Caused by Lead OxideBy John C. Sawyer
The mechanism of catastrophic oxidation of chromium and 446 stainless steel is examined. Data are presented to show that accelerated oxidation of these two materials, as caused by lead oxide, can occur in the absence of a liquid layer contrary to presently accepted theory. An alternate theory is proposed in which the rate of accelerated oxidation is a function of the rate at which lead oxide destroys the protective oxide formed on the base metal. An example of the application of the theory is given for the catastrophic oxidation of chromium in the presence of lead oxide. WHEN stainless iron-, nickel-, or cobalt-base alloys are heated in air to moderate temperatures in the presence of certain metallic oxides, oxidation will proceed at an accelerated rate. This phenomenon, often called "catastrophic oxidation", is most pronounced for the stainless steels. With these alloys the condition is so severe that large masses of oxide will form on the surface of the alloy in 1 hr or less at temperatures of 1200o to 1700oF. While a number of oxides are known to cause this effect, PbO, V2O5, and Moo3 are the most familiar, having been the subject of one or more investigations which have appeared in the literature.1-7 In presenting the results of these investigations, many of the authors have offered possible explanations to account for the more rapid rate of oxidation observed; however, the liquid layer theory as proposed by Rathenau and Meijering 2 has been the most commonly accepted mechanism. The liquid layer theory proposes that a low-melting oxide layer is formed on the surface of the alloy as the result of the interaction of the alloy oxide and the contaminating oxide. When the temperature of oxidation is above the melting point of the oxide on the surface, a liquid layer will form and oxidation will proceed at an accelerated rate. At temperatures below the melting point of the surface oxide, oxidation will proceed more slowly in the normal manner. It is argued that the rates of diffusion of oxygen and metal ions through the liquid layer are extremely rapid thereby accounting for the high rate of oxidation. Various experimental data have been presented to show that the temperature at which accelerated oxidation first becomes apparent coincides with the melting point of the eutectic oxide which would be present on the surface. Some exceptions have been observed, e.g., silver will oxidize in the presence of Moo3 at temperatures below the lowest melting eutectic; on the other hand, stainless steel will not be catastrophically oxidized at 1500oF in a molten bath of PbO and SiO2. In reviewing the various theories which have been used to explain catastrophic oxidation, Kubaschewski and Hopkins 8 favor the liquid layer theory, but note that, ".. .as experimental observations are not altogether in agreement with this theory (liquid layer theory), one should consider it a necessary but not a sufficient condition." In contemplating the liquid layer theory, it appears that sufficient evidence has not been presented to establish the theory beyond question. As a means of further clarification, a program of research was undertaken to determine in greater detail the mechanism of accelerated oxidation as caused by lead oxide. The first part of the program deals with a comparison of the oxidation of both AISI 446 stainless steel and chromium metal in the presence of lead oxide, vs the oxidation of these two materials in air alone. These comparisons are made at a number of different temperatures, most of which are below the melting point of the surface oxides. The second part of the program is concerned with a presentation of an alternate theory of accelerated oxidation exemplified by the system Cr-PbO-Air. PROCEDURE AND RESULTS Several experimental methods are commonly used to follow the progress of oxidation. One of these, the weight-gain method, was chosen for this work. This procedure requires that a specimen of the alloy be weighed, oxidized for a given period of time at an elevated temperature, and reweighed—the difference between the two weights being noted. The weight gain of the specimen represents the amount of oxygen acquired from the atmosphere to transform a portion of the specimen to oxide. In those cases where there is a tendency for the specimen or oxide to volatilize at the testing temperature, additional data must be collected so that a correction factor can be determined. This factor must be applied to the weight change in order to ascertain the actual amount of oxidation which has taken place. The specimens used for this work were 1 1/2 in.
Jan 1, 1963
-
Part IX - Communications - On the Partial Molal Volume of Hydrogen in Alpha IronBy R. A. Oriani
The partial molal volume of hydrogen is one of the parameters that describe the elastic interaction between the solute and the stress fields about inclusions, dislocations, and cracks. As such the partial molal volume is probably of importance in the elucidation of phenomena such as hydrogen embrittlement and hydrogen yield point. A knowledge of this quantity would also be helpful in thinking about the state of dissolved hydrogen in iron. However, because of the very low lattice solubility of hydrogen in iron the usual ways of determining the lattice expansion are not practicable. It is therefore of interest to apply the thermodynamics of stressed bodies to two sets of measurements of the effect of elastic stress upon the permeability of hydrogen in order to deduce a value of the partial molal volume, VH, of hydrogen dissolved in a iron. Beck ..' and previously de Kazinczy, observed that a uniaxial tensile stress increases the permeability of hydrogen in iron and in various steels. Beck et 01. employed Armco iron and A.I.S.I. 4340 steel, whereas de Kazinczy used a steel the composition of which was 0.13 C, 0.23 Si, 0.46 Mn, 0.006 P, and 0.038 S. Upon releasing the stress the permeability increment disappeared if the stress was below the elastic limit. Both investigators employed cathodic charging to introduce the hydrogen. de Kazinczy measured the permeation through a thin-walled tube by collecting the gas, whereas Beck et al. measured the permeation through sheets of various thicknesses by a very sensitive electrochemical technique. Both investigators measured the steady-state permeation at constant rate of hydrogen ion discharge, and Beck measured in addition the hydrogen diffusivity by a time-lag technique which is independent of the boundary conditions. Beck et al. and de Kazinczy found a linear relationship between log (J,/Jo) and the stress, where Ju/Jo is the ratio of the flux of hydrogen when the metal is under uniaxial tensile stress, a, to the flux under zero stress, for the same temperature and charging current. Beck et al. found in addition that the diffusivity of hydrogen is not changed by stress. Both investigators concluded that the observed change in permeability is due to an increase in hydrogen concentration, and furthermore that the increase in concentration is due directly to the thermodynamic effect of stress upon concentration. Accepting this assessment of the situation for reasons given below, one may use the equation3j4 in order to evaluate I/H, the partial molal volume of hydrogen. This equation is valid for the domain of a/E «¦ 1 (where E is the Young's modulus) and under the assumption that hydrogen expands the lattice isotrop-ically. From the data of Beck el al, one calculates V7H - 2.0 cu cm per g-atom, and from those of de Kazinczy one obtains 1.8 cu cm per g-atom. That the increase of concentration with stress is indeed of thermodynamic origin is attested to by the facts that the experimental results conform to the thermodynamic relation, Eq. [I], and that the results are the same whether a pure iron1 or each of two different steels172 is used. Neither of these facts wou1.d necessarily be expected if the effect of stress were, rather, to increase the ratio kn/k, of the kinetic factors of the following competing reactions: H(ads) — H (dissolved) Such a change of kinetics at the surface could be an alternative explanation of the effect of stress on the permeability. Although this writer does not deem this explanation to be the correct one for the reasons given above, it must be admitted that unambiguous proof that the phenomenon has a thermodynamic origin does not yet exist. Two kinds of experiments may be suggested. One is to plate a variety of metals on the input surface of the steel and repeat the stress experiment at a variety of hydrogen charging currents. The other is to employ somewhat thicker specimens in order to be able to apply uniaxial compressive stress. Eq. [I] shows that ln(c,/c,) depends on the sign of the stress, but it is difficult to see a physical basis for which k2/kl would depend on the sign of a. The present value of V^ in a iron agrees with phragmen's5 estimate, which he based on comparisons with the lattice expansion by hydrogen of titanium, zir-
Jan 1, 1967
-
Extractive Mettallurgy Division - Dissolution of Pyrite Ores in Acid Chlorine SolutionsBy M. I. Sherman, J. D. H. Strickland
