Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Institute of Metals Division - Aging of Nickel Base Aluminum AlloysBy R. O. Williams
It is shown that Ni3Al precipitates homogeneously from nickel-rich alwminum alloys as plates on the (100) planes. Prior to actual precipitation a process occurs which is believed to be one of increasing short-range order. After precipitating the Ni3Al plates enlarge through competitive growth. Discontinuous precipitation can occur simultaneously with the above processes. Recent ideas of the origin of precipitation strengthening appear adequate to explain the hardness changes. REMARKABLY little appears to be known about the precipitation process in Ni-Al alloys in spite of their technical importance. This investigation originated to supply additional information about precipitation in general, this system in particular. Information on the structures and kinetics have been obtained through the use of hardness, X-rays, microscopy, calorimetry, and resistivity on high-purity alloys. PROCEDURES Six alloys, Table I, were prepared by melting carbonyl nickel and high-purity aluminum in alumina crucibles in vacuum and casting into 1-in. graphite molds. All rods were homogenized at least once at 1300°C for 24 hr prior to swaging and this was repeated on the first three alloys after 75 pct reduction. Alloy 4 could be reduced only 10 pct at 1000°C (probably in two-phase field) prior to fracture but 1/4-in. samples quenched from 1100°C were readily reduced cold. Alloy 5 was reduced 15 pct cold but failed on the next pass while alloy 6 of essentially the same aluminum content failed inter-granularly without apparent flow up to 1000°C. The alloys were heated in hydrogen at the elevated temperatures and formed thin, coherent aluminum oxide coatings which provided excellent oxidation resistance at lower temperatures. However, freshly prepared surfaces showed considerably less resistance at 500"to 700°C in air and apparently resulted in internal oxidation. As a consequence, low-temperature agings were carried out in evacuated tubes. RESULTS The isothermal hardening behavior of these alloys at 500"and 565C is given in Figs. 1 and 2. These results were obtained from samples cold worked 75 pct, recrystallized at 1000°C (1100°C for the 7.8 pct Al) and quenched in water. This recrystallization was used to give smaller grain sizes so as to obtain more uniform hardness values and the points represent an average of five readings. The electrical resistivity was measured on 1/16-in. wires quenched from 1000°C during aging at 495°C to give Fig. 3. The energy release and its rate are given in Fig. 4 for the 6.9 pct Al alloy during aging around 500°C. Inasmuch as this was a single run, its accuracy is not known but certainly the general shape and magnitudes are correct. The method used to obtain these results is described elsewhere.' Data for the aging at 600°, 700°, and 800°C of these alloys cold worked 50 pct are given in Fig. 5. Supplementary information from microscopy and X-ray diffraction have been included to indicate recrystallization, discontinuous precipitation and the appearance of superlattice lines from the Ni3Al. The hardness of these alloys as annealed, aged, cold worked, and cold worked and aged is given vs composition in Fig. 6. Those samples which were isothermally aged, Figs. 1 and 2, were reaged at 532°C and at successively higher temperatures for the indicated times to give the data of Fig. 7. These results as well as certain others, support the idea that the level of hardness reached for temperatures above 600°C are equilibrium values more or less independent of path. This being the case, the breaks in the curves would be the complete solution of the Ni,Al. The electrical resistivity versus temperatures for some of these alloys, both aged and unaged, is given in Fig. 8 along with those data from heating slowly (10 deg per day) to high temperatures. Interesting points include the lowering of the Curie temperature (the change in slope), the lack of any indications of a solubility limit and the large temperature coefficient for the Ni3Al. A slight break for Ni3Al around 100C shows up but this is not a Curie temperature as Ni3Al is not ferromagnetic down to -190°C. Metallographically both the nickel-rich solid solution and the Ni3Al appear very much like pure nickel. Profuse twin boundaries are present both
Jan 1, 1960
-
Institute of Metals Division - Gold-Rich Rare- Earth-Gold Solid SolutionsBy P. E. Rider, K. A. Gschneidner, O. D. McMasters
The solid solubilities for thirteen rare-earth metals in gold were determined by using the X-ray parametric method. Solubilities ranged from 0.1 at. pct for lanthanum in gold up to 8.8 at. pct for scandium in gold. The solubilities from lanthanum to gadolinium were very small and essentially constant, but a sharp increase occurred from gadolinium to scandium. The large solubilities for the heavy rare-earth metals were not expected because of the large size and electrochemical differences between rare-earth atoms and the gold atom. Contributions from first- and second-order elasticity theory plus an electronic contribution were found to reasonably account for a more favorable size factor. Electron transfer from the rare-earth metal to the gold Is thought to occur such that the resultant rare-earth and gold electronegativities are favorable for solid-solution formation. It was also found that this mutual adjustment of size and electronegutivity does not occur if the pure-metal size factors are greater than a critical value of 25 pet. The eutectic temperatures for ten systems were determined and these remained fairly constant at approximately 809 "C for the lighter lanthanide metal-gold systems until the Er-Au system was reached, at which Point the eutectic temperature successively increased reaching a maximum of 1040°C in the Sc-Au system. This rise was correlated to the size factor becoming more favorable for solid-solution formation at erbium. The valence state of ytterbium was found to change from two in the pure metal to three when ytterbium is dissolved in the gold matrix. RECENT results1 reported concerning the solubility of holmium in copper, silver, and gold, showed that the solubility of holmium in gold was quite large, 4.0 at. pct, compared with 1.6 in silver and 0.02 in copper. The small solubilities of holmium in silver and copper are quite reasonable in view of the large size difference (22.2 and 38.2 pct, respectively), large electronegativity difference (0.59 for both systems), and possible unfavorable valency factor (assuming one for silver and copper and three for holmium). The large solubility in gold, however, is unexpected because these same factors are also unfavorable for holmium and gold (22.5 pct size difference and 0.69 electronegativity difference), and because the light rare-earth metals, lanthanum, cerium, and praseodymium, have negligible solid solubilities in gold.2 In view of this unexpected behavior, it was felt that a study of the solid solubilities of most of the rare-earth metals in gold would be desirable to better understand the factors involved in the formation of solid solutions. Of the rare-earth metals added to gold in this study, only ytterbium is divalent in the pure metallic state (the other rare-earth metals are all trivalent) and many of its physical properties (such as the metallic radius, electronegativity, and so forth) are much different from those of the normal trivalent rare-earth metals.' The properties of ytterbium are such that one would expect solid-solution formation to be less favorable for ytterbium in gold than for any of the normal trivalent rare-earth metals. But chemically ytterbium is known to possess a stable trivalent state, and it is quite possible that ytterbium may alloy as a trivalent metal under certain conditions rather than as a divalent metal. Because of the dual valency nature and because so little is known about the alloying behavior of ytterbium, the gold-rich ytterbium-gold alloys are of special interest. EXPERIMENTAL PROCEDURE Materials. The gold used in this investigation had a purity of 99.99 pct with respect to nongaseous impurities. In general the rare-earth metals were prepared by reduction of the corresponding fluoride by calcium metal.3 The impurity contents of the metals used in this study are given in Table I. Preparation of Alloys. Two- or 3-g alloy samples were prepared by arc melting. The samples, with the exception of some of the Er-Au alloys, had weight losses of 0.5 pct or less. All alloy concentrations noted in this paper are nominal compositions. After arc melting, the alloys were wrapped in tantalum foil, sealed off in quartz tubing under a partial atmosphere of argon, homogenized for approximately 200 hr at 780°C, and then quenched in cold water. X-Ray Methods. The X-ray parametric method was used in determining the solubility of the rare-earth metals in gold. filings were sealed in small tantalum tubes by welding under a helium atmosphere. The tantalum tubes were then sealed in quartz tubing under a partial argon atmosphere, and annealed for times ranging from 1/2 to 3 hr (the length of time was inversely proportional to the an-
Jan 1, 1965
-
Institute of Metals Division - Effect of Temperature on Yielding in Single Crystals of the Hexagonal Ag-Al Intermetallic PhaseBy K. Tanaka, J. D. Mote, J. E. Dorn
