Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Part VII – July 1968 - Papers - The Ductile-Brittle-Ductile Transition in Columbium-Hydrogen AlloysBy R. D. Daniels, T. G. Oakwood
A study was made of the effects of small quantities of hydrogen on the mechanical properties of colum-bium. Tensile specimens, hydrogenated to concentrations of 20 to 200 ppm, were tested at temperatures of 300°, 191°, and 77°K. Although hydrogen was found to have little effect on the strength of columbium, the ductility of Cb-H alloys was found to be quite sensitive to both hydrogen concentration and temperature. At 300°K, an abrupt loss in ductility occurred at a critical hydrogen concentration, although some ductility was observed beyond the tolerance limit. A similar result was found at a lower hydrogen concentration at 191°K. At 77°K, however, a more gradual loss in ductility with increasing hydrogen concentration was observed. Hydrogenated columbium was thus observed to undergo a ductile-brittle-ductile transition. Metallographic examination of fractured specimens revealed extensive porosity at both 77° and300°K which was a distinct function of hydrogen content. At 191°K, although some secondary cracking was noted, the amount of observed porosity was minimal. These observations are interpreted in terms of hydrogen solubility and mobility as a function of temperature and in the role of hydrogen in promoting growth of microcracks. lHE effect of hydrogen on the mechanical properties of the refractory metals is not, at present, completely understood. A number of studies have shown these materials to be susceptible to hydrogen embrittlement. Roberts and Rogers1 have found that vanadium can be embrittled by hydrogen. It was further demonstrated that fracture undergoes a ductile-brittle-ductile transition as the temperature is lowered from 150° to -196°C; i.e., there is a ductility minimum observed at a certain temperature. The ductility is increased by either raising or lowering the temperature from this point. A more complete study by Eustice and Carlson2 on vanadium containing 10 to 800 ppm placed the ductility minimum at about -100°C with variations reportedly due to hydrogen content and strain rate. Ductility minima have also been found at certain temperatures for tantalum containing 7 ppm H3 and 140 ppm H.4 At hydrogen concentrations above 270 ppm, however, the ductility return at low temperatures was considerably reduced.4 In the case of columbium, some disagreement exists in the literature. Eustice and Carlson,5 Wilcox et al.,6 and Imgram et al.4 failed to find a ductility minimum although a composition-dependent ductile-brittle transition was observed. Hydrogen concentrations in these investigations were 20 ppm,5 1 to 30 ppm,6 and 200 to 390 ppm.4 However, Wood and Daniels7 observed a rather pronounced ductility minimum at hydrogen contents ranging from 19 to 252 ppm. Those theories of hydrogen embrittlement involving the precipitation of diatomic hydrogen which have been applies to ferrous metals8-12 do not seem to be applicable to the case of columbium and other exothermic occluders. Such theories propose that extensive crack formation and propagation occurs by the precipitation and expansion of diatomic hydrogen at internal voids and microcracks. However, photomicrographs of hydrogenated columbium do not show any evidence of damage introduced by the sorption and precipitation of diatomic hydrogen; rather, at high hydrogen concentrations, a hydrogen-rich second phase is precipitated.13'14 In addition, a number of these theories require the development of high hydrogen pressures at voids in the structure.8'10'12 This does not appear to be feasible in the concentration ranges discussed in the aforementioned paragraphs. The possible interaction of atomic hydrogen with microcracks resulting from dislocation pile-ups15,16 remains in doubt since pile-ups have not been observed in bcc metals17 including columbium.18 Wood and Daniels7 have put forth the possibility that a hydride precipitation could be responsible for crack nucleation in columbium. Work by Longson19 has shown that hydrogen embrittlement of columbium parallels the bulk solubility limit; i.e., as the solubility increases, for instance with temperature, the amount of hydrogen necessary to cause embrittlement also increases. Although a hydride precipitation appears attractive as a means of nucleating microcracks in columbium, what require more intensive study are the low-temperature anomalies which have been observed, i.e., the ductile-brittle-d'ictile transition characteristics. Also, the hydrogen concentrations where embrittlement occurs are often below the bulk solubility limits determined by Albrecht et al.13,14 and Walter and Chandler.20 This work is an attempt to determine more definitively the effects of concentration and temperature on the mechanical properties of dilute Cb-H alloys. EXPERIMENTAL PROCEDURE Ultrahigh-purity columbium rods, obtained from the Wah Chang Corp., were cold-reduced by rotary swaging. A chemical analysis is given in Table I. The material was cut into cylindrical blanks 1.50 ±0.005 in. long. Individual specimens were either given a stress relief anneal at 750°C or recrystal-lized at 1200°C. Resulting microstructures were either a "bamboo" structure characteristic of a wrought material or a recrystallized structure with a grain diameter of approximately 100 n. All heat treatments were carried out in a vacuum of 10-5 Torr or less.
Jan 1, 1969
-
Part III – March 1969 - Papers - Annealing of High-Energy Ion Implantation Damage in Single Crystal SiliconBy K. Brack, G. H. Schwuttke
Annealing properties of subszerface amorphous lavers produced through high-energy ion implantation in silicon are studied. The buried layers are produced through the implantation of ions (nitrogen), ranging in energy from 1.5 to 2 mev. X-ray interference patterns, transmission electron microscopy, and resistivity profiling are used to study the annealing characteristics of the ion damage. The annealing experiments indicate a low temperature (below 700°C) and a high temperature (above 700°C) region. Significant changes occur in the amorphous layer during the high-temperature anneal. Such changes are corre-lated with the re crystallization of the amorphous silicon and the formation of subsurface (buried) silicon-nitride films. TODAY'S main problems in the field of ion implantation are related to the accurate determination and prediction of 1) the distribution profiles of implanted ions, 2) the lattice sites occupied by the implanted ions, 3) the lattice damage produced through ion implantation, and 4) the annealing characteristics of damage centers in the lattice. This paper reports investigations concerned with the problems listed under 3) and 4). EXPERIMENTAL Our investigations cover the energy range of incident ions from 100 to 300 mev and from 1 to 2.5 mev. The emphasis of this study is on the energy range from 1.5 to 2 mev. The experiments are conducted with single charged nitrogen ions. To implant the ions a van de Graaff generator is used as described by Roosild et al.1 Accordingly, a gas containing the desired ion specie is passed through a thermome-chanical leak into a radio frequency activated source. The positive ions are driven into the van de Graaff with the help of a variable voltage probe. Emerging from the accelerator the ions drift into a magnetic analyzing system and here the desired ion specie is bent 90 deg into the exit port. The ion beam leaving the analyzer is defocused and drifts down a 4-ft long tube to hit the silicon target. At this position the 20 pamp ion beam has a circular cross-section of 2.1 cm. N2 is used as a source gas for nitrogen ions. The implantation target is silicon with zero dislocation density, 2 ohm-cm resistivity, (111) orientation, mechanically-chemically polished, and 1 mm thick. The target is mounted on a water-cooled heat sink and kept at room temperature. A fluence of 1015 to 1016 ions per sq cm is used. RESULTS 1) Silicon Perfection after Bombardment. High-energy ion bombardment of silicon has some striking effects on lattice perfection. Some results were reported in detail previously at the Santa Fe conference2 and are here briefly summarized for the benefit of the experiments described in the following. 