USE of a hydrometallurgical approach to the oxidation of sulfide ores and extraction of metals therefrom may have advantages over the more common smelting techniques when a low grade deposit is difficult to concentrate or the subsequent separation of metals, coexisting in the ore, is laborious by any known smelting operation. For economic reasons, the most promising oxidants are either atmospheric oxygen or electric power. The use of oxygen, or air under pressure, has recently been revised. Pyrrhotite has been converted to iron oxide and elementary sulfur' and a variety of sulfides have been treated by Forward and co-workers.2-4 Generally sulfate is the end form of the sulfur but with galena in an acid medium, elementary sulfur can be formed." For economic reasons chlorine and ferric iron salts are about the only possible alternatives to the atmosphere as oxidizing agents for base metal sulfides. If aqueous solutions of chlorine or ferric iron are employed, the reduction products can be oxidized electrolytically in situ and used again, thus acting as catalysts for electric power as oxidant. The use of ferric salts for this purpose is established hydrometallurgical practicea but, although chlorine gas has been employed in the dry state at an elevated temperature, its use in aqueous solution at or near room temperature has not found favor. The reaction of chlorine water with the soluble sulfide ion has been studied by several workers,7-9 and both sulfate and elemental sulfur are found as end products, the latter being favored by the presence of a low concentration of oxidant relative to that of sulfide in solutions of about pH 9 to 10. Of direct bearing on the work in hand are an early American patent" and a recent Austrian patent." The former advocates stirring powdered ore with an aqueous solution of ferric chloride chlorine oxides and chlorine. In the latter it is claimed that both metal and sulfur can be obtained by electrolysis, in a diaphragm cell, of a metal ore slurry in brine. Details in these patents are scant and no data or explanation is given for the mechanism of the reaction which, in the Austrian work, is attributed to the (unlikely) action of nascent chlorine at the anode surface. No mention is made of possible differences in behaviour between various ores. Apparatus A complication encountered when working with chlorine water is that a serious loss of chlorine occurs by gas partitioning unless an enclosed system is used and any air space in the apparatus is kept very small and constant. Arrangements were made, therefore, to take out samples for analysis without letting air into the system to replace the liquid removed. For convenience in studying a heterogeneous reaction the apparatus was so designed that a reproducible controlled stirring rate could be maintained and the ratio of surface area of ore to volume of solution was approximately constant throughout any experiment. The apparatus used is shown in Fig. 1. The ground ore was placed in the horizontal cylindrical vessel, A, of about 1 liter capacity, heated by a constant temperature circulating bath pumping water through the concentric jacket, B. By adding chro-mate to this water, an ultraviolet radiation filter effectively surrounded the reaction vessel, greatly reducing any possible photochemical decomposition of chlorine solutions. Stirring was effected by glass paddles, C, attached by an axle to a magnet which was rotated by another powerful Alnico magnet, D, outside the glass end, this magnet being itself rotated by an electric motor electronically controlled to constant speed. Speed could be varied from about 150 to 900 rpm and was measured and held to within 1 pct of a given value. The end of the reaction vessel remote from the stirring magnet was closed by another one-ended glass cylinder, E, connected by thin polyethylene bellows, F, clamped by screw clamps and watertight rubber gaskets to the main vessel. Through E, a glass electrode and calomel electrode projected into the solution and a hypodermic syringe pierced a small bung and allowed acid or alkaline to be added to maintain a constant pH. By pushing the fully extended bellows until the two cylinders touched, from 50 to 100 ml of solution could be forced out through a sintered disk into the three-way tap system, G, either to waste (for flushing purposes) or up into a 10 ml burette where the solution could subsequently be measured out for analysis. The ore samples were introduced at H, the tube being stoppered by a thermometer of —1 to +52ºC range, graduated to 0.1°C intervals. To prevent ore from being ground in the end bearings of the stirrer these bearings were pro-
Jan 1, 1958
-
Iron and Steel Division - The Mechanism of Iron Oxide ReductionBy B. B. L. Seth, H. U. Ross
A generalized rate equation for the reduction of iron oxide was derived from which two particular equations were obtained: one for rate controlled by the transportation of gas, the other for rate controlled by the phase-boundary reaction. Pellets of pure ferric oxide having diameters of 8.5 to 17.5 mm and a density of 4.8 g per cm3 were prepared and reduced by hydrogen at 750° to 900°C. From the analysis of data obtairzed, it was observed that neither the phase-houndarv reaction nor the transportation of gas controlled entirely the rate of redziction. Rather, the mechanism of reduction can he divided into three stages. In the beginning, the process seems to depend predominantly on the surJrce reaction, hut after a layer of iron is formed the diffusion of gas becomes the controlling factor. Towards the end, however, the rate falls sharply due to a decrease in porosity. The times predicted by the generalized equation for a certain degree of reduction showed an excellent agreement with those obtained experinmentally for pellets of varying sizes. WIDE interest in iron oxide reduction has resulted in many valuable studies pertaining to thermody-namical properties, equilibrium diagrams, and chemical kinetics. Although the thermodynamical properties and equilibrium diagrams are now known with a fair degree of accuracy, the mechanism and rate-controlling step in the reduction of iron oxides presents a problem to research workers which is still unsolved. This is because the field of chemical kinetics is so highly complex. Besides the chemical reaction between oxide and reducing gas, several other processes are occurring simultaneously such as solid-state diffusion of iron through intermediate oxides (FeO and Fe3O4), the diffusion of reducing gas inwards and of product gas outwards, and the sintering of iron if reduction is carried out above the sintering temperature of iron. Furthermore, there is a large number of variables, including the nature and flow rate of the reducing gas, the chemical composition and physical properties of the ore, the temperature of reaction, particle size, and so forth, all of which can affect both the mechanism and the kinetics of reduction. Despite the controversy and diversity of opinion about the mechanism of iron oxide reduction, three main schools of thought have emerged. According to the first, the rate is controlled by the diffusion of gas through the boundary layer of stagnant gas; the second claims that the rate is proportional to the area of the metal-oxide interface, while the third believes the transportation of reducing gas from the main stream to the metal-oxide interface and of product gas from the metal-oxide interface to the main stream to be the rate-controlling step. 1) The boundary-layer theory is true mainly for packed beds where the flow of gas through the bed is important. For a single particle, the boundary layer may be prevented from being the rate-controlling step if a gas flow rate of reducing gas above the critical flow rate is used. 2) Several workers have reported a linear advance of the Fe/FeO interface which provides excellent support for the belief that reduction is controlled by the surface area. McKewanl has given formal shape to this concept with mathematical derivation and has shown it to be valid for reduction of several iron ores, hematite, and magnetite, both by H2 and H2, H2O, N2 mixtures. Some other investigators, however, do not find this theory to be entirely valid. Deviations have been observed2 and further confirmedS3 Hansen4 also agrees that deviations do occur, at least in the latter stages of reduction, while from the data of several investigators summarized by Themelis and Gauvin,5 it is clear that the theory is not always applicable and further that, when it is applicable, it does not hold in the final stages of reduction. 3) Among those who claim the transportation of gas to be the rate-controlling step are Udy and Lorig,6 Bogdandy and Janke,7 and Kawasaki el a1.8 The validity of the theory has also been acknowledged indirectly by other research workers who show that the sintering and recrystallization of iron cause a decrease in reduction rate, for it is only if the transportation of gas is important that this sintering has any bearing. However, the theory has been rejected by some because they have failed to obtain