It) an attempt to ulLcoce.lP the operative strain-rate-contl-olliy: dislocation nieclzanistns, specially oviented sizgle clystals of the intel-nzediate 1zexagonal phase containing Ag plus 33 at. pct A1 were tested in tension over a wide range of temperatures. Slip was observed to take place by the {0001} <1120> {l100} mechani fracture took place across the(i100) plane and winning occurred by the (i01Z) ?lechanisn. Basal slip exhibited a strong yield point over the -alzge from 77 to 450°K, the upper ,esolved shear st]-ess having the exceptionally high value of 10,500 psi over this entire ?-a?zge of tenzpei,atuves. The critical 9-esolved shear stress for prismatic slip decreased f7-om 48,000 psi at 4.3"K to 23,000 psi at 170°K (Region 1) follozcirg zt:lzich it decl>eased sloz&ly to 21,500 psi at 475°K (Res'on II); from 475" to 575°K (Regioz III), the c7-itical esolced shear stress dec'-eased precipitously to 2000 psi; and from 575" to 750°K (Region IV) it decreased less afi'dly to a low value of about 500 psi. Pvistintic slip in Region I was pobably controlled by the tliel-nally activated riecharzisui of nucleation and g,-ozcth of kinks in dislocations lying in Peierls potential troughs. In Region II for prismatic slip the critical 1-esolved shear stress was slzocn to be deteemined by sh0l.t-range 01-dering, Overall the forgiorz fo basal slip, 7.c.lre1-e a Strong yield-point phenorlienu ia7as observed, the critical vesolved slzea?-stress was shoztn to be determined by n conibirzation 0-f Szizuki locking and short-range-order Izavderzizg, The precipitous decrease in the critical resolved shear stress with increase in ter,/pe7-atrir-e over Region HI was tentatively ascribed to a decrease in the degree of slort-)ange 07-del;iqq (0)- clusteing) and also the effect of fluctuations the degree of o?der, It is at pgreser2t zrtzce)taitz as to 1t1hethe1- these or other possi1)le effects are also ,esponsible. fo- the data obsel-ved 172 Region IV. 1NTEREST in inter metallic compounds stems not only from their role in dispersion hardening of polyphase alloy ystems but equally from their potentialities for high strength, hardness, and stability not only at atmospheric temperatures but especially at elevated temperatures. As summarized in a re- cent symposium of the Electrochemical Society on "Mechanical Properties of Inter metallic Compound", most of the experimental evidence regarding the mechanical behavior of intermetallic compounds centers about the effect of temperature on the hardness and ductility of polycrystalline specimens. The available data reveal that the plastic behavior of intermetallic compounds might be rationalized in terms of the usual dislocation mechanisms appropriate to a solid solutions providing the additional complexities arising from crystal structure, long-range ordering, short-range ordering, and defect lattices are taken into consideration. It is apparent, however, in terms of the history on a solid solutions, that a complete detailed mechanistic rationalization of dislocation processes may not be possible until the deformation processes are studied in single crystals of intermetallic compounds. The present paper contains a preliminary report on the plastic behavior of single crystals of the hexagonal Ag-A1 intermetallic phase over a wide range of temperatures. The results confirm the thesis that single crystal data provide a most effective method of identifying operative dislocation mechanisms in intermetallic compounds. EXPERIMENTAL TECHNIQUES Several factors prompted the selection of the hexagonal Ag-A1 intermetallic phase for this preliminar investigation on the plastic properties of single crystals of intermetallic compounds: 1) This phase has a wide solubility range5 which would permit future investigations on the effect of composition and axial ratios on slip mechanisms. 2) Although it undoubtedly exhibits short-range ordering (or clustering) this intermetallic phase is free from complexities arising from long-range ordering.6 3) Since the atomic radii of aluminum and silver are practically identical, the possible complications due to Cottrell locking are minimized. 4)Whereas the dislocations on the basal planes are expected to dissociate into Shockley partials and are thus susceptible to Suzuki locking, those on the prismatic planes probably remain complete. 5) The axial ratio, being 1.61, is almost ideal, suggesting that short-range ordering may be almost spherically symmetrical. The present investigation was conducted exclusively with the hexagonal Ag-A1 alloy containing 33 at. pct Al. Preliminary investigations revealed that this alloy undergoes basal slip by the (0001)
Jan 1, 1962
-
Institute of Metals Division - Effect of Nitrogen on Sigma Formation in Cr-Ni Steels at 1200°F (650°C)By C. H. Samans, G. F. Tisinai, J. K. Stanley
The addition of nitrogen (0.10 to 0.20 pct) to Fe-Cr-Ni alloys of simulated commercial purity results in a real displacement of the u phase boundaries to higher chromium contents. The effect is small for the (Y + s)? boundary, but is pronounced for the (y + a +s)/(y + a) boundary. Although there is an indication of an exceptionally large shift of the n boundaries to higher chromium contents, especially in steels with nitrogen over 0.2 pct, the major portion of this apparent shift results from the fact that carbide and nitride precipitation cause "chromium impoverishment" of the matrices. The effect of combined additions of nitrogen and silicon to the Fe-Cr-Ni phase diagram is demonstrated also. Nitrogen can nullify the effect of about 1 pct Si in shifting the (y + o)/? phase boundary to lower values of chromium at all nickel levels from 8 to 20 pct. NItrogen can nullify this U-forming effect of about 2 pct Si at the 8 pct Ni level, but not at the 20 pct Ni level. The alloys studied were in both the cast and the wrought conditions. There are indications that the u phase forms more slowly in the cast alloys than in the wrought alloys if both are in the completely austenitic state. The presence of 6 ferrite in the cast alloys accelerates the formation of U. Cold working increases the rate of o formation in both cast and wrought alloys. THE major improvement in Fe-Cr-Ni austenitic alloys in recent years has been in the addition or removal of minor alloying elements to facilitate better control of corrosion resistance, sensitization, and heat resistance. One shortcoming of the austenitic Fe-Cr-Ni alloys, which never has been completely circumvented, is their propensity toward u formation. In the AISI-type 310 (25 pct Cr-20 pct Ni) and type 309 (25 pct Cr-12 pct Ni) steels, sufficient amounts of u phase can form, if service or treatment is in a suitable temperature range, to cause severe embrittlement. Also, there is a growing conviction that this phase may be contributory to some unexpected decreases in the corrosion resistance of certain of the 18 pct Cr-8 pct Ni-type steels. The present paper discusses the effect of nitrogen additions on the location of the (r+u)/d and the (y+a+u)/(y+a) phase boundaries in the ternary Fe-Cr-Ni system, for cast and wrought alloys of simulated commercial purity, and in similar alloys containing up to about 2.5 pct Si. The objective is to define compositional limits for alloys which will not be susceptible to u formation when used near 1200°F (650°C). An excellent review of the early studies of the u phase in the Fe-Cr-Ni system has been compiled by Foley.1 Rees, Burns, and Cook2 have determined a high purity phase diagram for the ternary system, whereas Nicholson, Samans, and Shortsleeve3 are- stricted themselves to a portion of the simulated commercial-purity phase diagram. Both groups of investigators show almost an identical position for the commercially significant (y+u)/y phase boundary. Further comparison of the work of the two groups indicates that, below the 8 pct Ni level, the commercial alloys have a decidedly greater propensity toward u formation than the high purity alloys. The two groups of workers agreed that both the AISI-type 310 (25 pct Cr-20 pct Ni) and the type 309 (25 pct Cr-12 pct Ni) steels are well within the (y+~) region and that the 18 pct Cr-8 pct Ni-type alloys straddle the U-forming phase boundaries. Nicholson et al.3 showed, in addition, that these boundaries shift toward lower chromium contents if greater than nominal amounts of silicon or molybdenum are added. The effect of nitrogen on the location of the s phase boundaries in the Fe-Cr-Ni system has not been known with any certainty. In 1942, an approach to this problem was made by Krainer and Leoville-Nowak,' but at that time they apparently were unaware of the slow rate of s formation in strain-free samples and aged their samples for insufficient times, e.g., 100 hr at 650°C (1200°F) and 800°C (1470°F). For this reason, it would be expected that their (y+ u) /y boundary would be shifted toward lower chromium contents (restricted ?-field) when equilibrium conditions were approximated more closely. Procedure for Studying the Alloys The alloys used were prepared in the following way: Heats of 200 lb each were melted in an induction furnace. A 5 lb portion of each heat was poured into a ladle containing an aluminum slug for de-
Jan 1, 1955
-
Drilling – Equipment, Methods and Materials - A Laboratory Study of Rock Breakage by Rotary Drill...By B. E. Eakin, R. T. Ellington
An apparatus and a procedure for determining the viscosity behavior of hydrocarbons at pressures up to 10,000 psia and temperatures between 77 and 400° F are described. The equipment is suitable for measuring viscosity of either the liquid or vapor phases or the fluid above the two-phase envelope for systems exhihiting retrograde phenomena, according no the phase state of the system within these ranges of temperature and pressure. Equations are developed for calculation of viscosity from the experimental measurements, and new data for the viscosities of ethane and propane at 77° F are reported. INTRODUCTION With the advent of higher pressures and temperatures in industrial processes and deep petroleum and natural gas reservoirs, demand has increased for accurate values of physical properties of hydrocarbons under these conditions. Proportionately, more frequent occurrence of natural gas and condensate-type fluids is encountered as fluid hydrocarbons are discovered at greater depths. This increases the importance, to the reservoir engineer, of being able to predict accurately the physical properties of light hydrocarbon systems in the dense-gas and light-liquid phase states. Reliable gas viscosity data are limited primarily to measurements made on pure components near ambient temperature and at low pressures. Few investigations have been reported for high pressures, and except for methane, data on light hydrocarbons are subject to question. This is demonstrated by the large discrepancy between sets of data on the same component reported by different investigators. For mixtures in the dense gas and light liquid regions and for fluids exhibiting retrograde behavior there are very few published experimental data. Viscosity data for methane have been reported by Bicher and Katz,1 Sage and Lacey,12 Comings, et al,3 Golubev,3 and Carr,3 with good agreement among the last three sets of data. Comings, Golubev and Carr utilized capillary tube instruments for which the theory of fluid flow is well established. The theory permits calculation of the viscosity directly from the experi- mental data and dimensions of the instrument alone. Sage and Lacey, and Bicher and Katz used rolling-ball viscometers. The theory of the rolling-ball viscometer has not been completely established, and these instruments presently require calibration by use of fluids of known viscosity behavior before viscosities of test fluids can be measured. To obtain accurate data it is necessary that the rolling-ball viscometers be calibrated by use of fluids of density and viscosity similar to the test fluids, a difficult selection for the gas phase. From the methane data and experimental tests on various natural gases, Carr developed a correlation for predicting the PVT behavior of light natural gases.2,3,4 This correlation was based on data for a very limited composition range; its application to rich gases and condensate fluids is questionable. The object of this investigation is to develop an instrument which can be used to obtain viscosity data at reservoir temperatures and pressures, for rich gases, condensate-type systems above the two-phase envelope and light liquid mixtures. These data will be used in an effort to develop correlations to represent the viscosity behavior of these fluids. APPARATUS In a previous viscosity study Carr2 utilized a modified Rankine capillary viscometer configuration," Fig. 1. In this instrument the gas to be tested is forced through the capillary tube in laminar flow by motion of a mercury pellet in the fall tube, the measured displacement time being that required for the mercury slug to move between the brass timer rings. The viscometer is constructed of glass and mounted in a steel pressure vessel. The test gas pressure in the viscometer is balanced by an inert gas (usually nitrogen) in the vessel. Excellent results have been obtained with instruments of this type, with Carr2 and Comings5 reporting repro-ducibilities of 99.5 to 99.3 per cent and an estimated absolute accuracy of 99 per cent. However, these instruments have limitations which have precluded their use for liquids. The need for maintaining a balance between pressures of the test fluid and inert gas in the viscometer vessel presents operating problems, and requires charging the test fluid to the viscometer very slowly. The principle drawback to the Rankine unit is behavior of the mercury slug which provides the pressure differential across the capillary. When even trace quantities of propane or heavier hydrocarbons are present in the test gas, the mercury tends to subdivide