1.1) Identification of Surface Films on Silicon. After bombardment all samples are found to be coated with surface films. The films on the silicon surface vary in thickness and color; they can be transparent, slightly brown, or opaque. The films are thicker and darker in the high-intensity area of the beam and they delineate the bombarded surface area of the crystal. The films produce electron diffraction patterns characteristic of carbon and of SiO2. Carbon is predominant. The presence of carbon in these films was confirmed by use of the electron microprobe. Formation of the films occurs independently of the ions used and is attributed to a contaminated vacuum of the high-voltage machine. The carbon is most likely the product of the pump oil which is cracked and polymerized under ion impact. The films stick tenaciously to the silicon surface and burn off in a low-temperature Bunsen flame. 1.2) Mechanical Perfection of the Silicon Surface. The mechanical perfection of the bombarded silicon surface was investigated through optical microscopy, electron microscopy in which the replica technique is used, and optical interferometry. No mechanical damage of the surface was visible after bombardment. However, if a bombarded sample is soaked for several minutes in hydrofluoric acid (HF), gas bubbles may develop in certain spots of the silicon surface. It is also noted that in these areas the surface film starts to peel off. Relatively large patches of film come off if the sample is soaked in HF during ultrasonic agitation. After HF treatment, pits may be present on the silicon surface. The pit dimensions are estimated to be as large as 50 µ. The pits appear in the region of most intense irradiation. 1.3) Lattice Perfection After Bombardment. No lattice damage is found on the silicon surface. Electron transmission micrographs and selected area diffraction patterns of the surface show no difference before and after bombardment. Measured approximately 2 µm down from the surface, the silicon lattice throughout this depth is of good perfection. Well-defined Laue spots and Kikuchi lines are obtained from the surface as well as from the indicated area below the surface. However, some radiation damage is dispersed in this top layer. A sharp boundary line separates this surface layer from a highly damaged layer which extends further downward into the silicon. Typical of this
Jan 1, 1970
-
Part II – February 1968 - Papers - Kinetics of Austenite Formation from a Spheroidized Ferrite-Carbide AggregateBy R. R. Judd, H. W. Paxton
The rate of dissolution of cementite was studied in three low-carbon materials: a zone-refined Fe-C alloy, an Fe-0.5pct Mn-C alloy, and a commercial low-carbon steel. The materials were spheroidized, ad then held isothermally at temperatures above the Al. The isothermal anneal was interrupted periodically by a water quench and the specimens were analyzed by quantitative metallography for the amount of aus-tenite formed during the anneal. The results of this study were compared with an analytical model for the process, which assumes that carbon diffusion in aus-tenite is the rate-controlling step for the cementite dissolution process. The correlation between the model and the experimental data is excellent for the zone-refined Fe-C alloys; however, the Fe-0.5 pct Mn-C alloys and the commercial steel deviate from the calculated model. This deviation is thought to be a result of manganese segregation between the carbide and the matrix. The rate of nucleation of austenite at carbide interfaces was reduced by the manganese addition and enhanced by the presence of ferrite-ferrite grain boundaries. PREVIOUS investigations of the nucleation and growth of austenite from ferrite-carbide aggregates are not entirely satisfying for at least one of several reasons. The most prevalent of these is a lack of quantitative data. Engineering studies have been run on many steels with little control over important parameters such as composition and initial aggregate structure. The data obtained are valid only for material with identical chemistry and thermal history. A more informative approach to the problem of aus-tenitization would be to determine the mechanism that controls the rate of solution of carbide in austenite and how it is modified by alloying elements. This information could then be used to calculate an austeniti-zation rate for any material, provided its composition and structure are known. The object of the present work is to establish the rate-controlling step for cementite dissolution in Fe-C austenite and to investigate the modification of this rate by small manganese additions. The composition and structure of the material used were carefully controlled and all measurements were designed to allow a quantitative analysis of the kinetic process that controls the austenitization rate. A MODEL FOR DISSOLUTION OF CEMENTITE Cementite dissolution has been analyzed mathematically by a model that approximates the material used in the experiments. This model postulates a regular ar-array of identical cementite spheroids with 4 C( diam, embedded in a grain boundary- free ferrite matrix. The analysis provides a detailed description of the dissolution of one carbide spheroid and a generalization of the solution by summation over all the carbides in the material. The carbides may be isolated by defining identical, space-filling cells of ferrite around them. If the cell dimensions are greater than the diameter of the austenite sphere resulting from complete dissolution of the carbide, and no interaction (through diffusion in ferrite) takes place between cells during the dissolution process, the model need concern only one cell, since the solution in each cell is identical. In the experimental material, the dimensions of the cell, the carbide, and the final austenite sphere are approximately 24, 4, and 8 p, respectively; use of the single cell is therefore justified. The experimental observations are made on the austenite nodules that form around each carbide during the dissolution process. The model concerns the growth of these austenite nodules. The attendant shrinking of the carbide can be obtained from the same analysis by an extension of the calculations. Several a priori assumptions are necessary to make the analysis of the growth problem tractable. They are: 1) carbon diffusion through the austenite nodule is the rate-controlling process; 2) local equilibrium exists at all interfaces, 3) the austenite nucleus that forms on each carbide instantaneously envelops the carbide; 4) during the austenite growth process, the diffusion flux of carbon in ferrite is insignificant; 5) a quasi-steady state exists in the austenite concentration field; that is, at any instant during the dissolution process, the austenite carbon concentration gradient closely approximates that for a steady-state solution; and 6) the effects of capillarity on the dissolution rate of the carbides can be neglected. Referring to Fig. 1, a mass balance at the y-a interface for an infinitesimal boundary movement gives: Where rb is the outer radius of the austenite shell, C1 and C are carbon concentrations at the interface in austenite and ferrite, respectively, see Fig. 2, is the diffusion coefficient of carbon in austenite for the concentration of carbon at the interface, and t is time. The fifth assumption permits the austenite carbon concentration to be approximated by the Laplace solution for the spherical case. Therefore, where C(Y) is the carbon concentration at r, and A and B are constants. Local interfacial equilibrium fixes the boundary conditions for the diffusion problem. They are:
Jan 1, 1969
-
Institute of Metals Division - Precipitation Phenomena in Cobalt-Tantalum AlloysBy R. W. Fountain, M. Korchynsky