Jan 1, 1965
-
PART IV - Communications - Miscibility Gap in the System Iron Oxide-CaO-P2O5 in Air at 1625°CBy E. T. Turkdogan, Klaus Schwerdtfeger
OelSEN and Maetz1 detected some 20 years ago the existence of a miscibility gap in iron oxide-CaO-P2O5 slags melted in iron crucibles at about 1400°C. Because of the importance of this system for the dephos-phorization of steel in the basic Bessemer process, equilibria between liquid iron and selected iron oxide-CaO-P2Q slags have been measured since by numerous investigators.2-5 When in equilibrium with metallic iron, the iron oxide of the slag is present mainly as FeO. In connection with oxygen-blowing steelmaking processes, it is useful to know the phase relations in the slag system at higher oxygen pressure, when major parts of the iron oxide are present as Fe2O3. This problem was investigated by Turkdogan and Bills7 by equilibrating the oxide mixtures contained in platinum crucibles with CO2-CO mixtures at 1550°C. It was found that increasing the Fe2O3 content decreases the composition range of the miscibility gap strongly so that the miscibility gap has almost disappeared at pco2/pco = 75. This result was refuted by the careful work of Olette et a1.,''' who equilibrated their slags with controlled Ha-H2-Ar gas mixtures. Their equilibrium measurements, at 1600°C and at oxygen pressures of 5 x 10"* and 10"5 atm, showed that the oxidation state of the iron has almost no influence on the formation of the miscibility gap. The present experiments were undertaken to check the previous results of Turkdogan and Bills. The experiments were performed at 1625°C in the strongly oxidizing atmosphere of air (PO2 = 0.20 atm) for which no experimental data are available. About 10 g of slag were melted in platinum crucibles and held at constant temperature for 1 hr. After equilibration, the crucible was rapidly pulled out of the furnace and cooled in air. The platinum crucible was removed from the sample. The two slag layers were carefully separated with a small diamond disc, and the surface of the top layer, which may have changed its oxidation state during cooling, was removed. The slags were crushed and analyzed chemically for CaO, P2O5, Fe2+, and Fetotal. The starting mixtures were prepared by sintering the desired amounts of reagent-grade 2CaO . P2O5 - H2O, CaCO3, and Fe2O3. Sintering and subsequent crushing were done three times to ensure homogenization. Molybdenum wire resistance heating was used. The furnace was provided with a recrystallized alumina reaction tube which was left open to air at the top. The temperature was controlled electronically. The reported temperature was measured with a Pt/Pt-10 pct Rh thermocouple and is estimated to be accurate within +5°C. The composition of the equilibrated melts is given in Table I. For the graphical illustration of these quaternary slags the type of projection suggested by Trömel and Fritze10 was used. In this representation, Fig. 1, the composition point of a mixture within the tetrahedron Fe2O3-CaO-P2O5-FeO is projected into the Fe2O3-CaO-P2O5, triangle (triangle I) so that the direction of projection is parallel to the side FeO-Fe2O3, and into the triangle Fe2O3-P2O,-Fe0 (triangle 11) so that the direction of projection is parallel to the side CaO-P2O5, of the tetrahedron. The projected point has the coordinates wt pct CaO, wt pct P205, and wt pct (FeO + Fe2O3) in triangle I and wt pct FeO, wt pct Fe2O3, and wt pct (CaO + PzO5) in triangle 11. Both triangles are turned into the same plane around the Fe203-P20, side of the tetrahedron. An illustration of the projection of a quaternary point in the present system is shown in Fig. 1. The advantage of this type of projection is that all four components for an equilibrium curve can be read directly from the diagram. The present results are shown graphically in Fig. 2. The curves depicting the miscibility gap are dashed in parts where no experimental points were obtained. The composition range covered by the miscibility gap
Jan 1, 1968
-
Part VIII – August 1968 - Papers - The Microplastic Response of Partially Transformed Fe-31NiBy C. L. Magee, H. W. Paxton
The effects of testing temperature, frorn 77" to 420" K, and volume fraction of martensite on the micro-plastic response of unaged Fe-31Ni martensite-austenite aggregates have been determined. The kinetics of the aging phenomena which lead to a decrease in the microplastic response were also characterized. These determinations, supplemented by other experimental results, show that at least two mechanisms of plastic deformation give rise to the apparent softness of the quenched structures. Only one of these mechanisms is fully discussed in this paper The transformation of retained austenite to martensite during the application of stress leads, in specified conditions, to large microplastic strains. This deformation behavior cannot be described by normal transformation plasticity theory but is shown to result from the fact that stress-assisted formation of martensite is a possible deformation mode. The present results and further considerations of previous work lead to the conclusion that it is unnecessary to postulate a special work-hardening mechanism to explain the mechanical properties of unaged martensite. It is now generally accepted that dislocation motion can occur in many solids at stresses very much below the L'macroscpic" yield stress, e.g., 0.1 pct offset. This phenomenon has been investigated by a variety of techniques including measurements of elastic limit,' effective static elastic modulus,~ and irreversible deformation following stressing at low levels.3"5 Of particular interest to the work to be described are exper -iments conducted on the deformation of martensite in attempts to decide whether freshly quenched ferrous martensites are "hard" or "soft".6 Muir, Averbach, and cohenl and McEvily, Ku, and ~ohnston' have shown that as-quenched ferrous rnartensites can be plastically deformed at relatively low stresses. A difference between these two sets of experiments exists in that some diffusion of carbon would take place before testing in the experiments of Muir et a1. because the plain Fe-C alloys which they have tested transform to martensite well above room temperature. McEvily et a1. examined Fe-Ni-C alloys with Ms of about -30"~ and tested the alloys directly after quenching to — 195" ~ —a technique which obviates any appreciable carbon diffusion. Unfortunately, a characteristic of the alloys which transform below room temperature is that they do not transform entirely to martensite. The results discussed below will show that, because the transformation of this retained austenite under stress leads to plastic deformation, one cannot investigate the properties of martensite by such experiments. The existence of a second deformation phenomenon, which is not caused by retained austenite, is also established in the present work. In line with a previous suggestion,' it is believed that the second microdefor-mation mode is principally due to the internal stresses generated by the formation of martensite. To avoid confusion in the present report, the evidence we have found for this interpretation will be discussed separately in a brief note.7 EXPERIMENTAL Materials. The alloys were induction-melted and cast under vacuum; the resulting compositions are given in Table I. The ingots were hot-swaged to 2-in.-diam bar and further cold-swaged and/or cold-rolled prior to specimen preparation. The standard tensile specimens were machined from sheet. The gage section was 0.05 by 0.2 by 5 in.; 0.75-in.-wide ends had 0.2 5-in. centered holes for pinloading. The three-point bend samples were 0.075-in. thick and 0.6 in. bide. The distance between the outer loading points was 5.5 in. In order to establish a standard starting condition, all specimens were quenched to 77°K prior to annealing in vacuo for austenitizing. The temperature of the austenitizing anneal was controlled to + 5"~. The testing and aging temperatures were maintained by various liquid baths (nitrogen, 77"~; freon, 130° to 200°K; acetone, 200 to 300°K; silicone oil, 300' to 450°K) to better than il°K. Strain Measurement. The results herein were derived from both uniaxial tension and three-point bending experiments. For bending tests, the stresses and strains reported are those corresponding to the maximum fiber values. Normally, because of the small strains involved, very sensitive strain measurements are necessary to make microplastic measurements. However, because of the magnitude of the dilatation and shear involved in the martensitic transformation, the requirements in the present experiments proved to be less rigorous. In most experiments the plastic strain was evaluated by measuring stress relaxation and modulus defects. In this method, specimens are loaded rapidly to some predetermined load on an In-
Jan 1, 1969
-
Technical Papers and Notes - Institute of Metals Division - The Oxidation Rate of Molybdenum in AirBy E. S. Bartlett, D. N. Williams