-
Part VI – June 1969 - Papers - The Effects of Solute Additions on the Stacking Fault Energy of a Nickel-Base SuperalloyBy P. S. Kotval, O. H. Nestor
Stacking fault energy measurements of nickel-base alloys have been mainly confined to binary and ternary systems. In this paper, the stacking fault energy has been measured by the rolling texture method in a series of ten alloys which comprise successive additions of Cr, Mo, Fe, and C to pure nickel, eventually resulting in an alloy of the composition of Hastelloy alloy X. The alloys studied here are single-phase, solid solutions with the exception of two alloys in which some undissolved particles of "primary" carbide have been retained. It is found that successive additions of chromium, molybdenum, and iron all lower the stacking fault energy, with iron having only a minor effect. The stacking fault energy is found to increase when carbon is added in solid solution. The results from the rolling texture measurements are correlated with thin foil observations of dislocation substructures in these alloys. In a recent paper' it was pointed out that the dislocation substructure of various superalloy matrices could be classified into three broad categories based on 'high', 'medium', and 'low' stacking fault energy. It has also been demonstrated2 that the dislocation substructure in each of these categories has a well defined role in the nucleation of strengthening precipitates which is different from the role played by the dislocation substructure in other categories. Thus, it becomes desirable to understand the influence of various solute elements on the stacking fault energy and hence on the dislocation substructure of the matrix, before any further development of superalloys by mi-crostructural predesign can be undertaken. Recently, Beeston and France have studied the influence of increasing solute additions on the stacking fault energy of a series of binary nickel-base alloys relevant to the Nimonic series using the rolling texture method, and have then estimated the effect of a given alloy addition in five commercial Nimonic alloys. However, comparison with stacking fault energy data from other investigations''5 suggests that the influence of a given solute element in a nickel-base binary system is not necessarily the same in a ternary or more complex superalloy system. Accordingly, the present work was undertaken to study the effect of successive addition of solute elements to pure nickel, the final composition being the nominal composition of Hastelloy X. The rolling texture method of stacking fault energy measurement was used since it can be used for the whole range of stacking fault energy values and does not have the disadvantage of, say, the Node method which is only applicable to low values of stacking fault energy. In addition, the rolling texture method provides a means of determining the stacking fault energy which is statistically more significant than that provided by other methods. EXPERIMENTAL TECHNIQUES Button heats of alloys of the compositions shown in Table I were prepared. Each button was remelted not less than four times. After a slight deformation (approximately 5 pct) all alloys were homogenized at 2200°F except alloys, H . I, and J. Alloys H and I were solution heat treated at 2150°F and alloy J at 2282OF. The buttons were cold worked by rolling, using "end-to-end" passes and intermediate anneals at the homogenization temperatures mentioned above. After each annealing treatment the samples were rapidly water quenched to avoid any precipitation. In alloys F and I, however, a few particles of "primary" carbides were retained even after the homogenization treatments at the temperatures mentioned above. Part of the solution heat treated material was cold worked to 0.04-in.-thick sheet and the penultimate reduction was -50 pct of deformation as recommended by Dillamore et al. All annealing was carried out in vacuo within sealed quartz capsules. Some of the material from each alloy was rolled down further to 0.004 in. strip for thin foil transmission electron microscopy specimens. Specimens of this strip were annealed at the homogenization temperature for 1 hr and then strained 7 pct by rolling at room temperature. Thin foils were prepared from the strip specimens by the 'window" technique using an Ethanol-Perchloric acid electrolyte at 32°F and a voltage of 22 v. Stainless steel cathodes were employed. All transmission electron microscopy was performed in a JEM-7 electron microscope using an accelerating voltage of 100 kv. Specimens from the 0.04 in. sheet which had been rolled -60 pct in the final pass were electropolished to remove the surface layers to a depth of approximately 0.002 in. Rolling texture pole figures for all the alloys were determined using a Schulz ring and nickel filtered CuKa radiation at 50 kv and 20 ma. The texture parameter Io/(lo + I,,) (where Io is the
Jan 1, 1970
-
Part I – January 1969 - Papers - Kinetics of Oxygen Evolution at a Platinum Anode in Lithium Silicate MeltsBy A. Ghosh, T. B. King
The kinetics of the discharge reaction: 20'- (in silicate melt) = O,(g) + 4e- at a platinum anode in lithium silicate melts have been studied al 1350°C by galvanostatic methods. Plots of the sleady-state overpotential, q, as a function of the logarithm of the current density, i, showed injlections and were linear only at high current densities. The value of the overpotential was influenced by bubbling gas through the electrolyte. The ocer potential was also studied as a function of time. The rise and decay of overpotential were very slow processes. At low current densities transport is the likely rate-controlling process but at high current densities passivation of the electrode, Presumably by an oxide film on the surface, seems to be a contributory functor. IT is well-established that molten silicates behave as electrolytes'5 and, except in a few cases,6 conduction is entirely ionic. Moreover, it is supposed that a possible, and perhaps predominant, mechanism for phase boundary reactions between metals and slags is similar to that in corrosion whereby anodic and cathodic processes occur at unrelated sites, the metal serving to conduct electrons.1'8 Thus electrochemical studies of some slag-metal reactions would seem to be a useful way to diagnose the rate-controlling steps in the overall reaction. The electrochemical method is, in principle, a better diagnostic tool than the direct chemical method for the following reasons: 1) The partial electrochemical reactions, which are simpler than the overall reaction, may be studied individually. 2) The rate of reaction can be controlled at will and independently of the concentrations of reactants. 3) Fast reactions can be studied by relaxation methods.' Esin and his coworkers5'10"12 have pioneered such studies in silicates and have deviloped some ingenious techniques. Not all of their findings, however. can be accepted without a good deal of further work. In this investigation, the kinetics of the oxygen discharge reaction: 202- (in silicate melt) = Oz(g) + 4e- [I] at a platinum electrode were studied by both steady-state and transient galvanostatic techniques. Interest in this reaction was first developed as a result of the findings of Fulton and chipman13 that the reduction of silica, in a silicate slag, by carbon, dissolved in liquid iron, is a very slow reaction. Subsequent work, for example, by Rawling and ~lliott,'~ has demonstrated that the reaction under these conditions must be slow, because the rate is limited by diffusion of oxygen in the iron to the metal-crucible phase boundary at which a CO bubble may be nucleated. Further work by Tarassof,'~ in which the reduction of silica by aluminum dissolved in copper was studied, has shown that under these conditions, where carbon monoxide evolution is not involved, control of the reaction rate resides in diffusion of silica in the slag phase. However, there is no practical way of inducing sufficient convection in the system to make it clear that the phase boundary reaction is indeed fast. The overall reaction of silica reduction involves the discharge of silicon ions at cathodic sites and oxygen ions at anodic sites. In the examples cited, the discharged ions are dissolved in a liquid metal. In the present study of oxygen ion discharge, gaseous oxygen may be evolved at high current densities or oxygen may simply dissolve, possibly as oxygen molecules, in the silicate at very low current densities. The discharge of an oxygen ion at an anode must, in silicates less basic than the orthosilicate composition, be preceded by a reaction in the vicinity of the electrode, such as: which makes oxygen ions available. Platinum was chosen as the working electrode since it is comparatively inert to oxygen and is, therefore, expected to come rapidly into equilibrium with the electrolyte and with gaseous oxygen. Minenko, Petrov, and Ivanova16 have measured the electromotive force at a platinum electrode in molten silicates as a function of the partial pressure of oxygen in the atmosphere, the concentration of oxide ions in the melt, and the temperature. They found platinum to behave as a reversible oxygen electrode. At two different oxygen pressures, Po2 (I) and Pq (11). the electromotive force is given by: where F is the Faraday constant, equal to 23,060 cal per v equivalent, indicating that the electrode reaction is as written in Eq. [I.]. Platinum has been similarly used in molten silicates by other inve~ti~ators. "'~~ In this investigation platinum was used only as an anode, since a current deposits other elements on its surface and changes its characteristics.