The precipitation phenomena occurring in cobalt-tantalum alloys have been investigated in the temperature range frm 500" to 1050°C by correlating the results of metallographic, X-ray, micro-and macrohardness, and electrical resistivity studies. The property andmacrohardness,changes were found to depend on 1) general precipitation, and 2) lamellar precipitation. Two new intermetallic phases have been identified: 1) a Co3Ta, a metastable ordered face-centered-cubic compound, and 2) a stable ß Co3Ta phase of hexagonal structure. In addition, the previously reported Co2Ta phase was found to exist in two allotropic modifications: the hexagonal MgZn,-type and the cubic MgCu2-type Laves phases. SINCE a large variety of structures can result as a consequence of the decomposition of a solid solution, predictions on the nature of property changes are difficult, if not impossible, to make. For any rational attempt to correlate properties and structures of a precipitation-hardenable alloy, a detailed understanding of the kinetics of decomposition and morphology of phase separation, as well as knowledge of phase relationships, appears to be prerequisite. Information of this type has been accumulated in the past for many alloy systems, both of theoretical and pastforpractical importance.1,2 Although the presence of intermetallic compounds has been reported in cobalt-base alloys,3 the amount of published information on precipitation-hardenable cobalt-base systems is very limited. A survey of the binary phase diagrams of cobalt indicates that cobalt-tantalum alloys might be of interest as typical of other cobalt-base systems in which Laves phases of the A,B type can be precipitated from solid solution. The present work has been undertaken, therefore, to study the kinetics and morphology of the precipitation reaction in this system and to establish a base for a correlation between the structural aspects and properties in this class of alloys. PREVIOUS WORK The only available phase diagram of the cobalt-tantalum system is based on the work of Koster and Mulfinger. According to these authors, the maximum solubility of tantalum in cobalt is about 13 pct (at 1275°C) and. less than 7 pct at room temperature. Tantalum additions lower the temperature of allotropic transformation of cobalt (about 420°C), and at 7 pct Ta, the high-temperature face-centered-cubic modification (ß cobalt) is retained at room temperature. The precipitating phase was originally designated as Co5Ta2 compound (55.2 pct Ta, about 1550°C melting point), but subsequent investigations by wallbaum5" identified this constituent as the A,B-type Laves phase. Wallbaum's data indicate that there are two modifications of this intermetallic compound: one richer in cobalt (Co2.2 Tao.8)of the hexagonal MgNi, type; and another of a higher tantalum content (Co2Ta) of the cubic MgCu, type. On the other hand, Elliott7 found that the cobalt-rich alloy (CO2.10,Tao.~l) was predominantly the cubic MgCu, type at 800°C and a mixture of both the MgCu2 and the hexagonal MgZn,-type Laves phases at 1000°C. At 1200°C, Elliott found only the MgZn, type while at 1400°C, he observed only the MgCu2 type. At the stoichiometric composition, Co2Ta, Elliott reported only the cubic MgCu2-type Laves phase in the temperature range of 600oto 1600°C. The precipitation of the cobalt-tantalum intermetallic compound is accompanied by a marked increase in hardness. According to Koster's4 data, the Brinell hardness of an 8 pct Ta-Co alloy increases from 230 to 340 upon short-time aging at 800°C. EXPERIMENTAL PROCEDURE The binary cobalt-tantalum alloys investigated contained 5, 10, and 15 pct Ta. The range of tantalum additions was thus slightly broader than the reported minimum and maximum solid solubility limits of tantalum in cobalt (7 and 13 pct, respectively)4 The alloys were vacuum-induction melted in a magnesia crucible using cobalt rondelles and technically pure tantalum sheet as raw materials. Deoxidation of the melt was accomplished with carbon, and the chemical analysis of the alloys is given in Table I. The effect of isothermal aging treatments on the progress of precipitation was studied on samples cut from cast ingots. These samples were solution treated for 2 hr at 1250°C and water-quenched. Aging was conducted in the temperature range from 500" to 1050°C for periods between 15 min and 1000 hr and followed by water-quenching. To prevent contamination from the atmosphere, all samples were sealed in evacuated Vycor or quartz tubes for heat-treatments. For solution treatment, argon at 0.2 atmospheric pressure was introduced prior to sealing of the capsule to prevent collapse at high temperature, and titanium sponge was placed at one end of the capsule to act as a getter. MACROHARDNESS The effect of aging on Vickers hardness (Dph) of
Jan 1, 1960
-
Part VII – July 1969 - Papers - Nature of the Work-Hardening Behavior in Hadfield's Manganese SteelBy M. J. Marcinkowski, K. S. Raghavan, A. S. Sastri
A detailed transmission electron microscopy investigation was carried out in connection with a manganese Hadfield Steel. At small plastic strains, numerous individual intrinsic stacking faults are observed. With increased plastic deformation, the stacking faults thicken into twin lamellae which in turn subdivide the original austenite matrix into smaller domains. The twin boundaries act as strong barriers to subsequent dislocation motion and is in a sense equivalent to grain refinement. It is this "grain refinement" which is believed to be the cause of the very high work hardening rates in the Hadfield Steels. In many cases, especially where an hcp phase is the stable one at low temperatures, the stacking fault energy in fcc metals and alloys decreases with decreasing temperature.' Since stacking faults of the intrinsic type are precursors of both twins as well as the hexagonal close packed structure, both of these entities should become more frequent as the temperature of a fcc crystal is lowered. In the case of the twin, there is no chemical driving force for its formation and it is generally necessary to provide the required driving force by an applied stress, i.e., strain energy. In the case of the hcp structure the transformation from the fcc modification can occur spontaneously (marten-sitically) since a decrease in chemical energy does in fact occur; however, an applied stress will provide an even greater driving force toward complete transformation. Since the transformation products mentioned above occur in an inhomogeneous manner throughout the crystal and since these can act as potential barriers to further plastic deformation2 marked strengthening effects can be anticipated. Also because metal and alloy strenghening is in general proportional to the shear modulus, these effects should be greatest in steels of the austenitic type (y), i.e., the fcc types. Perhaps the two most important steels in this category are the austenitic stainless steels and the Hadfield manganese steels. Both may be quenched from elevated temperatures so as to retain the austenitic states characteristic of those temperatures. The effect of subsequent deformation at lower tem- peratures has a profound effect on the stress-strain curves of these alloys. In particular Fig. 1 shows the compressive stress-strain curves obtained with an 18-8 stainless steel which was quenched from 1850°C after annealing for 1 hr so as to produce all y. As the temperature is lowered, the work hardening rate increases markedly. Although some hcp or c mar-tensite can be generated by plastic deformation as the temperature is lowered,~ it is believed to be a transition phase4 and most of the martensite produced is of the bcc or a variety.3 It is this stress induced martensite which gives rise to the very low initial work hardening at 77°K as can be seen in the stress-strain curve in Fig. 1. Similar low initial work hardening rates have been observed in the stress induced Ni-Ti martensites.5 Fig. 2 shows that an even more rapid rate of work hardening occurs in the Hadfield steels treated in the same way as that described for the 18-8 stainless steels a; the temperature is lowered. It is this ability to work harden to such high stress levels that makes the Hadfield steels particularly suitable for armor plate and heavy construction equipment. However, unlike the case of Fig. 1, no initial low rate of work hardening is observed in any of the curves in Fig. 2. Thus the stress induced formation of any low energy martensite phase in any significant quantity must be ruled out. This observation is in accord with the X-ray findings of Otte.~ On the other hand, small quantities of the E phase have been observed by other investigators using transmission electron microscopy (TEM) above Even more significant was the fact that large numbers of deformation twins were observed in the deformed Hadfield steels,678 which were postulated to be one of the reasons for the high work hardening ability of this class of steels.8 It is the purpose in what follows to discuss a series of experimental observations pertaining to the stress induced transformation in a Hadfield steel and to formulate a dislocation mechanism which adequately accounts for the observed results. EXPERIMENTAL PROCEDURE The stainless steel used to obtain the curves shown in Fig. 1 was of the AISI Type 303 containing approximately 18.0 pct Cr and 8 pct Ni. On the other hand, the Hadfield manganese steel used to obtain the curves shown in Fig. 2 contained between 1.00 to 1.25 pct and 11.5 to 13.5 pct Mn. In all cases the samples were in the form of compression cylinders 0.220 in. in diam and 0.370 in. long. Prior to testing the samples were annealed for a hr at 1050°C and rapidly quenched into a brine solution. This treatment was sufficient to preserve the y phase for subsequent testing at lower temperatures. All samples were compressed in an Instron testing machine using a cross head speed of 0.02 in.