QUANTITATIVE values for the oxidation rate of unalloyed molybdenum in air at temperatures above the melting point (1460°F) of the characteristic oxide are contained in the literature as a result of previous investigations. Lustman' reported values corresponding to 0.36 in. penetration per day (IPD) at 1500 and 1600°F in still air, noting essentially no variation in rate with temperature. Jones, Spretnak, and Speiser' reported values corresponding to 0.14 and 0.13 IPD at 1500 and 1800°F, respectively, in still air, attributing the decreased oxidation rate at higher temperatures to a lesser accumulation of the corrosive molten oxide on the surface at the higher temperature as a result of increased volatilization rate. Harwood3 ecently summarized work in the field, presenting generalized data corresponding to 0.48 to 0.96 IPD at 1800°F and 0.55 to 0.83 IPD at 1700°F in slowly flowing air. In a recent program at Battelle, it became desirable to know more about the characteristic oxidation behavior of molybdenum under varying conditions of temperature and atmosphere. Using oxidation-test apparatus designed for dynamic, continuous recording of weight change during testing,' values for the oxidation rate of molybdenum were obtained at temperatures from 1400 to 2150°F. In addition the effect of air flow on the oxidation rate was studied briefly at temperatures of 1600, 1800, and 2000°F. Exhaust of the contaminated atmosphere from the oxidation chamber was effected by an impeller pump attached to a 3/16-in.-diam opening in the oxidation chamber. The volumetric exhaust rate (cubic feet per hour) was normally maintained slightly in excess of the input rate to avoid condensation of MOO,,' on the sample suspension rod. The entering atmosphere was preheated prior to admission to the oxidation chamber by a 1 1/2-in.-diam cup packed with shredded asbestos. The experimental data are presented in Table I. Comparing conditions 2 and 3 (taking into account the temperature difference) and conditions 8 and 9. shows that in the absence of forced exhaust an atmosphere of moving air results in greater oxidation rate than a stagnant atmosphere. The use of forced exhaust, as shown by comparing conditions 3 and 4 and conditions 14 and 15: resulted in an even greater increase in oxidation rate. By virtue of the size of the atmosphere input and exhaust openings, it was calculated that the exhaust velocity was about 60 times that of the input velocity for essentially equal volumetric flow rates. Because of the proximity (about 3/4 in.) of the exhaust port to the specimen, it is logical to assume that cleansing of the atmosphere immediately surrounding the specimen was accomplished much more efficiently by the exhaust flow than by the input flow at a constant-volumetric flow rate. Also, it can be seen by comparing conditions 4 through 7 and conditions 11 through 13 that increasing the rate of atmosphere flow (by increasing input velocity with a proportional increase in exhaust velocity) above some optimum value has little, if any, further effect on the oxidation rate. These results suggest that there is a maximum oxidation rate for molydenum at a given temperature which is obtained when conditions are maintained such that the partial pressure of MOO3 in the atmosphere surrounding the specimen is at a low value. By controlling the partial pressure of MOO, surrounding the sample, it is possible to control the rate of volatilization of MOO:, from the surface. This, in turn, affects the rate of oxidation, since the thickness of the MOO3 layer determines the amount of oxygen which will be able to reach the reaction surface.' When the liquid oxide layer is less than some critical thickness, i.e., when the volatilization rate is high, enough oxygen is transported to the active surface to permit oxidation to proceed at the maximum rate allowed by the kinetics of the oxidation reaction. However, if the volatilization of MOO,, is suppressed, the thickness of the layer of MOO3 on the surface increases, and the diffusion of oxygen through the oxide layer becomes the rate-controlling step in the oxidation process. The lack of agreement between the present results and those of previous investigators is presumed to be due to differences in removal of the oxidation product (Moo,) from the immediate vicinity of the sample. By comparing conditions 1, 5, 10, 12 and 14, it is seen that when forced exhaust was used the oxidation rate of molybdenum increased with increasing temperature. A rapid increase was observed between 1400 and 1600°F, attributable to the effects
Jan 1, 1959
-
Technical Notes - Matrix Phase in Lower Bainite and Tempered MartensiteBy F. E. Werner, B. L. Averbach, Morris Cohen
THAT bainite formed near the M, temperature bears a striking r esemblance to martensite tempered at the same temperature has been shown by the electron microscope.' By means of electron diffraction,' it has been established that carbide and cementite are present in bainite formed at 500°F (260°C); these carbides are also found in martensite tempered at 500°F (260°C).' The investigation reported here is concerned with an X-ray study of the matrix phases in lower bainite and tempered martensite. These phases have turned out to be dissimilar in structure; the matrix of bainite is body-centered-cubic while that of tempered martensite is body-centered-tetragonal. A vacuum-melted Fe-C alloy containing 1.43 pct C was studied. Specimens of 16 in. diam were sealed in evacuated silica tubing and austenitized at 2300°F (1260°C) for 24 hr. One specimen was quenched into a salt bath at 410°+7 °F (210°+4°C), held for 16 hr, and cooled to room temperature. The structure consisted of about 90 to 95 pct bainite, the re: mainder being martensite and retained austenite. A second specimen was quenched from the austen-itizing temperature into iced brine and then into liquid nitrogen. It consisted of about 90 pct martensite and 10 pct retained austenite. The latter specimen was tempered for 10 hr at 410°+2°F (210°+1°C). The specimens were then fractured along prior austenite grain boundaries (grain size about 2 mm diam) by light tapping with a hammer. Single aus-tenite grains, mostly transformed, were etched to about 0.5 mm diam and mounted in a Unicam single crystal goniometer, which allowed both rotation and oscillation of the sample. Lattice parameters were measured by the technique of Kurdjumov and Lyssak. This method takes advantage of the fact that martensite and lower bainite are related to austenite by the Kurdjumov-sachs orientation relationships Thus, the (002) and the (200) (020) reflections can be recorded separately, permitting the c and a parameters to be determined without interference from overlapping reflections. According to these findings, the matrix phase in bainite is body-centered-cubic and, within experimental error, has the same lattice parameter as ferrite (2.866A). On the other hand, martensite, tempered as above, retains some tetragonality, with a c/a ratio of 1.005t0.002. Most workers in the past have assumed that bainite is generated from austenite as a supersaturated phase, but the nature of this product has not been established. The question arises as to whether bainite initially has a tetragonal structure and then tempers to cubic, or if it forms directly as a cubic structure. If it forms with a tetragonal lattice, it might well be expected to temper to the cubic phase at about the same rate as tetragonal martensite. The martensitic specimen used here was given approximately the same tempering exposure, 10 hr at 410°F, as suffered by the greater part of the bainite during the isothermal transformation. About 50 pct bainite was formed in 6 hr at 410°F. On tempering at this temperature, martensite reduces its tetragonality within a few minutes to a value corresponding to 0.30 pct C.' Further decomposition proceeds slowly, and after 10 hr the c/a ratio is still appreciable, i.e., 1.005. Thus, even if the bainite were to form as a tetragonal phase with a tetragonality corresponding to only 0.30 pct C, which might be assumed to coexist with e carbide, it would not be expected to become cubic in this time. It seems very likely, therefore, that bainite forms irom austenite as a body-centered-cubic phase and does not pass through a tetragonal transition. The carbon content of the cubic phase has not been determined, but it could easily be as high as 0.1 pct, within the experimental uncertainty of the lattice-parameter measurements. It has been postulated that retained austenite decomposes on tempering into the same product as martensite tempered at the same temperature. There is now considerable doubt on this point. The isothermal transformation product of both primary and retained austenite at the temperature in question here is bainite," and the present findings show that bainite and tempered martensite do not have the same matrix. Acknowledgments The authors would like to acknowledge the financial support of the Instrumentation Laboratory, Massachusetts Institute of Technology, and the United States Air Force.