Jan 1, 1970
-
Part II – February 1969 - Papers - The Interaction of Crystal Boundaries with Second- Phase ParticlesBy J. Lewis, J. Harper, M. F. Ashby
A grain boundary in a metal interacts with second-phase particles, which exert a pinning force (first estimated by Zener) on the boundary opposing its motion. We have computed the shape of boundaries which interact with more or less spherical second-phase particles and have constructed a soap-film model to reproduce the shape of the boundary surface. An important result is that measurement of this shape allows the pressure, or driving force, on the boundary to be measured. We hare applied this technique to grain boundaries in two alloys and hate measured the pinning force exerted by single second-phase jwrticles on the boundaries. It is in good agreement with Zener's estimate. J\. boundary between two grains, or two bulk phases, interacts with small inclusions or particles of a second phase, whether they are gas or solid. This interaction means that the boundary, forced to migrate by a difference in free energy between the material of the two grains or phases which it separates, exerts a force on a particle which it touches, tending to drag it forward. (The movement of inclusions through metals under the influence of this force, has, in fact, been observed. 1-3) Equally, the particle can be thought of as exerting a pinning force on the boundary, tending to hold it back. Zener (in a celebrated private communication4) first realized that this interaction, and the resulting pinning force, existed. His calculation of its magnitude was crude but adequate: a spherical inclusion of radius r blanks off an area nr2 of the boundary on which it sits; since the boundary has an energy of rMM x per unit area, the blanlung-olf decreases the energy of the system by MM: this energy is returned to the system if the boundary is pulled free from the inclusion— a forward movement of the boundary by a distance r will do this—so that the maximum pinning force is Trrym.M- A similar argument can be made for inter-phase boundaries. The nature of the particle itself did not enter this, or two subsequent treatments.5,6 When it is considered, tic leifthe energyoftheb a) The boundary may enter and pass through the particle if the energy of the boundary is lower within the particle than in the matrix. Fig. l(r/). Certain coherent precipitate particles behave like this. h) More usually, the boundary will bend round the particle, enveloping and bypassing it. Fig. l(b). In doing so, it changes the structure and energy of the interface between the particle and its matrix. This means that the boundary does not touch the particle surface at right angles, as early treatments assumed,5'9 but at some angle a which depends on this change in surface energy of the particle, and can be calculated from the equilibrium of surface tensions. Most precipitate particles and inclusions behave like this. Gas bubbles or liquid drops can be regarded as belonging to either group. The progress of bypassing is conveniently measured by the angle shown in Fig. 1. When the nature of the particle is ignored, its maximum pinning force is exerted when - 45 deg. When it is considered, this critical value of is found to depend on a and thus on the nature of the particle. The maximum pinning force lies between nryMM and 2jtjMM (Appendix 1). not very different from Zener's result. In reality, a boundary between crystals has a specific energy and tension which varies with the orientation of the boundary. Furthermore, recent experiments7 indicate that such a boundary is not atom-ically smooth, but has steps on it: migration of the boundary corresponds to the sweeping of these steps across the boundary surface, like the Frank model of crystal growth from the vapor. This means that the interaction of a boundary with particles should really be considered in terms of the way in which particles hinder the movement of these steps. To suppose a grain boundary or interphase boundary to be smooth, and to ignore the variation of its energy with orientation, is to liken it to a soap film. The advantage of this soap film approximation, which we have used throughout this paper, is that interaction energies and boundary shapes can be calculated easily. We have done this by numerical computation and by using a soap film model, and have compared the results with grain boundaries in an aluminum-based and a copper-based alloy. It turns out that the shape of the boundary which bulges between particles allows the pressure an it to be calculated; that is, the local driving force an the boundary can be measured. This has allowed us to check the Zener relationship experimentally.
Jan 1, 1970
-
Institute of Metals Division - The Solubility and Precipitation of Nitrides in Alpha-Iron Containing ManganeseBy J. F. Enrietto
Internal friction measurements were used to determine the effect of manganese on the solubility and precipitation kinetics of nitrogen. Manganese, in concentrations up to 0.75 pct, has little effect on the solubility at temperatures above 250°C. On the other hand, at Concentrations as low as 0.15 pct, manganese inhibits the formation of iron nitrides, especially Fe4N, even though it may not form a precipitnte itself. The precipitation and solubility of carbides and nitrides have been extensively investigated in the pure Fe-C and Fe-N systems.1-3 In recent years, some effort has been ispent in studying the influence of substitutional alloying elements on the behavior of carbon and nitrogen in ferrite.4 -7 In particular Fast, Dijkstra, and Sladek have investigated the effect of 0.5 pct Mn on the internal friction and hardness during the quench aging of Fe-Mn-N alloys.', ' They found that at low temperatures (below 200°C) the presence of 0.5 pct Mn greatly retarded quench aging. For example, after 66 hr at 200°C very little precipitation had taken place in the iron alloyed with manganese, whereas precipitation was complete after a few minutes in a pure Fe-N alloy. The effect of varying the manganese content and the details of the precipitation process were not mentioned in these papers. Fast' postulated that manganese causes a local lowering of the free energy of the lattice with a resulting segregation of nitrogen atoms to these low energy sites. The segregated nitrogen atoms are bound so tightly to the manganese atoms that they cannot form a precipitate. The internal friction measurements of Dijkstra and Sladek tended to confirm the concept of segregation of nitrogen around manganese atoms, and the increase in free energy on transferring a mole of nitrogen atoms from a segregated to a "normal" lattice site was computed to be - 2800 cal. Dijkstra and Sladek9 distinguished between two types of precipitates: ortho, a nitride of appreciably different manganese content than that of the matrix, and para, a nitride with a manganese content essentially that of the matrix. With each type of precipitate a solubility, again designated ortho or para, can be associated. Since the internal friction maximum in alloys which were aged several hours at 600" C dropped almost to zero, Dijkstra and Sladek9 concluded that the ortho solubility must be very low. The effect of temperature on the ortho and para solubilities has no1: been investigated. There are obviously several gaps in our knowledge concerning the influence of manganese on the behavior of nitrogen in a-iron. It was the purpose of the experiments described in this paper to determine the following: 1) The ortho and para solubilities of nitrogen as a function of temperature. 2) The details of the precipitation process at elevated temperatures. 3) The effect of varying the manganese concentration on the above phenomena. EXPERIMENTAL PROCEDURE Internal friction is conveniently employed in studying the precipitation of nitrides and/or carbides from a -iron because it is one of the few parameters, perhaps the only one, which is not affected by the presence of the precipitate itself. For this reason, internal friction techniques were heavily relied upon in the present experiment. A) Preparat of -. All specimens were prepared from electrolytic iron and electrolytic manganese. Alloys containing 0.15, 0.33, 0.65, and 0.75 wt pct Mn were vacuum melted and cast into 25 lb ingots. After being hot rolled to 3/4 in. bars, the ingots were swaged and drawn to 0.030 in. wires. The wires wen? decarburized and denitrided by annealing at 750° C for 17 hr in flowing hydrogen saturated with warer vapor. To obtain a medium grain size, - 0.1 mm, the wires were then heated to 945oC, allowed to soak for 1 hr, furnace cooled to 750°C, and water quenched. Subsequent internal friction measurements showed that this procedure reduced the nitrogen and carbon concentrations of the alloys to less than 0.001 wt pct. The wires were nitrided by sealing them in pyrex capsules containing anhydrous ammonia and annealing them for 24 hr at 580°C, the nitrogen being retained in solid solution by quenching the capsule into water. Immediately after quenching, the wires were stored in liquid nitrogen to prevent any precipitation of nitrides. By varying the pressure of ammonia in the capsule, it was possible to produce any desired nitrogen concentration. B) Internal Friction. The internal Friction measurements were made on a torsional pendulum of the Ke type,'' a frequency OF 1. or 2 cps being used. For
Jan 1, 1962
-
Iron and Steel Division - Investigation of Bessemer Converter Smoke ControlBy A. R. Orban, R. B. Engdahl, J. D. Hummell
The initial phase of a research program on smoke abatement from Bessemer converters is described. In work sponsored by the American Iron and Steel Institute, a 300-lb experimental Bessemer converter was assembled to simulate blowing conditions in a commercial vessel. Measurements of smoke and dust were also made in the field on a 30-ton commercial vessel. During normal blows the dust loading from the laboratory converter averaged 0.51 lb per 1000 lb of exhaust gas. This was similar to the exhaust-gas loading of a commercial vessel. The addition of hydrogen to the blast gas of the laboratory converter caused a decided decrease in smoke density. Smoke was also reduced markedly when methane or ammonia was added instead of hydrogen. The research is continuing on a bench-scale investigation of the mechanism of smoke formation in the converter process. DURING the past 2 years, on behalf of the American Iron and Steel Institute, Battelle has been conducting a research program on the control of emissions from pneumatic steelmaking processes. The objective of the research program is to discover a practical method for reducing to an unobjectionable level the emission of smoke and dust from Bessemer converters. PRELIMINARY INVESTIGATION Although conceivably some new collecting technique may be devised which would be economically practicable for cleaning Bessemer gases, no such system based on presently known principles seems feasible because of the extremely large volume of high-temperature gases involved. Hence, the research is being directed toward prevention of smoke formation at the source. A thorough review was first made of former work to determine the present status of the cleaning of converter gases. No published work was found on work done in the United States on collecting smoke or on preventing its formation in the bottom-blown, acid-Bessemer converter. In Europe, however, a number of investigations have been made on the basic-Bessemer converter. Kosmider, Neuhaus, and Kratzenstein1 conducted tests on a 20-ton converter to obtain characteristic data for dust removal and the utilization of waste heat. They concluded that because of the submicron size of the dust, special equipment would be necessary to clean the exhaust gases. Dehne2 conducted a large number of smoke-abatement experiments at Duisburg-Huckingen in a 36-ton Thomas converter discharging into a stack. A number of wet-scrubbing and dry collectors were tried unsuccessfully. A waste-heat boiler and electrostatic collector with necessary gas precleaners was felt to be the best solution for this particular plant. Meldau and Laufhutte3 determined that the particle size was all below 1 µ in the waste gas of a bottom-blown converter. Sel'kin and zadalya4 describe the use of oxygen-water mixtures injected into a molten bath in refining open-hearth steel. They claim that with use of oxygen-water mixtures the amount of dust formed was reduced between 33.3 and 20 pct of its previous level, and emission of brown smoke almost ceased. Pepperhoff and passov5 attempted unsuccessfully to find some correlation between the optical absorption of the smoke, the flame emission, and the composition of the metal in a Thomas converter in order to determine automatically the metallurgical state in the melt. In a recent U. S. Patent (NO. 2,831,762)' issued to two Austrian inventors, Kemmetmuller and Rinesch, the inventors claim a process for treating the exhaust gases from a converter. By their method the inventors claim that the exhaust gases from the converter are cooled immediately after leaving the converter to a degree that oxidation of the metal vapors and metal particles to form Fe2O3 is inhibited in the presence of surplus oxygen. Gledhill, Carnall, and sargent7 report on cleaning the gases from oxygen lancing of pig iron in the ladle. They claim the Pease-Anthony Venturi scrubber removed 99.5 + pct of the smoke, thereby reducing the concentration to 0.1 to 0.2 grain per cu ft, which resulted in a colorless stack gas after the evaporation of water. Fischer and wahlster8 developed a small basic converter and compared the metallurgical behavior of the blow with that of a large converter. Later work by Kosmider, Neuhaus, and Hardt9 on the use of steam for reduction of smoke from an oxygen-enriched converter confirmed that the cooling effect of steam is detrimental to production. From review of all of the published information on the subject, it was concluded that a practical solution to the smoke-elimination problem had not been found. Accordingly, it was deemed desirable to investigate the feasibility of preventing the initial formation of smoke in the converter.