Jan 1, 1970
-
Part X – October 1969 - Papers - Mechanisms of Intergranular Corrosion in Ferritic Stainless SteelsBy A. Paul Bond
Two series of 17pct Cr iron-base alloys with small, controlled amounts of carbon and nitrogen were vacuum-melted in an effort to detertmine the meclz-uniswls of inter granulur corrosion in ferritic stain-less steels. An alloy containing 0.0095 pct N aid 0.002 pct C was very resistant to intergranular corrosion, even after sensitizing heat treatments at 1700" to 2100o F. However, alloys containing more than 0.022 pct Ni and more than 0.012 pct C were quite susceptible to intergranular corrosion after sensitizing heat treatments at temperatures higher than 1700°F. This corrosion was observed after the usual exposure tests and after potentiostatic polarization tests. Electronmicroscopic examination of the alloys susceptible to intergranular corvosion revealed a small grain boundary precipitate; this precipitate was absent in the alloys not susceptible to such corrosion. Thc electronmicrographs indicate that intergranu1ar corrosion of ferritic stainless steels is caused by the depletion of chromium in areas adjacent to precipi-tates of chromium carbide or chromium nitride. It also seems likely that the precipitates themselves are attacked at highly oxidizing potentials. Confirma-tion of the proposed mechanisms was obtained in tests on air-melted ferritic stainless steels containing titanium. The titanium additions greatly reduced susceptibility to intergranular corrosion at moderately oxidizing potentials but had no beneficial effect at highly oxidizing potentials. A major obstacle to the use of ferritic stainless steel has been their susceptibility to intergranular corrosion after welding or improper heat treatment. It appears that sensitization of ferritic stainless steel occurs under a wider range of conditions than for austenitic steels. In addition, a greater number of environments lead to damaging intergranular corrosion of sensitized ferritic stainless steels than to sensitized austenitic steels. The chromium depletion theory of intergranular corrosion is widely accepted for austenitic stainless steels'" although there: are some objections.3 On the other hand, several alternative mechanisms proposed for ferritic stainless steels include precipitation of easily corroded iron carbides at grain boundaries,' grain boundary precipitates that strain the metal lat-tice,5 and the formation of austenite at the grain bound-arie.6 The application of the chromium depletion theory to ferritic stainless steels has been discussed extensively by Baumel.7 The present investigation was undertaken to determine which of the proposed mechanisms can be sub- A PAUL BOND IS Research Group Leader, Climax Molybdenum Co of Michigan, Ann Arbor, Mich. stantiated with experimental data obtained on ferritic stainless steels. High-purity 17 pct Cr alloys containing small controlled additions of carbon or nitrogen were therefore prepared, and then examined electro-chemically and metallographically. EXPERIMENTAL PROCEDURES Materials. Two series of experimental alloys were prepared from electrolytic iron and low-carbon ferro-chromium using the split-heat technique. In this technique, the base composition is melted, and part of the melt is poured off to produce an ingot. To the balance of the melt, the required addition is made and the next ingot cast. This process is repeated until a series of the desired compositions is cast. By this procedure the impurity levels are essentially constant within each series. All the alloys in the carbon-containing series were melted and cast in vacuum. The base composition in the nitrogen series was melted and cast in vacuum; subsequent ingots in the series were melted with additions of high-nitrogen ferrochromium, and cast under argon at a pressure of 0.5 atmosphere. Two additional alloys were produced starting with normal purity materials. They were induction-melted while protected by an argon blanket and cast in air. Table I gives the composition of the alloys. The 2-in.-diam ingots produced were hot-forged and hot-rolled to a thickness of 0.3 in. and then cold-rolled to 0.15 in. All specimens were annealed at 1450°F for 1 hr. The indicated sensitizing heat treat-s s ments were performed on annealed material. All heat treatments were followed by a water quench. Specimen Preparation. For the 65 pct nitric acid test, 1 by 2 by 0.14-in. specimens were wet-surface ground to remove surface irregularities and polished through 3/0 dry metallographic paper. For the modified Strauss test, $ by 3 by 0.14-in. specinlens were similarly prepared. Immediately prior to testing, the Table I. Compositions of the Alloys Composition, pct Alloy Cr hio C N 270A 16.76 0.0021 0.0095 270B 16.74 0.0025 0.022 270C 16.87 0.0031 0.032 270D 16.71 0.0044 0.057 271A 16.81 0.012 0.0089 27 IB 16.76 0.018 0.0089 271C 16.69 0.027 0.0085 271D 16.81 0.061 0.0O71 4073' 18.45 1.97 0.034 0.045 4075† 18.5 2.0 0.03 0.03
Jan 1, 1970
-
Reservoir Engineering- Laboratory Research - Certain Wettability Effects in Laboratory WaterfloodsBy N. Mungan
Laboratory imbibition and displacement experiments were performed using crude oil and cores drilled with water and preserved under anaerobic conditions. The purpose of these tests was to determine reservoir rock wettability and to find out if more oil could be recovered by use of NaOH solution than by conventional waterflooding. The preserved cores were found to be oil-wet. Contrary to work in the literature, these cores changed to water-wet upon contact with air. After exposure to air for a week, the cores yielded more oil by waterflooding than when preserved under exclusion of air. At reservoir temperature of 160F, flooding the preserved cores with 0.5N NaOH solution recovered more oil than an ordinary wa-terflood, and additional oil when following a waterflood. When the caustic solution was used from the beginning, all the extra oil was obtained before breakthrough; when the caustic followed a conventional waterflood, the extra oil was produced in the form of an oil bank ahead of the injected caustic. The increase in oil recovery resulted from wettability reversal. Also, use of caustic reduced the volume of injection required to flood out the cores. At room temperature, however, the caustic solution did not reverse the wettability and gave no additional oil recovery. Cores which had become water-wet by air exposure or caustic flooding were restored to their original oil-wet state when saturated with crude oil and allowed to equcilibrate at reservoir temperature for two weeks. Therefore, in the absence of preserved cores, it may be possible to restore weathered cores to their original wettability for use in laboratory floods. INTRODUCTION Waterflooding has been in use since 1865, and is by far the simplest of secondary recovery methods. Unfortunately, most waterfloods are inefficient in recovering oil, often leaving half or more of the original oil in place un-recovered. The low oil recovery generally results from low sweep efficiency and low displacement efficiency. Consequently, to increase oil recovery by waterflooding, sweep and displacement efficiencies should be improved. Sweep efficiency is primarily affected by reservoir heterogeneities and mobility ratio, while displacement efficiency is affected by the capillary forces between fluids and rock surfaces. For petroleum reservoirs, the capillary forces are expressed in terms of interfacial tension and wettability. If oil recovery is to be improved significantly in water- flooding, the capillary forces holding the oil in the raervoir porous matrix must be reduced or eliminated. One way to reduce capillary forces is to inject commercial surfactants ahead of the injection water into the reservoir. Laboratory tests of this method have shown no promise of an economical process yet, and no increase in oil recovery was obtained in the field trials which have been reported. Work is continuing in many companies to find surface-active agents which, in workable concentrations, can yield substantial added oil recovery. Another way to change capillary forces operating in petroleum reservoirs is by changing the pH of the injected water. Wagner et al.' showed that change in the pH sometimes activates the surface-active materials natural to some crudes and brings about gross wettability change. Since pH alteration can be obtained with cheap chemicals, such as hydrochloric acid or sodium hydroxide, the process shows promise of being economical in a field application. Pan American Oil Corp. reported oil recovery by use of caustic solution from a flooded-out reservoir.' Their test, conducted at a small additional cost, yielded results which were so sufficiently favorable and encouraging that the wettability reversal flood was expanded to portions of the field not previously flooded.13 It is important to bear in mind that changes in the pH of the water not only can reverse wettability but also can lower the interfacial tension between water and crude oil. Reisberg and Doscher4 have studied the pH dependency of the interfacial tension of Venture crude using sodium hydroxide solutions of various concentrations. Their data show that the interfacial tension was lowered from 23.0 to 0.02 dynes/cm by increasing the NaOH concentration from 0.005 to 0.5 per cent by weight. Thus, the use of NaOH may lead to additional oil recovery due to both wettability reversal and lowering of interfacial tension. Whether alteration of pH results in wettability reversal from oil-wet to water-wet and increases oil recovery depends on wetting properties of the reservoir rock and the crude. This necessitates delicate laboratory experiments, with suitable core and fluid samples from a field. Although many investigators have studied wettability reversal floods in the laboratory,1,2,5,6 these studies have been carried out with synthetic porous media, refined laboratory fluids and surface-active chemicals to simulate the process. The study presented in this paper is the first time that wettability reversal by pH alteration has been accomolished in laboratory core floods using carefully preserved natural cores, live crude and with experiments performed at reservoir pressure and temperature.