Jan 1, 1957
-
Part XI – November 1968 - Papers - The Effect of Dispersed Hard Particles on the High-Strain Fatigue Behavior of Nickel at Room TemperatureBy G. R. Leverant, C. P. Sullivan
To evaluate the effect of a dispersion of nondeform-able, incoherent, second-phase particles on high-strain cyclic deformation and fracture, recrystallized TD-nickel (Ni-2ThO2) and a commercially pure nickel, Ni-200, were fatigued under strain control at total strain ranges varying from 0.009 to 0.036. Relative to the Ni-200, the slip at the surface of the TD-nickel was more wavy and discontinuous due to the presence of the thoria particles. This made crevice formation (incipient cracking) within slip bands more difficult in TD-nickel than in Ni-200. Both materials cyclically hardened to a constant (saturation) flow stress which increased with increasing plastic strain amplitude. Cellular substructures were developed in both materials during cycling. The cell size in TD-nickel was controlled by the thoria particle distribution and was independent of plastic strain amplitude over the range investigated. The cell size in Ni-ZOO was larger than that in TD-nickel at similar plastic strain amplitudes and was a function of plastic strain amplitude. These results, together with the cyclic stress-strain curves for both materials, are discussed in terms of a model for fatigue strain accommodation at saturation recently proposed by Feltner and Laird. NUMEROUS fatigue investigations have considered the interrelation of slip character, dislocation substructure, and cracking in pure metals and solid-solution alloys. However, except for the studies of the low-strain fatigue of internally oxidized copper alloys1 and cast, dispersion-strengthened lead,' little is known about the effects which small, incoherent, nondeform-able, second-phase particles have on cyclic deformation and cracking processes. Effects due to the particles alone are often obscured by a dislocation substructure introduced during thermomechanical processing of dispersion-strengthened metals. In the present study, recrystallized TD-nickel and a commercially pure nickel, Ni-200, were employed to evaluate the effect of a thoria dispersion on high-strai fatigue deformation and cracking at room temperature. I) MATERIAL AND EXPERIMENTAL PROCEDURE The TD-nickel was supplied by DuPont as a 5/8-in.-thick stress-relieved plate which had been subjected to a proprietary schedule of thermomechanical treatments, and the Ni-200 as 3/4-in. bar which was subsequently annealed for 2 hr at 850°C in argon resulting in an average grain diameter of 0.05 mm. The compositions of these materials are given in Table I. The microstructure of the TD-nickel consisted of elongated grains parallel to the primary working direction with an average width of 0.16 mm, Fig. l(a). Many fine annealing twins were present indicating that the starting material was in a recrystallized condition; this supposition was confirmed by the absence of of any extensive dislocation substructure, Fig. l(b). Sheetlike stringers parallel to the rolling direction were occasionally seen both within grains and at grain boundaries. Some approximately spherical particles about 2 in diam, which may correspond to exceptionally large thoria particle aggregates, were also present. The average Young's modulus of the plate material in the rolling direction was 21.8 X 106 psi which is consistent with a {100}<001>recrystalliza-tion texture3'* being prominent. In transmission microscopy, the 2.3 vol pct of thoria particles generally appeared to be uniformly distributed although some clusters, 0.1 to 0.3 in diam, of larger particles were observed as previously reported for TD-nickel sheet,5 and stringering of particles was present in some areas as welt. The average diameter of the thoria particles was 450A with a calculated mean planar center-to-center spacing of 2100A, as determined by quantitative metallographic analysis.= The 0.2 pct offset yield stress was 36,000 psi which agrees with the value predicted by the modified Orowan relation7 for edge dislocations bowing between thoria particles of the size and spacing observed in the present investigation. Fig. 2 illustrates the specimen design employed for the axial high-strain fatigue testing. Adapters were screwed onto the threaded portions of each specimen so that testing could be performed in the same manner as that reported for buttonhead specimens.8 Stressing was coincident with the working direction for both materials. The gage section of each specimen was electropolished and lightly etched prior to testing. The total strain was controlled, being varied between zero and a maximum tensile strain ranging from 0.009 to 0.036. In addition to these tests, a circum-ferentially notched TD-nickel specimen was cycled over a total strain range of 0.0075. The same strain
Jan 1, 1969
-
Metal Mining - Primary Blasting Practice at ChuquicamataBy Glenn S. Wyman
CHUQUICAMATA, located in northern Chile in the Province of Antofagasta, is on the western slope of the Andes at an elevation of 9500 ft. Because of its position on the eastern edge of the Atacama Desert, the climate is extremely arid with practically no precipitation, either rain or snow. All primary blasting in the open-pit mine at Chuquicamata is done by the churn drill, blasthole method. Since 1915, when the first tonnages of importance were removed from the open pit, there have been many changes in the blasting practice, but no clear-cut rules of method and procedure have been devised for application to the mine as a whole. One general fact stands out: both the ore and waste rock at Chuquicamata are difficult to break satisfactorily for the most efficient operation of power shovels. Numerous experiments have been made in an effort to improve the breakage and thereby increase the shovel efficiency. Holes of different diameter have been drilled, the length of toe and spacing of holes have been varied, and several types of explosives have been used. Early blasting was done by the tunnel method. The banks were high, generally 30 m, requiring the use of large charges of black powder, detonated by electric blasting caps. Large tonnages were broken at comparatively low cost, but the method left such a large proportion of oversize material for secondary blasting that satisfactory shovel operation was practically impossible. Railroad-type steam and electric shovels then in service proved unequal to the task of efficiently handling the large proportion of oversize material produced. The clean-up of high banks proved to be dangerous and expensive as large quantities of explosive were consumed in dressing these banks, and from time to time the shovels were damaged by rock slides. As early as 1923 the high benches were divided, and a standard height of 12 m was selected for the development of new benches. The recently acquired Bucyrus-Erie 550-B shovel, with its greater radius of operation compared to the Bucyrus-Erie 320-B formerly used for bench development, allowed the bench height to be increased to 16 m. Churn drill, blasthole shooting proved to be successful, and tunnel blasts were limited to certain locations where development existed or natural ground conditions made the method more attractive than the use of churn drill holes. Liquid oxygen explosive and black powder were used along with dynamite of various grades in blast-hole loading up to early 1937. Liquid oxygen and black powder were discontinued because they were more difficult to handle due to their sensitivity to fire or sparks in the extremely dry climate. At present ammonium nitrate dynamite is favored because of its superior handling qualities and its adaptability to the dry condition found in 90 pct of the mine. In wet holes, which are found only in the lowest bench of the pit and account for the remaining 10 pct of the ground to be broken, Nitramon in 8x24-in. cans, or