Jan 1, 1961
-
Extractive Metallurgy Division - Purification of GeGl4 by Extraction With HCl and ChlorineBy H. C. Theuerer
GeC14 may be purified by extraction with HCI and chlorine. The process is as effective for the removal of AsCI:, as the more cumbersome distillation methods usually used for this purpose. GERMANIUM for semiconductor use contains impurities at levels no higher than a few parts in ten million. Material of this quality is obtained from highly purified GeC1, by hydrolysis to the oxide and reduction of the oxide in hydrogen. When purifying GeCl,, AsC1, is the most difficult impurity to remove. This is usually accomplished by multiple distillation procedures.1-3 AsC1, may also be removed from GeC1, by extraction with HC1.1-4 Reducing the arsenic to low concentrations is not practicable, however, because of the large number of extractions needed. This paper discusses a new method for the removal of arsenic from GeC1, by extraction with HC1 and chlorine. The method is rapid, leads to little loss of germanium and is at least as efficient as the distillation procedures currently being used. Theory of Extraction Procedures In the simple extraction of GeC1, with HC1, the following reaction occurs ASCl8G8C1 D AsCl3rc1 at equilibrium CA/Cn= K, where K is the distribution coefficient, and C, and C,, are the molar concentrations of AsC13 in HC1 and GeCl,, respectively. The materials balance equation for this reaction is VACA + vncn = VnC,, where V, and Vn are the volumes of HC1 and GeCl4, respectively, and C, is the initial concentration of AsC13 in GeC1,. From this it can be shown that for multiple extractions where C,, is the concentration of AsC13 in GeC14 after n extractions, and r is the ratio of V, to V,,. It is assumed that r is maintained constant, that equilibrium is established during each extraction, and that K is independent of the AsCl3 concentration. By saturating the system with chlorine, the following reaction occurs in the aqueous phase AsCl3 + 4H2O + Cl2 D H5AsO4 + 5HC1 at equilibrium K' = ------------ ai - a4 h2u - aet2 where a is the activity of the various components. The effect of this reaction is to reduce the concentration of the AsC1, in the aqueous layer and, therefore, to promote further extraction of this component from the GeC1, layer. If the arsenic acid remains entirely in the aqueous phase, the net effect of this reaction is to promote the removal of arsenic from the GeC11. The materials balance equation for extraction with HC1 and chlorine with the foregoing reaction is, then, VaCC + VACA + VACn = VnCo where C,. is the molar concentration of H3AsO, in the HC1. With the added assumptions that the activities of AsC13 and H8ASO4 in the aqueous phase are equal to their molar concentrations, it can be shown that for n extractions Cn/Cu = (1/rkK + rK + 1) n where k - K1 a4h2o - acl2/aoncl. It can be seen by comparing Eqs. 1 and 2 that if k is large, the removal of AsC1, by HC1 extraction will be greatly improved by the addition of chlorine. Dilution of the HCI used in the extraction with chlorine would also favor the separation. This, however, would increase the loss of GeCl,, which is undesirable. Experimental Procedure Germanium prepared from oxide of semiconductor purity is n-type with resistivities greater than one ohm-cm. The resistivity is controlled by the donor concentration, which is —lo-: mol pct. Germanium prepared from material with added arsenic will have lower resistivity commensurate with the arsenic concentration. With such material, at arsenic concentrations above 10-1 mol pct the resistivity is controlled by the added arsenic, and effects due to other impurities initially in the oxide are negligible. In this investigation GeO, of semiconductor purity was converted to GeCl,, and -0.01 mol pct As was added. This material was used for the extraction experiments and the purification attained determined by a comparison of the resistivity data for samples of germanium prepared from the initial and purified GeC1,. A method for calculating the arsenic concentration from the resistivity data is discussed later. The details of the experimental procedures used are as follows: Two hundred and thirty cu cm GeC1, were prepared by the solution of GeO, in HC1, followed by
Jan 1, 1957
-
PART V - Effect of Oxidation-Protection Coatings on the Tensile Behavior of Refractory-Metal Alloys at Low TemperatureBy H. R. Ogden, E. S. Bartlett, A. G. Imgram
Unmodified disilicide coatirigs were applied to sheet-tensile specimens ofCb-Dg3 and Mo-TZM veJractovy- metal alloys. Coating thickness, degree of coating-substrate interdiffusion, and specimen geonzetry (notched and plain were included in the variables studied. Tensile tests were made to determine the ductile-lo-brittle transition temperature. The disilicide coating modestly increased the transition temperatlre of TZM, but had no effect on 043. Neither material condition (recrystallized or stress-velieved) nor specimen geometry (notched or unnotched) significantly altered the effects of coatings on the transilion temperatures of. the alloys. Cracks in the brittle coatings did not propagate into the substrate, and fracture modes appeared to be the same for both un-coated and coated specimens. MOST potential structural applications for refractory metals and alloys involve exposures to oxidizing environments at elevated temperatures. The general lack of oxidation resistance of these metals will require protective coatings to allow fulfillment of their potential. Currently preferred coatings for the oxidation protection of refractory metals are brittle intermetallic aluminides or silicides. These are typically formed on the surface of the refractory-metal substrate by a diffusion reaction between the substrate and a gaseous or liquid medium that is rich in aluminum or silicon. Because of the brittleness of these coatings, they will sustain no plastic deformation at low temperatures. They are frequently cracked by cooling from the coating temperature because of the thermal-expansion mismatch with the substrate alloy. Even if they survive cooling intact, they crack rather than sustain deformation under load at low temperatures. Thus, when a coated refractory metal is strained beyond the elastic limit of the coating at low temperatures, the mechanical environment of the substrate would include both static and dynamic cracks. These might be expected to influence the flow and fracture behavior of the substrate. This could be manifested in an altered fracture mode and/or an increase in the normal ductile-to-brittle transition temperature of the refractory-metal substrate. This paper presents the results of a research program that was conducted to determine the influence of the presence of a brittle surface coating on the low-strain-rate tensile behavior of typical refractory metals at low temperatures. EXPERIMENTAL PROCEDURES Material Preparation. Thirty-mil-thick sheets of molybdenum TZM alloy (Mo-0.5Ti-O.1Zr) and colum-bium D43 alloy (Cb-IOW-1Zr-O.1C) were obtained commercially. These alloys were selected as substrate materials representing two classes of materials important in current refractory-metal technology. The TZM was in the stress-relieved condition, and exhibited a heavily fibered grain structure. The D43 had been processed by the duPont "optimum" fabrication schedule,' and exhibited slightly elongated grains typical of this process. Tensile specimens of two geometries were prepared from these materials: 1) plain specimens with 0.2-in.-wide 1.0-in.-long gage sections; 2) specimens similar to above, but with a 0.06-in.-diam hole drilled in the center of the gage section, providing a stress concentration factor, Kt, of 2.5. The "notch" geometry was selected to represent a typical condition of a rivet hole or other geometric discontinuities as might be encountered in various applications. Machined specimens were degreased, with a final rinse in acetone, prior to the application of coatings. Specimens of each substrate and configuration were pack-siliconizedin a particulate mixture of 80 pct A1203, 17 pct Si, and 3 pct NaF. Specimens were embedded in this mix (contained in graphite retorts) and coated in an electrically heated argon-atmosphere furnace under time-temperature conditions to effect nominal 1- and 3-mil-thick silicide coatings: Coating Thickness, mils Thermal Treatment 0.6 to 1.4 24 hr at 982°C 2.4 to 3.2 48 hr at 1093°C Coating kinetics were similar for both the TZM and D43 substrates. These treatments had little or no visible effect on the substrate microstructure as determined by optical metallography. The coatings on TZM were essentially single-phase unmodified disilicides, while those on D43 showed substantial evidence of modification by proportionate reaction with the respective substrate elements or phases, as shown in Fig. 1. It was recognized that these coatings might not be particularly desirable regarding protective capability. However, it was desired to circumvent possible inter -ferring chemical interaction with the substrate by pack additives such as chromium, titanium, boron, aluminum, and other elements that typify the better protective coatings for these materials.' Thus, the results presented apply specifically to the simple silicide coatings investigated. They may not be rep-
Jan 1, 1967
-
Institute of Metals Division - Low Melting Gallium Alloys (With Discussion)By R. I. Jaffee, R. M. Evans
IN recent years, the interest in liquid metals as heat-transfer media for power plants has been very great. The possibility of the development of nuclear power plants has increased this interest and served as the impetus behind much research on low melting metals and alloys for such purposes. The principal reasons for consideration of liquid metals as heat-transfer media lie in their high thermal conductivity and consequent high heat-transfer coefficients, stability at high temperatures, and the high ranges of temperature possible. The element gallium possesses some of the requisite properties for a heat-transfer liquid. It is a unique material, having a low melting point and a high boiling point. Pure gallium melts at 29.78oC, and suitable alloying will produce a metal which melts below room temperature. The boiling point is about 2000°C. As it is a liquid metal, the heat-transfer characteristics would be good. Gallium is not now readily available, due in part to a lack of uses for the metal. Nevertheless, it is not a rare element, and a sufficient supply of gallium exists to permit its consideration for this use. Since gallium has some promise as a heat-transfer liquid, owing to its unique properties, research on the subject was carried on at Battelle Memorial Institute at the request of the Bureau of Ships, U.S.N. The research had as its objectives the determination of the effect of alloying on the melting point of gallium, and the study of the corrosion of possible container materials. In this research, alloys were found which had significantly lower melting points than pure gallium, but none which simultaneously fulfilled other additional requirements, chiefly the corrosion problem. Neither was it found possible to reduce the melting point of certain otherwise suitable alloys appreciably by small additions of gallium or gallium alloys. The results gave little hope that gallium alloys can be developed which enhance the good properties and minimize the undesirable characteristics of elemental gallium. Thus, gallium