Jan 1, 1967
-
Part II – February 1969 - Papers - Diffusion of Carbon, Nitrogen, and Oxygen in Beta ThoriumBy D. T. Peterson, T. Carnahan
The diffusion coejTicients of carbon, nitrogen, and oxyget were determined in $ thorium over the tempernilcre range 1440" io 1715°C. The diffusion coyfiicir?zls are given by: D = 0.022 exp (-27,000/RT) jor carbo)~, D = 0,0032 exp(-l7,00Q/RTj for nitrogen, and D = u.0013 expt(-11,UOU/RT) for oxygen. Cavl~orz was found to increase the hardness of thoriunz nearly linearly with concentration over the range 100 to 1000Ppm carbon. ThORIUM has a fcc structure up to 1365°C and a bcc structure from this temperature to its melting point at 1740°C. Diffusion of carbon, oxygen, and nitrogen in bcc thorium was of interest in connection with the purification of thorium by electrotransport.' In addition, it was possible to measure the diffusion of all three of these interstitial solutes in the same bcc metal. Only in niobium, tantalum, vanadium, and a iron have all three interstitial diffusion coefficients been measured in a given bcc metal. Diffusion coefficients have been measured for carbon and oxygen in a thorium by Peterson2, 3 and for nitrogen by Gerds and Mallett.4 Activation energies for diffusion are reported by the above authors to be 38 kcal per mole for carbon, 22.5 kcal per mole for nitrogen, and 49 kcal per mole for oxygen. Values of the diffusion coefficients of carbon and nitrogen in 3 thorium have been reported by Peterson et al.' However, these were secondary results of their investigation of electrotransport phenomena in thorium and it was hoped that the present study could provide more precise data. EXPERIMENTAL PROCEDURE The specimens used in this study were the well-known pair of semi-infinite bar type. The couple was formed by resistance butt welding two 0.54-cm-diam by 3.0-cm-long bars of thorium together under pure helium, the concentration of the solute being greater in one cylinder than that in the other. The finished couple then contained a concentration step at the weld interface and diffusion proceeded only along the axis of the rod. The thorium used in this study was prepared by the magnesium intermediate alloy method.5 The total impurity content was less than 400 ppm. The major impurities were: carbon, 100 ppm: nitrogen, 50 ppm; and oxygen. 85 ppm. The total metallic impurity content was less than 150 ppm. The high solute concentration portions of the diffusion couples were prepared by adding the solute to the high-purity thorium in a non-consumable electrode arc melting procedure. Carbon and nitrogen were added in the form of spectroscopic graphite and nitrogen gas while a Tho2 layer was dissolved by arc melting to add oxygen. High-purity thorium formed the low concentration portions in the carbon and nitrogen couples. The low oxygen portions were obtained by deoxidizing high-purity thorium with calcium for 3 weeks at 1000°C according to a method reported by Peterson.3 The high C-Th contained 400 ppm C, the high N-Th contained 400 ppm N, the high 0-Th contained 220 ppm 0, and the low 0-Th contained 25 ppm O. The high O-Th was brine-quenched from 1500°C to retain most of the oxygen in solution at room temperature. These concentration levels were all below the solubility limits in 0 thorium at 1400°C. A resistance-heated high-vacuum furnace was used to heat the couples. The samples were mounted horizontally on a tantalum support which had small grooves near each end. Spacer rods of thorium, 0.4 cm in diam, were placed in these grooves to prevent contact between the sample and the tantalum support. This arrangement should have prevented contamination of the sample by contact with the support. In further effort to reduce contamination, the oxygen diffusion couples were sealed inside evacuated outgassed tantalum cylinders lined with thorium foil. Thorium rings around each end of the samples acted as spacers in this case. Pressure during diffusion runs was about 10-6 torr after an initial outgassing stage. Temperature measurements were made by sighting on black body holes in the sample support adjacent to the samples with a Leeds and Northrup disappearing-filament optical pyrometer. Temperatures were constant during a diffusion anneal to ±5C. The observed temperatures were corrected for sight glass absorption after each diffusion run. The pyrometer was checked against a calibrated electronic optical pyrometer and a calibrated tungsten strip lamp with the electronic pyrometer being taken as the standard. All temperature readings agreed to within ±3C over the temperature range 1450" to 1690°C. Time corrections due to diffusion during heating and cooling were necessary because of the short diffusion times. The diffusion times ranged from 6 min for the oxygen sample run at 1690°C to 90 min for the carbon sample run at 1500°C. A series of temperature vs time plots were made for heating and cooling of the samples to the various diffusion temperatures. This data was then used in a method according to shewmon6 to determine the time corrections. The corrections amounted to
Jan 1, 1970
-
Part VI – June 1968 - Papers - Mechanism of Reorientation During Recrystallization of PoIycrystaIIine TitaniumBy Hsun Hu, R. S. Cline
The annealing behavior and the mechanism of re-orientation during recrystallization of iodide titanium cold-rolled 94 pct have been studied in detail. Results indicate that recrystallization occurs by the nucleation and growth of new grains, as in other common metals. Recrystallization nuclei form by the coalescence of subgraim, and the change in texture as a result of recrystallization is largely due to selective growth among the nuclei formed. The annealing of titanium is characterized by a wide range of overlap of the various stages of the annealing process, which may be responsible for a range of activation energies observed, and for the apparently gradual change in the annealing texture as a function of time or temperature. The deformation and recrystallization characteristics of titanium and zirconium are very similar. In cold-rolled strip, the deformation texture consists of two symmetrically oriented components, each having the basal plane laterally tilted at about 30 deg from the rolling plane and the [1010] direction parallel to the rolling direction. Upon annealing for recrystallization, the change in texture can be described, for simplicity,* as rotations around [0001].2'6'8 According to McGeary and Lustman,' recrystallization occurs in zirconium through normal growth of the subgrains, which they called "domains", without the nucleation of new grains; and the magnitude of rotation around the [0001] axis increases gradually during the progress of recrystallization. If these conclusions were true, the mechanism of recrystallization in zirconium would be basically different from that in most metals, since it is commonly known that recrystallization with reori-entation always involves the migration of high-angle boundaries. In an attempt to clarify the situation, the mechanism of reorientation during recrystallization in iodide titanium cold-rolled 94 pct was studied in detail. The structural and textural changes upon annealing at various temperatures were examined by optical and transmission-electron microscopy, X-ray pole figures, pole density distribution measurements, and micro-beam techniques. EXPERIMENTAL PROCEDURE Material and Specimen Preparation. An iodide titanium crystal bar was are-melted and solidified in a cold-hearth crucible under a purified argon atmosphere. The solidified ingot had dimensions of approximately 3 by 1/2 by 3 in. One face of the ingot was somewhat uneven, but was as clean and shiny as the remaining parts of the ingot. Large grains with a Widmanstatten internal structure were clearly shown on the shiny surfaces, indicating the occurrence of P — a transformation upon rapid cooling from the melt. Analysis