ammonium nitrate dynamite packed in 8x24-in. paper cartridges, is being used. This latter explosive, which is protected by a special antiwetting agent that makes the cartridges resistant to water for about 24 hr, currently is considered the best available for the work and is preferred over Nitramon. Early churn drill hole shots detonated by electric blasting caps, one in each hole, gave trouble because of misfires caused by the improper balance of resistance in the electrical circuits. Primarily, it was of vital importance to effect an absolute balance of resistance in these circuits, the undertaking and completion of which invariably caused delays in the shooting schedule. Misfires resulting from the improper balance of electrical circuits, or from any other cause, were extremely hazardous, since holes had to be unloaded or fired by the insertion of another detonator. The advent of cordeau, later followed by primacord, corrected this particular difficulty and therefore reduced the possibility of missed holes. After much experimentation, the blasting practice evolved into single row, multihole shots, with the holes spaced 4.5 to 5 m center to center in a row 7.5 to 8 m back from the toe. Sucti shots were fired from either end by electric blasting caps attached to the main trunk lines of cordeau or primacord. The detonating speed of cordeau or primacord gave the practical effect of firing all holes instantaneously. Double row and multirow blasts, fired instantaneously with cordeau or primacord, proved to be unsatisfactory in the type of rock found at Chuquica-
Jan 1, 1953
-
Coal - Frothing Characteristics of Pine Oils in FlotationBy Shiou-Chuan Sun
THIS paper presents the design and operation of a frothmeter capable of measuring the frothing characteristics of pine oils and other frothing reagents. The experimental data show that the froth-ability of pine oil is governed by: 1—rate of aeration, 2—time of aeration, 3—height of liquid column, 4—chemical composition of pine oil, 5—pH value of solution, 6—temperature of solution, and 7—concentration of pine oil in solution. The effect of mineral particles on the behavior of froth also was studied, and the results can be found in a separate paper.' The results also show that the relative froth-abilities of pine oils in the frothmeter generally correlate with those in actual flotation, provided that other factors are kept constant. In addition to pine oils, the other well-established flotation frothers were tested, and the results are included. In this paper, compressed air frothing is the frothing process performed by means of purified compressed air, whereas sucked air frothing is the frothing process accomplished by purified air sucked into the glass cylinder by a vacuum system. The term vacuum frothing denotes that froth was formed by degassing of the air-saturated liquid under a closed vacuum system. Apparatus The frothmeter, shown in Fig. 1, is capable of re-producibly measuring the volume and persistence of froth as well as the volume of air bubbles entrapped in the liquid and is capable of being used for compressed air frothing, sucked air frothing, and vacuum frothing. Fig. la shows that for compressed air frothing, the apparatus consists of an airflow regulating system, 1-3; a purifying and drying system, 4-8; a standardized flowmeter to measure the rate of airflow from zero to 500 cc per sec, 9; and a graduated glass cylinder, 13; equipped with an air regulating stopcock, 10; an air chamber, 11; and a fritted glass disk to produce froth, 12. The fritted glass disk, 5 cm in diam and 0.3 cm thick, has an average pore diameter of 85 to 145 microns. The pyrex glass cylinder has a uniform ID of 5.588 cm and an effective height of 63 cm. The inside cross-sectional area of the glass cylinder was calculated to be 24.53 sq cm, or 3.8 sq in. For sucked air frothing, Fig. lb shows that the apparatus for compressed air frothing is used again, with the following modifications: 1—compressed air and its regulating system, 1-3, are eliminated; and 2—a vacuum system, 16, equipped with a vapor trap, 15, and a vacuum manometer, 17, is added. The vacuum system can be either a water aspirator or a laboratory vacuum pump. Any desired rate of airflow can be drawn into the glass cylinder, 13, by adjusting the opening of the air regulating stopcock, 10. The sucked air stream is cleaned by the purifying and drying system, 4-8, before entering the glass cylinder, 13. When this setup is used for vacuum frothing, the air regulating stopcock is closed. The frothmeter has been used for almost 3 years and has proved to give reproducible results, as illustrated in Table I. With a magnifying glass and suitable illumination, the frothmeter also can be used to study the attachment of air bubbles to coarse mineral particles.' Experimental Procedures Except where otherwise stated, the data presented were established by means of the compressed air method. The volume and persistence of froth were recorded respectively at the end of 4 and 6 min of aeration at a constant rate of airflow of 29.3 cc per sec, which is equivalent to 71.6 cc per sq cm per min, or 462.6 cc per sq in. per min. The aqueous solution for each test, containing 1000 cc of distilled water and 19.2 ± 0.5 mg frothing reagent, was adjusted to a pH of 6.9 0.2. The volume of froth is expressed as cubic centimeter per square centimeter and is equivalent to the height of the froth column (the distance between the bottom and the meniscus of the froth). The volume of froth was obtained by multiplying the height of froth by the cross-sectional area of the glass cylinder, 24.53 sq cm. Before each test, the glass cylinder, 13, was cleaned thoroughly with jets of tap water, ethyl alcohol, tap water, cleaning solution, tap water, and finally distilled water. The cylinder with stopcock,
Jan 1, 1953
-
Institute of Metals Division - Constitutional Investigations in the Boron-Platinum SystemBy F. Wald, A. J. Rosenberg
The general features of the constitution of the B-Pt system were determined using standard rnetal-lograph~c, thermoanalytic, and X-ray diffraction techniques. Three compound were found. Two of these, Pt3B and Pt,B, are formed by peritectic reactions at 523° and 890°C, respectively. The third, Pt3B,, is congruently melting with a flat maximum at 940°C but decomposes eutectoidally in to Pt,B ant1 boron nt - 600° to 650°C. THE low-temperature allomorph of boron (red, simple rhombohedra1 a boron) is of scientific and technological interest as an elemental semiconductor.' However, the studies of this material have been hampered by its reported instability above 1200"~ which precludes crystal growth from the melt (mp - 2200°C). Crystallization from platinum solutions has been suggested as an alternative crystal-growth technique, but has met with only limited success.' The technique depends upon the existence of a significant difference between the eutectic temperature and the transformation temperature of boron. In order to clarify the conditions for further crystal-growth experiments, we found it desirable to redetermine the main features of the B-Pt phase diagram since previous reports on the system1'5'6'7 are in marked disagreement. EXPERIMENTAL The experimental methods used were thermal analysis, metallography, X-ray analysis, and, to a lesser extent, measurements of microhardness. Most of the alloys were prepared from spectrograph-ically standardized boron obtained from Johnson-Matthey &Co., Ltd. (212 ppm impurities, exclusive of carbon and oxygen) and platinum powder obtained from F. Bishop & Co. (200 ppm impurities, mainly of other platinum group metals). Some alloys were also prepared with very high-purity, float-zone refined boron (99.9999 pct obtained from "Wacker Chemie" and extrahigh-purity platinum (99.999 pct) obtained from Johnson-Matthey & Co., Ltd. The reported results did not depend on the choices of