now appears less promising than other metallic heat-transfer media. The experimental thermal-analysis techniques used in this work have been described.' Experimental Results As a first approximation, the development of low melting gallium alloys was based on alloying elements suitable for use in a nuclear power plant, which also lowered the melting point of gallium. Information from the literature, summarized in Table I, indicates that. tin, aluminum, and zinc are the only suitable elements which cause a lowering of the melting point of gallium. Indium and silver also lower the melting point of gallium, but are of little interest for use in nuclear power plants. Of the elements reported not to lower the melting point of gallium, there is some ambiguity on the behavior of copper. Weibke3 obtained solidus arrest temperatures of 29°C for Cu-Ga alloys from 60 to 90 pct Ga, 0.8C lower than the generally accepted melting point. This may be the effect of a eutectic close to gallium, or, more likely, the result of impurities, or experimental error. The seven elements listed in Table I whose effects were not known were of potential interest if they lowered the melting point of gallium. Their effects were determined experimentally for this reason. Binary alloys containing nominally 2 pct of each of these elements were prepared in the form of 2-g melts by placing the components in a graphite crucible and holding them in an argon atmosphere at 370°C for 5 hr. These melts were then subjected to thermal analysis. In all cases. the solidus temperature was the melting point of gallium. Since these elements (As, Ca, Ce, Mg. Sb, Si, and T1) did not lower the melting point of gallium, they were not considered further as components of a eutectic-type alloy. Ga-Sn-Zn Alloys Preliminary considerations of this system for low-melting alloys were encouraging. All three binary systems were of the simple eutectic type. The composition and melting points of the eutectics were as follows: Sn-9 pct Zn (199°C), Ga-8 pct Sn (20°C), and Ga-5 pct Zn (25°C). Therefore, the probability of a ternary eutectic was high. For reasons to be discussed later, aluminum could not be used as an alloying constituent, leaving the Ga-Sn-Zn system as the only one of interest for low-melting gallium-
Jan 1, 1953
-
Part VII – July 1968 - Papers - Grain Boundary Penetration and Embrittlement of Nickel Bicrystals by BismuthBy G. H. Bishop
The kinetics of the inter granular penetration and embrittlement of [100] tilt boundaries in 99.998 pct pure nickel upon exposure to bismuth-rich Ni-Bi liquids have been determined in the temperature range from 700° to 900°C. The kinetics of penetration are parabolic in time at constant temperature over most of the temperature range. In a series of 43-deg bicrystals the rate of penetration is anisotropic with respect to the direction of penetration into the grain boundaries. In lower-angle bicrystals the penetration rate is isotropic. The rate of penetration decreases with tilt angle at 700°C. The activation energy for penetration in the 43-deg bicrystals is 42 kcal per g-atom independent of direction. It is concluded that the intergranular penetration and embrittlement in the presence of the liquid proceeds by a grain boundary diffusion process and not by the intrusion of a liquid film. This was confirmed by a determination that the kinetics of penetration and embrittlement were the same in the 43-deg bicrystals upon exposure to bismuth vapor under conditions such that no bulk liquid phase would be thermodynamically stable. WhEN solid metals are exposed to a corrosive liquid-metal environment, the grain boundaries are sites of preferential attack. Depending on the temperature, the composition of the liquid, and the composition, structure, and state of stress of the solid, a number of modes of attack are possible. This paper reports a study of the kinetics of intergranular penetration and embrittlement of high-purity nickel bicrystals upon exposure to bismuth which, together with an earlier study by Cheney, Hochgraf, and Spencer,' demonstrates that there are at least two modes of intergranular attack possible in the Ni-Bi system. In the study by Cheney et al., columnar-grain specimens of 99.5 pct pure nickel were exposed to liquid bismuth presaturated with nickel in the temperature range 670" to 1050°C. They found that the majority of the boundaries, which were predominantely high-angle boundaries, were penetrated by capillary liquid films, the attack proceeding by a process which will be termed grain boundary wetting. This process occurs in a stress-free solid when twice the liquid-solid surface tension is less than the surface tension of the grain boundary,* i.e., when 2yLs < YGB In this case the penetration of the grain boundary by the liquid occurs at a relatively rapid rate, resulting in the severe embrittlement of a polycrystalline solid. Grain boundary wetting is a common mode of intergranular attack in systems in which the lower melting component is relatively insoluble in the solid, but the solid has an appreciable solubility in the liquid, for example, the Ni-Bi system, Fig. 1. In systems of this type at temperatures above the range of stability of any intermetallic phases, once the liquid is saturated with respect to the solid so that no gross solution occurs, chemical gradients are small, and surface tensions become major driving forces for attack, provided the solid is stress-free. The results of Cheney et al. appear to be typical of those encountered when grain boundary wetting occurs.' Capillary films were observed in the boundaries after quenching from the exposure temperature. The mean depth of penetration increased linearly with time, and the activation energy for the process was found to be 22 kcal per g-atom. In a study of the Cu-Bi system Yukawa and sinott4 found that the depth of penetration of bismuth into high-purity copper bicrystals of orientations from 22 to 63 deg of tilt about (100) at 649°C ranged from 0.05 to 0.25 in. after a 12-hr anneal. This corresponds to a linear rate of 6 to 15 X 10~6 cm per sec. At the same reduced temperature of 0.68 the rate for the Ni-Bi system' was 7 x lo-' cm per sec. In another study of the Cu-Bi system, Scheil and schess15 determined the kinetics of grain boundary wetting in hot-worked commercial rod. While there were several complicating factors present in this study, there is general agreement with the above results. The kinetics of penetration were linear, the activation energy was 20 kcal per g-atom, and at 650°C the rate of wetting was 2 to 5 x 10-6 cm per sec. The rate of wetting in the A1-Ga system6 is somewhat
Jan 1, 1969
-
Part IX – September 1969 – Papers - Preferred Orientations in Cold Reduced and Annealed Low Carbon SteelsBy P. N. Richards, M. K. Ormay
The present Paper extends the previous work on cold reduced, low carbon steels to preferred orientations developed after various heat treatments. In recrystal-lized rimmed steel, cube-on-comer orientations increased with cold reductions up to 80 pct. Above that {111}<112> and a partial fiber texture with (1,6,11) in the rolling direction dominated. During grain growth, cube-on-corner orientations have been observed to grow at the expense of {210}<00l>. In re-crystallized Si-Fe (111) (112) and cube-on-edge type orientations are dominant near the surface and the (1,6,11) texture near the midplane for reductions up to 60 pct. With larger reductions {111)}<112> and the (1,6,11) texture are dominant. In cross rolled capped steel a relationship of 30 deg rotation was observed between the (100)[011] of the rolling texture and the main orientations after re crystallization. Most orientations present in recrystallized specimens can be related to components of the rolling texture by one of the following rotations: a) 25 to 35 deg about a (110) b) 55 deg about a (110) C) 30 deg about a (Ill) THE orientation texture of recrystallized steel is of interest where the product is to be deep drawn, because preferred orientation is related to anisotropy of mechanical properties such as the plastic strain ratio (r value);1,2 and in electrical steel applications where a high concentration of [loo] directions in the plane of the sheet improves the magnetic properties of the material. It is interesting to note that both these aims are to a large extent achieved commercially, even though the orientation texture of cold rolled steel does not show large variation3 and the recrystallized orientations are generally given as being related to the as rolled orientations mostly by 25 to 35 deg rotations about common (110) directions.4-6 There is, as yet, no single completely accepted theory on recrystallization. The three mechanisms that have been investigated and discussed are: a) Oriented growth b) Oriented nucleation c) Oriented nucleation, selective growth Largely from the observations of the recrystalliza-tion process by means of the electron microscope,7-11 there is now considerable evidence that the "nucleus" of the recrystallized grain is produced by the coalescence of a few subgrains to form a larger composite subgrain, which finally grows by high angle boundary migration into the deformed matrix. From the intensive work on the recrystallization of rolled single crystals of iron, Fe-A1 and Fe-Si al-loys4-" he following observations have been made: 1) The change in orientation during primary recrys-tallization can usually be described as a rotation of 25 to 36 deg about one of the (110) directions. 2) The (110) axes of rotation often coincide with poles of active (110) slip planes. 3) If several orientations are present in the cold rolled structure, the (110) axis of rotation will preferably be a (110) direction that is common to two or more of the orientations. 4) With larger amounts of cold reduction (70 pct or more) departure from these observations became more frequent. 5) After larger cold reductions, rotations on re-crystallization about (111) and (100) directions have been observed. K. Detert12 infers that a rotation relationship of 55 deg about (110) directions is also possible, by stating that the recrystallized orientation {111}<112> can form from the orientation {100}<011> of cold reduced partial fiber texture A.3 The observation by Michalak and schoone13 that (lll)[l10] formed during recrys-tallization in fully killed steel containing (111)[112],— as well as (001)[ 110] which is related to the {111}<011> by a 55 deg rotation about <110>-implies a possible 30 deg rotation relationship about the common [Ill]. Heyer, McCabe, and Elias14 have recrystallized rimmed steel after various amounts of cold reduction, by a rapid and by a slow heating cycle and found that the preferred orientations strengthened with increased cold reduction. The most pronounced orientation up to about 70 pct cold reduction was found to be {1 11}< 110>, after 80 pct cold reduction both {111}<110> and {111}<112>, after 85 and 90 pct cold reduction, {111}<112>, and after 97.5 pct cold reduction it was {111}<112> and (100)(012). In the present work, the orientation textures of the recrystallized specimens are examined under various conditions of steel composition, amount and method of cold reduction, and method of recrystallization. The relationships between the preferred orientations of the as rolled and recrystallized specimens, and the conditions for the formation of the various orientations during recrystallization are investigated.