of the are-melted ingot indicated C 0.033, N 0.010, H 0.013, 0 0.002 in weight percent, and traces of iron, copper, and silicon as detectable impurities. The ingot was cold-rolled -40 pct to 0.300 in. thick with a reduction of 0.005 in. per pass. The defects on the uneven side of the ingot were then removed by machining. This reduced the thickness to 0.285 in. The piece was then recrystallized by annealing at 800°C for 1 hr in a fused silica boat charged into a fused silica tube furnace under a vacuum of 10~5 mm Hg. To refine the grain size, the recrystallized metal was again cold-rolled 40 pct to 0.170 in., then annealed at 700°C for 1 hr. These treatments yielded a strip with a uniform equiaxed grain structure, having a penultimate average grain diameter of 0.04 mm and a hardness of approximately 90 Dph. Final rolling reduced the thickness from 0.170 to 0.010 in., corresponding to a reduction of 94 pct. The strip was rolled in both directions by reversing end for end between passes. Surface lubrication was provided by oil-soaked pads attached to both rolls. Specimens of 1 in. length (for X-ray examinations) and +in. length (for hardness and microstructure examinations) were cut from the rolled strip, and a width of & in. was cut from the edges of each specimen by a jeweler's saw. These specimens were then etched in a solution of 10 cu cm HN03, 5 cu cm HF, and 50 cu cm H,O to 0.008 in. thick to remove the surface metal, as well as the distorted metal at the saw cuts, prior to annealing or measurements. To minimize any surface reaction with the atmosphere, all specimens were kept in an evacuated desiccator. Isothermal Anneals. All annealing treatments were conducted in vacuum in a fused silica tube furnace as described earlier. The temperature of the furnace was controlled to within *2"C. The specimen was placed in a fused silica boat, then pushed into the hot zone of the furnace. It took about 5 to 6 min for the specimen to reach the furnace temperature. After the specimen was held at temperature for a desired length of time the boat was pulled to the cold zone of the furnace; the heating-up period was excluded from the isothermal annealing time. Thus, the uncertainty in annealing time is higher for very short anneals, but negligible for long anneals.
Jan 1, 1969
-
PART IV - Papers - A Kinetic Study of Copper Precipitation on Iron – Part IBy M. E. Wadsworth, K. C. Bowles, H. E. Flanders, R. M. Nadkarni, C. E. Jelden
The kinetics of precipitation of copper on iron of various purity were carried out under controlled conditions. The rate of reduction has been correlated with such parameters as copper and hydrogen ion concentration, geometric factors, flow rate, and temperature. The character of the precipitated copper as a function of flow conditions and rate of PreciPitation has been observed under a variety of conditions. ThE precipitation of copper in solution by cementation on a more electropositive metal has been known for many years. Basile valentine' who wrote Currus Triumphalis Antimonii about 1500, refers to this method for extraction of copper. Paracelsus the Great2 who was born about 1493 cites the use of iron to prepare Venus (copper) by the "rustics of Hungary" in the "Book Concerning the Tincture of the Philosophers". Agricola3 in his work on minerals (1546) tells of a peculiar water which is drawn from a shaft near Schmölnitz in Hungary, that erodes iron and turns it into copper. In 1670, a concession is recorded4 as having been granted for the recovery of copper from the mine waters at Rio Tinto in Spain, presumably by precipitation with iron. Much has been published in recent literature on the recovery of copper by cementation, the majority of the articles being on plant practice.5-24 The rest include articles on investigation of the variables involved25-28 and a review of hydrometallurgical copper extraction methods." This literature has established: a) The three principal reactions in the cementation of copper are Cu + Fe — Fe+4 +Cu [ 11 One pound of copper is precipitated by 0.88 lb of iron stoichiometrically. In actual practice about 1.5 to 2.5 lb of iron are consumed. 2Fe+3 + Fe — 3Fe+2 [21 Fe +2H'-Fe+2 + H2 [3] Reactions [2] and [3] are responsible for the consumption of excess iron. Wartman and Roberson'28 have established that Reactions [ I] and [2] are concurrent and much faster than Reaction [3]. b) Acidity control is important in the control of hydrolysis and the excessive consumption of iron. he commercial workable range is approximately from pH = 1.8 to 3." c) Iron consumption is closely related to the amount of ferric iron in solution. Jacobi" reports that, by leaving the pregnant mine waters in contact wi th lump pyrrhotite (Fe7S8) for 3 hr, all the iron was reduced to the bivalent condition and scrap iron consumption was cut to 1.25 lb scrap per pound of copper precipitated. He also reported that SO2 has been used successfully to reduce ferric iron to the ferrous state. d) The ideal precipitant is one that offers a large exposed area and is relatively free of rust. e) High velocities and agitation show a beneficial effect upon the rate of precipitation, as it tends to displace the layer of barren solution adjacent to the iron and also dislodges hydrogen bubbles and precipitated copper to expose new surfaces. Little work, however, has been published on the reaction kinetics of copper precipitation on iron. Cent-nerszwer and Heller20 investigated the precipitation of metallic cations in solutions on zinc plates. They found the cementation reaction to be a first-order reaction. The rate constant was independent of stirring for high stirring rates and they concluded that the rate is governed by a diffusional process at low stirring speeds and by a "chemical" process at higher stirring speeds where the rate reaches a constant value. This conclusion has been challenged by King and Burger30 who could not find any region where the rate was independent of the stirring speed, although the rate constant they had obtained for high stirring speed was greater than the maximum value of the rate constant reported by Centnerszwer and Heller (by a factor of six). King and Burger, therefore, concluded that the rate of displacement of copper was controlled only by diffusion. Cementation of various cations on zinc has been summarized by Engfelder.31 APPARATUS A three-necked distillation flask of 2 000-mm capacity was used as a reaction vessel. A pipet of 10-mm capacity was introduced through one of- the side necks, the sample of sheet iron, mounted in a rigid sample holder, through the other, the stirrer being in the middle as shown in Fig. 1. The whole assembly was immersed in a constant-temperature bath. The stirrer was always placed at the same depth in the solution. EXPERIMENTAL PROCEDURE Reagent-grade cupric sulfate (J. T. Baker Chemical Co., N.J.) was used to make up a stock solution containing 10 g of copper per liter which was then diluted to various concentrations as required. Experimental data were obtained by measuring the amount of copper and iron ions in solution at successive time intervals. The initial volume of the solution was always 2000 ml, 10-ml aliquots being removed each time for chemical analysis. Because the total volume change of the solution was less than 10 pct, no correction was used for solution volume change. Nitrogen was bubbled through the solution before and
Jan 1, 1968
-
Part XII - Papers - Grain Boundary Segregation and the Cold-Work Peak in Iron Containing Carbon or NitrogenBy M. L. Rudee, R. A. Huggins