these starting materials. Five-gram alloy specimens containing 10, 20, 25, 27.5, 30, 33.3, 34, 35, 37, 37.5, 38, 39, 40, 41, 42, 43, 45, 50, 55, 60, 70, and 80 at. pct B were made by melting the elements together in boron nitride crucibles using rf heating of a graphite susceptor, either in vacuum or under high-purity argon. All alloys were heated to at least 1800°C for -5 to 15 min. Most of the alloys did not wet the crucibles when the latter were outgassed by preheating under vacuum. In any event, no weight loss was detected after melting, and the nominal composition was assumed for all specimens. Thermal analysis on 2.5-g samples were carried out in boron-nitride crucibles under a vacuum of 5 x X torr. The apparatus was heated in a "Kan-thal A 1" wound furnace, which limited the maximum temperature to about 1100°C. The output of the indicator thermocouple was fed to a dc recorder with a 1-mv full-scale span and an adjustable zero. The apparatus was calibrated repeatedly, using the freezing points of high-purity aluminum, silver, and gold. The results justified the use of the NBS voltage vs temperature tables for Pt/Pt 10 pct Rh thermocouples. All thermal analyses were run at least twice and both the heating and cooling effects were recorded. Most of the alloys had a very strong tendency to supercool. However, the use of mechanical vibration permitted reproducibility within *5°C for all alloys, except in the region around 40 at. pct B. Only the cooling effects are plotted in Fig. 2, since they appear to be more reliable. For metallography, the alloys were cut with a diamond cutting wheel, cast in a polymethacrylate resin, ground and polished with diamond paste, and etched with dilute aqua regia, a common etch for platinum alloys. Both copper and molybdenum radiation were employed to obtain X-ray diffraction data using Debye-Scherrer cameras and a "Norelco" diffractometer Diffractometry with high scanning speeds (1 deg per min) using nickel filtered CuK, radiation was used to identify the main regions of the diagram. However, molybdenum radiation was used for the detection of boron, since the latter showed very strong absorption and fluorescence effects with CuK, radiation. RESULTS AND DISCUSSION Three intermediate compounds, corresponding to the compositions Pt3B, Pt2B, and Pt3B2, were found in the system. Fig. 1 reproduces their X-ray diffraction spectra, together with those of pure boron and pure platinum. As can be seen from the thermal-analysis data in Fig. 2, Pt3B and Pt2B are formed by
Jan 1, 1965
-
Iron and Steel Division - A Determination of Activity Coefficients of Sulfur in Some Iron-Rich Iron-Silicon-Sulfur Alloys at 1200°CBy Thomas R. Mager
An in.t!estigation has been made of the equilibrium conditions at 1200°C in the reaction between hydrogen sulfide gas and sulfur dissolved in Fe-Si alloys From this the equilibrium constant, activity coefficient, and activity of sulfur in solution were calculated. A number of studies of the equilibrium of sulfur with iron and iron alloys have given closely agreeing results from which the activity and free energy of the dissolved sulfur may be found. Sherman, El-vander, and chipman1 discussed the significant researches of dilute solutions of sulfur in liquid iron prior to 1950, and the results of this study indicated that the relationship between the ratio of PH2S/PH2 in the environment and the percentage of sulfur in solution is not a linear one. Morris and williams2 studied the equilibrium conditions in the reaction between hydrogen sulfide gas and sulfur dissolved in liquid iron and Fe-Si alloys, and reported that silicon dissolved in iron has a pronounced effect on the equilibrium conditions. They found that the activity of sulfur in iron is increased by the addition of silicon. At a silicon content of 4 pet the activity coefficient of sulfur was about twice that for sulfur dissolved in pure iron. Sherman and chipman3 investigated the chemical behavior of sulfur in liquid iron at 1600°C through the study of the equilibrium: H2 + S = H2S; K = PH2S/PH2 . 1/as [1] From the known equilibrium constant of the reaction between H2, H2S, and S and the experimental data, the activity of sulfur in the melt was determined. They found that the activity coefficient of sulfur defined as fs = as/%s is increased by silicon and decreased by manganese. Morris4 and Turkdogan5 also reported that manganese decreases the activity coefficient of sulfur in liquid iron and iron-base alloys. A recent technique of sulfur analysis developed by Kriege and wolfe6 of the Westinghouse Research Laboratories permits an accurate sulfur analysis of 0.5 * 0.2 ppm in the range of 0.1 to 3 ppm, whereas in the range of 3 to 50 ppm the accuracy is ±1 ppm. This technique of sulfur analysis was utilized in this experiment. Previous unpublished data reported that sulfur analysis by the combustion technique was not accurate below 20 ppm. EXPERIMENTAL PROCEDURE Five 5-lb ingots of high-purity Fe-Si were prepared. Three of these ingots were prepared without the addition of manganese but with a variation of silicon contents from 2 to 4 pet. The remaining two ingots contained 3 pet Si with the addition of manganese. Ingots were made at each of three silicon levels: 2, 3, and 4 pet. No alloys were made with less than 2 pet Si since below approximately 1.8 pet Si the binary alloy exhibits a to ? transformation. The two additional ingots of 3 pet Si-Fe were made at each of two manganese levels: 0.20 and 0.50 pet. To minimize the effects, if any, of impurities on the activity of sulfur on Si-Fe, the best metals available were used for melting. All ingots were vacuum-melted in magnesium oxide crucibles. After obtaining samples for chemical analyses, the ingots were processed. This consisted of hot rolling and subsequently cold rolling the alloys. Each ingot was hot-rolled at 1000°C, reheating between every pass to minimize grain growth. All heating was done in a protective argon atmosphere. The slabs were hot-rolled to strips 50 mils thick. After hot rolling, all the material was pickled to remove the scale formed on the surface of the strip during hot rolling. The material was then cold-rolled to 12-mil strips. Single strips of the material used in this experiment were hydrogen-annealed at 1200°C for 16 hr in an alumina tube. Chemical analyses of strips M-1, M-3, M-4, M-7, and M-8 are given in Table I. Sulfur, silicon, and manganese analyses were made from the millings from the cold-rolled 12-mil strips. The oxygen analyses were made from slugs of the as-cast material. The hydrogen sulfide used in these experiments was supplied from cylinders containing a mixture of argon and 1 pet hydrogen sulfide. The parts per million of hydrogen sulfide were determined from the analysis of the exit gas of the annealing furnace during each anneal. The flow rate of hydrogen was approximately 1 liter per min in all anneals. The
Jan 1, 1964
-
Metal Mining - Primary Blasting Practice at ChuquicamataBy Glenn S. Wyman