Jan 1, 1970
-
Part VIII – August 1969 – Papers - Oxide Formation and Separation During Deoxidation of Molten Iron with Mn-Si-AI AlloysBy P. H. Lindon, J. C. Billington
Fe-O melts containing 0.045 pct 0 were deoxidized with Mn-Si-A1 alloys. Product compositions were reluted to the melt and alloy compositions and were found to be most sensitive to the aluminum content of the alloy. Low residual oxygen contents could be obtained when aluminum oxide was present in the Products because of the reduction of silica and manganese oxide activities. Flotation of the Products from a quiescent melt was followed both by analysis of the oxygen content and metallographic measurement of inclusion concentration. MnO-SiO2-A12O3 products were found to float most rapidly when their composition was such that their viscosity may be expected to be low. Changes in the particle size distribution indicates that particle coalescence occurred and differences in the degree of coalescence are thought to be responsible for the different flotation rates observed between products 0f differing composition. Measured flotation rates were slower than those Predicted from a model based on Stoke's Law, although alumina flotation might be reasonably accounted for by this model. Interfacial effects between oxide particles and the melt are believed to be responsible for the discrepancy. It has been recognized that deoxidation products constitute a large proportion of the nonmetallic inclusions present in killed steel. The amount of oxide inclusions which originate as deoxidation products depends largely upon three factors. These may be summarized, according to P16ckinger1 as: 1) Amount of primary products remaining in the steel prior to cooling. 2) Residual dissolved oxygen content of the steel after deoxidation. 3) Amount of secondary products, formed during cooling and solidification, which remain entrapped in the solid steel. In a well-deoxidized steel containing residual aluminum and/or silicon, the equilibrium dissolved oxygen content is usually very low and so the maximum amount of oxide which may be produced as secondary deoxidation products is small in comparison with the amount of primary products. It may be seen, therefore, that the amount of indigenous nonmetallic inclusions may be minimized if a low dissolved oxygen content is achieved by deoxidation and if the primary deoxidation products are efficiently removed. Oxides which originate by reaction of the metal stream with the atmosphere during teeming are not considered in the present study. It is known that two or more deoxidizers may result in a lower equilibrium oxygen content when used in conjunction with one another than when any of the individual deoxidizers are used alone. Equilibrium studies by Hilty and crafts2 and by Bell3 have shown that manganese increases the effectiveness of silicon as a deoxidizer, and Walsh and Ramachandran4 relate this to a reduction in the activity of silica in the products as the manganese :silicon ratio in the steel increases. It was also shown by Herty's work on deoxidation of steel by silico manganese alloys,5 that there existed an optimum ratio of manganese to silicon which gave a minimum inclusion content. This ratio was in the range 4:l to 7:l and the (FeO-MnO-SiO2) products formed by such deoxidation practice were found to lie in a composition range having very low liquidus temperatures (1170 to 1250°C approx). The optimum manganese:silicon ratio was then explained by postulating that these fluid products were able to coalesce and that the larger particles formed floated out of the steel very quickly as predicted by Stoke's Law. The present work examines the effectiveness of various Mn-Si-A1 alloys as deoxidizers and their effects on the composition and removal of primary deoxidation products from a quiescent melt. EXPERIMENTAL TECHNIQUE Approximately 250 g of prepared Fe-O alloy, containing 0.045 to 0.055 pct O, were melted in an alumina crucible and deoxidized at 1550°C by plunging a thin steel cartridge containing the deoxidizer below the melt surface. A high frequency induction furnace supplying current at 8.5 kHz was used to heat a graphite susceptor, the interior of which had been machined to give a wall thickness of 0.85 in. to form a receptacle for the alumina crucible. The iron melt was essentially quiescent as the induced current was concentrated at the external surface of the graphite susceptor by the skin effect. A nonoxidizing atmosphere was maintained over the melt by passing a continuous stream of argon through the lid of the susceptor. The melt temperature was measured before deoxidation, and again at the end of an experiment by means
Jan 1, 1970
-
Roof Behavior and Support Requirements for The Shield-&Supported Longwall FacesBy H. S. Chiang, D. F. Lu, S. S. Peng
INTRODUCTION The most important element in a successful lingual mining is a good roof control. The modern longwall mining employs hydraulic powered supports for roof control at the face area. The application of hydrau¬lic powered support requires the knowledge of over¬burden strata behavior for proper selection of sup¬port type and capacity. Failure to do so could lead so serious loss. There are several methods available for determining the required support capacity (1-3). While these methods are simple for application, they do not include the complicated roof behavior observed in longwall mining. As research progresses and operational experience accumulates (4,5), the concept about the designing and selection of powered support improves. The design of a longwall powered support consists of three major phases: 1. structural integrity and stability of the powered support, 2. external loadings induced by the movements of the overburden strata, and 3. interaction between the support, roof and floor. Phase 1 involves structural analysis (5) and full-sized testing (6) of the supports. Its validity is limited by the accuracy of the assumed external loading because of the uncertainty about the actual loading underground. The third phase includes the reaction of the support and the floor to the movements of the overburden strata and vice versa. Among the three phases, the second phase concer¬ning the external loading seems to be the least known because of the complicated behavior of the roof strata. There are many unresolved problems. For example, does the main roof break periodically and cause periodic roof weighting in the face area? If so, are there any rules governing its behavior? How does the roof load on the support canopy! Finally, how can one determine the required support capacity and select a proper type of support to meet a certain roof behavior? In order to answer those questions, underground instrumentation and observations were performed at 4 longwall panels in 3 separate mines for the past two years. This paper summarizes the current findings. PANEL LAYOUTS AND EQUIPMENT EMPLOYED The three mines selected are all located in West Virginia; two in northern and one in southern West Virginia. As shown in Table 1, seam conditions (i.e. seam, depth and thickness) and panel layouts are different among the three mines. The most significant difference in equipment is the face powered supports. Three mines used three different types of shield; 2-leg caliper, 2-leg lemniscate, and 4-leg lemniscate chock-shield. (Fig. 1) UNDERGROUND INSTRUMENTATION AND OBSERVATION PROGRAM Two events were instrumented in each observed longwall face: one was the hydraulic pressure (resistance) of the powered supports and the other was the canopy load distributions. In addition, the gob caving conditions were visually observed and recorded. Leg and Support Resistances One or two automatic Weksler Pressure Recorders were installed at the designated shield support,. In most cases, the daily charts were used to record the pressure variations in both the front or the rear legs (for the 4-leg shield), or in both the leg and the fore-pole ram (for the 2-leg shield). The recorded pressure w a s then converted to load or resistance by multiplying it by the cross-sectional area of the hydraulic leg or canopy ram piston. Fig. 2 shows the typical pressure-recorded charts for the 4-leg and 2-leg shields in a 23-24 hour period. The support resistance is the summation of the resistance in each of all the legs for that support. Generally, the resistance of the fore-pole ram will not be considered in determining the capacity of the support because of its rather small vertical compo¬nent force at the tip of the fore-pole. Canopy Load Distribution External load distribution on the canopy as exer¬ted by the roof was monitored. The measurements employed 12-14 pieces of pressure cells (6-inch square) that were uniformly arranged in two rows on the canopy. After support setting, the pressure changes in the cells were monitored at various stages of the mining (supporting) cycle while the support leg pressures were recorded continuously by the pressure recorders. Based on the calibration chara¬cteristics of each pressure cell as performed in the laboratory before and after each underground test, the cell pressures were converted to actual loadings. From these load measurements the canopy load distri¬butions and the relations between measured canopy loadings and support leg resistances were determined. Accordingly, the supporting efficiency of the shield support can be determined.