Samples of iron containing nitrogen or carbon have been given treatments similar to those used in cold-work peak (CWP) measurements and examined by transmission electron microscopy. It was observed that the unusual and nonreproducible behavior of the carbon CWP can be explained by a strong tendency for carbon to form grain boundary precipitates at temperatures below those used for CWP measurements. These precipitates dissolved at the temperatures used in the CWP measurements. There was no evidence for nitrogen precipitation at grain boundaries. There was no indication of precipitation along dislocations in either carburized or nitrided samples given treatments similar to those of CWP measurements. Although it is possible that subelectron-microscopic clustering had occurred, this observation supports the theories of the CWP that are based on continuous atmospheres rather than on individual precipitates. In an earlier paper,' the present authors developed a new distribution function to predict the occupation of sites for interstitial impurity atoms around a dislocation. When this distribution was applied to the case of carbon and nitrogen in iron, it predicted that, if the temperature dependence of the concentration of solute atoms in the matrix was controlled by the presence of equilibrium carbide or nitride precipitates, the tendency for nitrogen to segregate to dislocations would be greater than that for carbon even though their binding energies to dislocations are identical. The cold-work internal-friction peak (CWP) is considered by most authors to be produced by the interaction of interstitial impurities with dislocations. Many investigators have studied the CWP in iron containing carbon and nitrogen and have observed a significant difference between its behavior in the two cases. In this paper a series of experiments will be reported that were initiated to determine whether the application of the new distribution function would explain the observed differences between the carbon and nitrogen CWP. Although it was found that the distribution function, pev se, did not explain the differences, the differences became clear, and some insight into the mechanism of the CWP was realized. Before reporting the present experiments, the literature pertaining to the differences between the carbon and nitrogen CWP in iron and the various mechanisms proposed for the CWP will be reviewed. LITERATURE REVIEW Snoek2 first observed the CWP in iron specimens containing nitrogen, but also reported a weak and unreliable peak in carburized samples. Later, Ke3 established that the CWP height was proportional to the degree of deformation. The presence of nitrogen alone would produce a peak of the same size as found in a sample containing both nitrogen and carbon, and KG concluded that the CWP was caused by nitrogen. In a discussion of G's paper it was reported that Dijkstra had investigated the CWP in samples that contained only carbon. He found it to be much smaller than the nitrogen peak and "unstable". KG et al.4 charged specimens of iron with both carbon and nitrogen. They observed that the carbon CWP was much smaller than that observed in nitrided samples, but that aging at 300°C caused the carbon peak to increase. A similar treatment produced no change in a nitrogen peak. Annealing at higher temperatures caused the height of the CWP in both the nitrogen and carbon samples to decrease. This behavior was also observed by Kamber et al. 5 who found that the activation energy for the annealing of the CWP was identical with the activation energy for the self-diffusion of iron. They concluded that the annihilation of dislocations by climb caused the reduction in the CWP height. Kamber et al. studied the "unstable" carbon peak in detail. They measured both the Snoek and CWP during various aging treatments. In carburized samples, aging at 100°C caused the Snoek peak to disappear, although the CWP peak remained small. However, a subsequent treatment for 5 hr at 240°C caused the CWP to reach a maximum. They proposed that an additional location for the carbon, other than whatever site produced the CWP, is present. In nitrided samples the CWP was completely developed as soon as a measurement was made; additional sites are not present. No explanation of either the additional site or the difference in the behavior of carbon and nitrogen was offered. petarra5 performed a systematic study of the effect of composition on the CWP. Using three kinds of "pure" iron, he showed that there was a residual CWP when the carbon and nitrogen concentrations had been reduced to less than that detectable by Snoek-peak measurements. He observed the same general annealing behavior and composition dependence as previous investigators, with the following exceptions. On first measuring the carbon CWP, it was found to be identical with the residual peak, and essentially independent of the carbon content. If the CWP was measured a second time in the same sample, it increased in size, but was still only about one-fourth the size of a CWP in a sample of the same iron nitrided to the same composition. On the other hand, a series of annealing experiments showed that the nitrogen CWP was not al-
Jan 1, 1967
-
Geophysics - Copper Soil Anomalies in the Boundary District of British ColumbiaBy T. M. Allen, W. H. White
THE Greenwood-Grand Forks area of southern central British Columbia, known as the Boundary District, has a long history of mining exploration and production. At the turn of the century this was the premier copper mining camp in the British Empire, its total production amounting to some 20 million tons. Most of this ore came from the great Granby mines at Phoenix, but the Motherlode mine at Deadwood camp, 6 miles to the west, and several mines in Summit camp, 5 miles north of Phoenix, made important contributions. The large deposits were exhausted in 1918 and the district since has seen only desultory exploration and salvage operations. The orebodies are mineralized skarn zones in limestone members of a thick series of Upper Paleozoic sedimentary and volcanic strata. Chalcopyrite is the primary ore-mineral. Copper carbonates and silicates occur sparingly in outcrops, but the oxidized zone generally is very shallow. Much of the surface is mantled by glacial drift which in most places ranges in thickness from 2 to 15 ft. In some of the hanging valleys, however, the glacial drift may be as much as 100 ft thick and may assume drumlin-like forms. In 1951 an ambitious program aimed at the discovery of new orebodies and important extensions of abandoned deposits was launched by Attwood Copper Mines, Ltd. In this district so thoroughly searched by an earlier generation of prospectors, any orebody which had remained undiscovered must have little or no surface indication. Consequently, in addition to the basic detailed geological work, the program of exploration included magnetometer and self-potential surveys. Geological bets and geophysical anomalies were tested further, prior to diamond drilling, by a study of copper distribution in tree twigs and/or in the soil. The soil sampling and analytical methods used and some of the results seem of sufficient importance to warrant this paper. The authors had done some plant sampling in this and other districts, using the dithizone neutral-color-end-point method (Warren and Delavault, 1948, 1949; White, 1950),1-3 but they were unfamiliar with its soil application. Finally, after much experimenting in the field, they adopted the methods described here. These methods are not entirely original or defensible on theoretical grounds, but under field conditions of rapid sampling and analysis the results are reliable enough to be of use. Fig. 1, which shows the results of duplicate analyses of duplicate soil samples taken at 50-ft intervals across an anomalous zone, indicates the relative dependability both of the sampling and analytical methods. Sampling and Analytical Equipment A 2-ft piece of 1-in. solid drill steel, one end sharpened to a broad, conical point. The steel is marked at 1 ft from the point. A 2-ft piece of ½-in. black iron pipe, one end filed to a bevelled cutting edge. The pipe is marked at 1 ft 3 in. from the cutting end. A 3-lb