CHUQUICAMATA, located in northern Chile in the Province of Antofagasta, is on the western slope of the Andes at an elevation of 9500 ft. Because of its position on the eastern edge of the Atacama Desert, the climate is extremely arid with practically no precipitation, either rain or snow. All primary blasting in the open-pit mine at Chuquicamata is done by the churn drill, blasthole method. Since 1915, when the first tonnages of importance were removed from the open pit, there have been many changes in the blasting practice, but no clear-cut rules of method and procedure have been devised for application to the mine as a whole. One general fact stands out: both the ore and waste rock at Chuquicamata are difficult to break satisfactorily for the most efficient operation of power shovels. Numerous experiments have been made in an effort to improve the breakage and thereby increase the shovel efficiency. Holes of different diameter have been drilled, the length of toe and spacing of holes have been varied, and several types of explosives have been used. Early blasting was done by the tunnel method. The banks were high, generally 30 m, requiring the use of large charges of black powder, detonated by electric blasting caps. Large tonnages were broken at comparatively low cost, but the method left such a large proportion of oversize material for secondary blasting that satisfactory shovel operation was practically impossible. Railroad-type steam and electric shovels then in service proved unequal to the task of efficiently handling the large proportion of oversize material produced. The clean-up of high banks proved to be dangerous and expensive as large quantities of explosive were consumed in dressing these banks, and from time to time the shovels were damaged by rock slides. As early as 1923 the high benches were divided, and a standard height of 12 m was selected for the development of new benches. The recently acquired Bucyrus-Erie 550-B shovel, with its greater radius of operation compared to the Bucyrus-Erie 320-B formerly used for bench development, allowed the bench height to be increased to 16 m. Churn drill, blasthole shooting proved to be successful, and tunnel blasts were limited to certain locations where development existed or natural ground conditions made the method more attractive than the use of churn drill holes. Liquid oxygen explosive and black powder were used along with dynamite of various grades in blast-hole loading up to early 1937. Liquid oxygen and black powder were discontinued because they were more difficult to handle due to their sensitivity to fire or sparks in the extremely dry climate. At present ammonium nitrate dynamite is favored because of its superior handling qualities and its adaptability to the dry condition found in 90 pct of the mine. In wet holes, which are found only in the lowest bench of the pit and account for the remaining 10 pct of the ground to be broken, Nitramon in 8x24-in. cans, or ammonium nitrate dynamite packed in 8x24-in. paper cartridges, is being used. This latter explosive, which is protected by a special antiwetting agent that makes the cartridges resistant to water for about 24 hr, currently is considered the best available for the work and is preferred over Nitramon. Early churn drill hole shots detonated by electric blasting caps, one in each hole, gave trouble because of misfires caused by the improper balance of resistance in the electrical circuits. Primarily, it was of vital importance to effect an absolute balance of resistance in these circuits, the undertaking and completion of which invariably caused delays in the shooting schedule. Misfires resulting from the improper balance of electrical circuits, or from any other cause, were extremely hazardous, since holes had to be unloaded or fired by the insertion of another detonator. The advent of cordeau, later followed by primacord, corrected this particular difficulty and therefore reduced the possibility of missed holes. After much experimentation, the blasting practice evolved into single row, multihole shots, with the holes spaced 4.5 to 5 m center to center in a row 7.5 to 8 m back from the toe. Sucti shots were fired from either end by electric blasting caps attached to the main trunk lines of cordeau or primacord. The detonating speed of cordeau or primacord gave the practical effect of firing all holes instantaneously. Double row and multirow blasts, fired instantaneously with cordeau or primacord, proved to be unsatisfactory in the type of rock found at Chuquica-
Jan 1, 1953
-
Coal - Frothing Characteristics of Pine Oils in FlotationBy Shiou-Chuan Sun
THIS paper presents the design and operation of a frothmeter capable of measuring the frothing characteristics of pine oils and other frothing reagents. The experimental data show that the froth-ability of pine oil is governed by: 1—rate of aeration, 2—time of aeration, 3—height of liquid column, 4—chemical composition of pine oil, 5—pH value of solution, 6—temperature of solution, and 7—concentration of pine oil in solution. The effect of mineral particles on the behavior of froth also was studied, and the results can be found in a separate paper.' The results also show that the relative froth-abilities of pine oils in the frothmeter generally correlate with those in actual flotation, provided that other factors are kept constant. In addition to pine oils, the other well-established flotation frothers were tested, and the results are included. In this paper, compressed air frothing is the frothing process performed by means of purified compressed air, whereas sucked air frothing is the frothing process accomplished by purified air sucked into the glass cylinder by a vacuum system. The term vacuum frothing denotes that froth was formed by degassing of the air-saturated liquid under a closed vacuum system. Apparatus The frothmeter, shown in Fig. 1, is capable of re-producibly measuring the volume and persistence of froth as well as the volume of air bubbles entrapped in the liquid and is capable of being used for compressed air frothing, sucked air frothing, and vacuum frothing. Fig. la shows that for compressed air frothing, the apparatus consists of an airflow regulating system, 1-3; a purifying and drying system, 4-8; a standardized flowmeter to measure the rate of airflow from zero to 500 cc per sec, 9; and a graduated glass cylinder, 13; equipped with an air regulating stopcock, 10; an air chamber, 11; and a fritted glass disk to produce froth, 12. The fritted glass disk, 5 cm in diam and 0.3 cm thick, has an average pore diameter of 85 to 145 microns. The pyrex glass cylinder has a uniform ID of 5.588 cm and an effective height of 63 cm. The inside cross-sectional area of the glass cylinder was calculated to be 24.53 sq cm, or 3.8 sq in. For sucked air frothing, Fig. lb shows that the apparatus for compressed air frothing is used again, with the following modifications: 1—compressed air and its regulating system, 1-3, are eliminated; and 2—a vacuum system, 16, equipped with a vapor trap, 15, and a vacuum manometer, 17, is added. The vacuum system can be either a water aspirator or a laboratory vacuum pump. Any desired rate of airflow can be drawn into the glass cylinder, 13, by adjusting the opening of the air regulating stopcock, 10. The sucked air stream is cleaned by the purifying and drying system, 4-8, before entering the glass cylinder, 13. When this setup is used for vacuum frothing, the air regulating stopcock is closed. The frothmeter has been used for almost 3 years and has proved to give reproducible results, as illustrated in Table I. With a magnifying glass and suitable illumination, the frothmeter also can be used to study the attachment of air bubbles to coarse mineral particles.' Experimental Procedures Except where otherwise stated, the data presented were established by means of the compressed air method. The volume and persistence of froth were recorded respectively at the end of 4 and 6 min of aeration at a constant rate of airflow of 29.3 cc per sec, which is equivalent to 71.6 cc per sq cm per min, or 462.6 cc per sq in. per min. The aqueous solution for each test, containing 1000 cc of distilled water and 19.2 ± 0.5 mg frothing reagent, was adjusted to a pH of 6.9 0.2. The volume of froth is expressed as cubic centimeter per square centimeter and is equivalent to the height of the froth column (the distance between the bottom and the meniscus of the froth). The volume of froth was obtained by multiplying the height of froth by the cross-sectional area of the glass cylinder, 24.53 sq cm. Before each test, the glass cylinder, 13, was cleaned thoroughly with jets of tap water, ethyl alcohol, tap water, cleaning solution, tap water, and finally distilled water. The cylinder with stopcock,
Jan 1, 1953