Jan 1, 1982
-
Part XI – November 1969 - Papers - Some Observations on the Relationship Between the Effects of Pressure Upon the Fracture Mechanisms and the Ductility of Fe-C MaterialsBy George S. Ansell, Thomas E. Davidson
It has been known for a considerable period of time that the ductility of even quite brittle materials can be enhanced if they are deformed under a superposed hydrostatic pressure of sufficient magnitude. The response of ductility to pressure, however, has been shown to vary considerably between materials. Prior work has shown that the effects of pressure upon the tensile ductility of Fe-C materials depend upon the amount, shape and distribution of the brittle cementite phase. In this current investigation, the effects of pressure upon the fracture mechanisms in a series of annealed and spheroidized Fe-C materials were examined. It was observed that the principal effect of pressure is to suppress void growth and coalescence, retard cleavage fracture and to enhance the ductility of cementite platelets in pearlite. Based upon the observed effects of pressure upon the fracture mechanisms, a proposed explanation for the enhancement in ductility by pressure and for the structure sensitivity of the phenomena is presented and discussed. THE effect of superposed pressure upon the tensile ductility of a variety of metals has been well documented.'-'' Some of the results from several investigators are summarized in Fig. 1 where tensile ductility in terms of true strain to fracture (ef) is plotted as a function of the superposed pressure. As can be seen, a pressure of sufficient magnitude can significantly enhance the ductility of metals. However, Fig. 1 also demonstrates that the response of ductility to pressure and the form of the ductility-pressure relationship varies considerably between materials. Several explanations have been offered for the observed enhancement in ductility by a superposed pressure. Although no experimental evidence was provided, Bridgman13 and Bobrowsky10 proposed that the observed effect was due to the prevention or healing of microcracks or holes. Bulychev et a1.14 observed that cracks and voids in initially prestrained copper were healed in the necked region of a tensile specimen upon further straining while under a superposed pressure. Also, pugh5 observed that large cavities were suppressed in copper fractured in tension while under pressure. A second proposal has been forwarded by Beresnev et at al.6 This proposal is based upon the hypothesis that a material fails in a brittle manner because the normal tensile stress reaches a critical value before the shear stress is of sufficient magnitude to cause plastic flow. Since a superposed hydrostatic pressure will increase the ratio of shear to normal tensile stress, a sufficiently high hydrostatic pressure should favor plastic flow while retarding brittle fracture. Galli15 reported that a superposed pressure shifts the ductile-brittle transition temperature of molybdenum. This was explained based upon the reduction of the normal tensile stress by the superposed pressure. Pugh5 explained the occurrence of the observed pressure induced brittle-to-ductile transition in zinc in the same manner. Davidson et al.12 proposed an explanation for the enhancement of ductility by pressure based upon the effects of pressure upon the stress-state-sensitive stages of various fracture propagation mechanisms. Basically, they proposed that pressure will retard cleavage and intergranular fracture by counteracting the required normal tensile stress or will suppress void growth. They observed suppression of intergranular fracture and void growth in magnesium by pressure. Davidson and .Ansell16 reported ductility as a function of pressure for a series of annealed and spheroidized Fe-C alloys. Fig. 2, from this prior work, demonstrates that the effect of pressure upon ductility is structure sensitive in terms of the amount, shape and distribution of the brittle cementite phase. As shown in Fig. 2, in the absence of cementite or when the cementite is in isolated particle form (spheroidized), the ductility-pressure relationship is linear and the slope decreases with increasing carbon content. In the annealed carbon-bearing alloys wherein the cementite is in the form of closely spaced platelets (pearlite) or in the form of a continuous network along prior aus-tenite boundaries (1.1 pct C material), ductility as a function of pressure is nonlinear (polynomial relationship) in which the slope increases with increasing pressure. At the highest pressures studied (22.8 kbars), the slope of the curves for these materials tends to approach those for the spheroidized material of the same carbon content. In this current investigation the change in fracture mechanisms as a function of pressure for the materials shown in Fig. 2 has been examined. The possible connection between the observed effects of pressure upon the fracture mechanisms and the effect of pressure upon ductility is discussed.
Jan 1, 1970
-
Minerals Beneficiation - The Flotation of Copper Silicate from Silica (Correction, p 330)By R. W. Ludt, C. C. DeWitt
The use of froth flotation for the separation of minerals has become one of the most important of ore dressing processes. Its particular adaptability to the enrichment of low grade ores has made the process an important factor in the national economy. The methods have been extended to the recovery of a great number of minerals. Among the few minerals which have resisted efforts toward industrial flotation is chrysocolla, a hydrated partly colloidal copper silicate. Chrysocolla, being a product of natural oxidation, has been found to occur in small quantities with many ores which are recovered by flotation methods. In present practice, these small quantities of copper silicate pass off with the tailings and are lost. The advantages to be gained by a satisfactory process for the recovery of chrysocolla is apparent. Any application of principles which points a way toward the satisfactory industrial flotation process for copper silicate would be of advantage. This paper presents an attack on this problem. Two methods for the recovery of chrysocolla have been developed by the United States Bureau of Mines.1,2 They have been successful on a laboratory scale but have been seriously restricted in industrial application by critical requirements in the procedure. In one of the Bureau of Mines methods,' the ore is activated with sodium or hydrogen sulphide in an aqueous solution at a pH of 4. Amy1 xanthate is then used as a collector with pine oil as a frother in the flotation process. An excess of sulphide acts as a depressant and the state of optimum conditions is difficult to control industrially. In the second Bureau of Mines method,2 soap is used as the collector at a pH of between 8 and 9. The diffi- culties with this process are that soap is not a specific collector, that heavy metal or alkaline earth ions cause the formation of insoluble soaps, and that a more acid solution causes the formation of a free acid which does not act as a collector for chrysocolla. The problem of recovering chrysocolla by flotation involves the selection of a suitable collector. The collector molecule must be composed of an active polar group that has an attraction for chrysocolla, and of a hydrocarbon chain. Certain dyes have been shown to have an attraction for certain minerals. Suida3 found that hydrated silicates are colored by basic dyes. Dittler4 showed that chrysocolla, among other colloidal minerals of acid reaction, preferentially takes up such basic dyes as fuchsin B, methylene blue, and methyl green. Endell5 gave information to show that the colloidal material in clay may be determined by its selective adsorption of fuchsin. A simple experiment, likewise, illustrates the difference in the adsorptive power of chrysocolla and of silica for the basic triphenyl methane dyes. When a mixture of chrysocolla and silica is immersed in a very dilute dye solution, less than 5 ppm, the chryso-colla is rapidly dyed and the silica is dyed more slowly. The difference is substantial but one of degree. Dean2 showed that the dyes, crystal violet and toluidine blue, are taken up by quartz in an adsorption type process. The difference in the adsorptive power, however, offers the means by which a new collector may act. To form such a collector, a hydrocarbon chain must be attached to the dye molecule. This involves a process of organic synthesis. Butyl, hexyl, and octyl hydrocarbon chains were selected for substitution in the malachite green molecule. For the purpose of identification, the alkyl-substituted dyes formed are called: butyl-malachite green; hexyl- malachite green; and octyl-malachite green. An outline of the procedure for their synthesis is given in the appendix. It is generally recognized in the preparation of this type of dye that the chemical structure of some of the dye molecules varies. However, a uniform formula is attributed to the dye. Such a procedure has been followed in specifying the structure of these alkyl-substi-tuted malachite green dyes. The structure is given on the basis of their properties as an homologous series of dyes, on their method of preparation, and on the purity of intermediates used. Structure of substituted alkyl malachite green is: C6H4 N(CH3)2 p-R C6H4 CH C6H4 N(CH)2 Procedure The flotation cell is a Bureau of Mines 100-g, batch unit provided with an air inlet at the bottom above which is a variable speed agitator. The agi-
Jan 1, 1950
-
Institute of Metals Division - Aqueous Corrosion of Zirconium Single CrystalsBy A. E. Bibb, J. R. Fascia
Single-crystal wafers of zirconium have been exposed to 680°F neutral water. The single crystals were of known orientation and weight-gain data as a function of crystal orientation were obtained. These data show that all the crystal faces studied obeyed a cubic rate law out to the time of transition whereupon the crystals corroded at an approximately linear rate. The time to transition varied from 114 days for (1074) crystals to about 325 days for the (2130) faces. The epitaxial relationship be-tween metal and monoclinic oxide was found to be (0001) H (111) and [1120] 11 [101]. A black tight adherent oxide layer was formed on the crystals in the pretransition range. This black oxide was found to be monocrystalline. The white corrosion product produced after transition was found to be polycrys-talline but highly oriented. X-ray line-broadening studies found that the black oxide was a highly strained structure whereas the white oxide was relatively strain-free. These results indicate a strain-induced re crystallization or fragmentation accompanies the change from protective black oxide to nonprotective white oxide. ZIRCONIUM alloys have been used quite extensively in high-temperature aqueous environments. Alloy additions can be made to commercial sponge zirconium which enhance the corrosion resistance of the zirconium in both water and steam media, which raise the tolerance limit for certain impurities detrimental to corrosion resistance, and which reduce the amount of free hydrogen pickup during corrosion. The development of the corrosion-resistant zirconium alloys has been a long and tedious job involving trial and error methods. This technique has been necessary because of a lack of fundamental data and hence understanding of the corrosion mechanisms. The objective of the work described herein was to provide some fundamental data with respect to the aqueous corrosion of zirconium crystals as a function of the orientation of the exposed surfaces. Hg. The zirconium chunk was then cooled to below the transformation temperature (862°C) and reheated to 1200°C for 8 hr. The ultimate size of the zirconium grains increased with the number of cycles. Rapid or even furnace cooling through the transformation temperature produces a considerable amount of substructure which was intolerable in corrosion experiments as it would be in the study of any crystallographically dependent property. It was found that a high-temperature a-phase anneal for approximately 4 days reduced the substructure below the limits detectable by visual or X-ray means. Crystals so produced were carefully cut from the massive zirconium chunk and oriented by standard back-reflection Laue techniques. The crystals were then mounted in a goniometer head and, by using the three degrees of freedom available, slices on the order of 0.015 to 0.020 in. were cut parallel to any desired crystal plane. These slices were then carefully polished on both sides to produce smooth flat faces, pickled to remove about 0.002 in. per face, annealed for 1/2 hr at '750°C in a vacuum of approximately 10"5 mm Hg, flash pickled, and checked for orientation. The pickling solution was 45-45-10 vol pct HN0,-H20-HF and continuous agitation was provided to eliminate pitting of the slices. Any slice that was not within 2 deg of the desired orientation was discarded, and any evidence of substructure as indicated by the Laue spots was also grounds for discarding the sample. Thin slices were used for the corrosion tests because weight gain per area data could be obtained with only a minimum area exposed to the corrosive media that was not of the desired orientation. The thin single-crystal slices were of irregular shape and as a result the areas were determined by placing a crystal inside an inscribed square of known area, enlarging a picture of this assembly about X5, and tracing both the enlarged square and crystal with a planimeter. The zirconium used to produce these single crystals was crystal-bar grade, a typical analysis of which is given in Table I. An oxygen analysis on prepared crystals gave a concentration of 205 ppm. The hydrogen concentrations are believed to be less than 15 ppm due to the dynamic vacuum anneal given each crystal. Typical nitrogen values for zirconium treated in this manner are about 10 to 20 ppm. RESULTS AND DISCUSSION Single-crystal wafers have been exposed to de-oxygenated, deionized water in static autoclaves.
Jan 1, 1964