hammer. A plastic or rubberized sheet about 18 in. square. Moisture-proof assay pulp envelopes. A 10-mesh seive made from window screen with the paint burnt off. A small assay spatula. A pan balance sensitive to 10 mg. Two ignition trays about 4 in. square, made of sheet iron turned up along the edges. A Coleman two-burner gasoline stove. An asbestos board about 5x8 in., used as a hot plate on the gasoline stove. A circular aluminum rack to hold 8 test tubes while refluxing (design of Almond and Morris). Pyrex Glassware Large refluxing test tubes, 25x200 mm, marked at 40 ml volume. Breakers, 20 ml. Pipettes, 1, 5, and 10-ml capacity. Graduate, 50 ml. Shaking cylinders, 100 ml, glass stoppers. Burette, 25 or 50-ml capacity, with holder. Chemical Supplies 1 N sulphuric acid. Hydroxylamine hydrochloride, solid crystals. Fisher Alkacid test paper. Copper standard solution. Dithizone standard solution 60 mg per liter. Water reasonably free of metals. Soil Sampling Method: The problem of how to take a soil sample is extremely crucial. The method outlined below, adopted after a number of tests, has the advantages of uniform pattern, uniform depth, and uniform size of sample. The area to be tested was marked off by chain and compass lines 100 ft apart, normal to the strike of possible ore deposits. Numbered stakes were set at 50-ft intervals along these lines and a soil sample was taken at each stake in the following manner. The drill steel was driven into the ground normal to the slope of the surface to the marked depth of 1 ft, moved slightly from side to side, then carefully withdrawn. The iron pipe was inserted to the bottom of this hole, tapped down to the marked depth of 1 ft 3 in. and withdrawn; the 3-in. soil plug in the
Jan 1, 1955
-
Institute of Metals Division - Transformation of Gamma to Alpha ManganeseBy E. V. Potter
For a nurnber of years, it has been known that manganese made by electro-deposition under certain conditions is ductile while under other conditions it is very brittle. The ductile metal is gamma manganese normally stable only between 1100 and 1138°C1; the brittle metal is alpha manganese, stable up to 727OC. The ductile metal is not stable, but gradually changes to the brittle form; the time required to complete the transfornlation is about 20 days at room temperature. Other observations have indicated that the transformation is completed in 10 to 15 min. at about 125°C, while at — 10°C, no appreciable change occurs in 9 months. The properties of gainma and alpha Illanganese in the pure state are ordinarilj difficult to determine because the gamma structure cannot be retained by normal quenching procedures and alpha manganese is so brittle, it is difficult to obtain specimens free from flaws. In a recent investigation2 some properties of gamma and alpha manganese were determined by studying the ductile electrolytic metal and determining the changes in its properties as it transformed to the brittle alpha form. These investigations provided an excellent opportunity for following the progress of the transition and studying its mechanism. The results of a series of such investigations are reported in this paper. Procedure Various properties of manganese were determined starting with the metal in the original ductile gamma form and following the subsequent changes in its properties as the metal transformed to the brittle alpha form. These observations were made at various temperatures, the data providing information regartling the mechanism of the transformation as well as the effect of temperature 011 the transition rate. Structure and resistivity values gave the most significant results, so this paper is concerned primarily with them. The structure was studied microscopically as well as by X ray diffraction. The resistivity was determined on strips of the metal by measuring the potential drop across a given length of the specimen. Current was passed through the specimen by wires soldered to its ends, and the potential connections were made by wires looped around the specimen near its center. The current was determined by the potential drop across a standard resistor connected in series with the specimen, the potential drop being measured on a potentiometer. In the temperature range from room temperature to 100°C an ordinary drying oven was used to heat the specimen. This was entirely satisfactory except at 100°C, where the time required to heat the specimen was long compared to the transition time, making the initial section of the resistivity curve unsatisfactory. To overcome this limitation, at 100°C and higher a thermostatically controlled oil bath was used to heat the specimens. The block on which the specimen was mountetl was plunged into the hot oil at the start of each test. The heating time was thereby reduced from 5 min. to about 6 sec, and dependable resistivity values could be obtained through 160°C. At this point the whole transition, including the warm-up time for the specimen, required only about 20 sec and it was not considered worth while trying to extend the temperature range further. Aside from the heating problem, the problem of making a sufficient number of accurate resistivity determinations became more and more difficult as the temperature was raised. Using the manually operated potentiometer, 100°C was about as far as it was possible to go. At this temperature and above, a self-balancing photoelectric recording potentiometer was used. Its response was quite rapid, and it proved to be entirely satisfactory all the way through 160°C, where the tests were stopped because of the specimen heating problem rather than any limitation of the potentiometer recorder. The metal used in these tests was prepared at the Salt Lake City laboratory of the Bureau of Mines. The method of preparation is discussed in a paper by Schlain and Prater.3 The sheets were about 2 3/8 by 5 3/16 in. and varied from 10 to 16 mils in thickness. They could be cut readily into pieces suitable for the various tests. X ray and microstructure determinations were made on pieces about 1/8 to 1/4 in. wide and about 1 in. long, while resistivity measurements were made on strips as long as possible and about 55 in. wide. The thickness of each sheet was not uniform over all its surface. This had no bearing on the X ray and microstructure determinations, but sections as nearly uniform and free from flaws as possible were chosen for the resistivity determinations. The gamma manganese was electro-deposited at 30°C, the time of deposition ranging from 5 to 12 hr for each sheet. Whenever possible, the tests were started directly after the metal was stripped from the cathode; otherwise the sheet was placed immediately
Jan 1, 1950
-
Iron and Steel Division - Stabilization of Certain Ti2Ni-Type Phases by OxygenBy M. V. Nevitt
In the systems Ti-Mn-O, Ti-Fe-O, Ti-Co-O, and Ti-Ni-O the bounda.r-ies of the Ti2Ni-type phases were determined at one or more temperatures and the variation of the lattice parameter with oxygen content was determined. Densities were calculated from the lattice parameters and compared with measured density values. The: results indicate that the occurrence of the phase in these systesms can be correlated qualitatively with valency electron concentration, and that the role of oxygen is that of an electron acceptor. The lower limit of oxygen solubility appears to be determined by the valencies of Mn, Fe, Co, and Ni, while the maximum oxygen concentration coincides with the filling of the 16 (c) positions of the O 7h - Fd 3m space group. THE suggestion has been made by several investigators'" that the phases having the cubic E9,-type structure, and known as 17-carbide-type, double-carbide-type and Ti,Ni-type, are members of a family of electron compounds. This concept has been given additional support by recent work8 in which new isostructural phases involving second and third long period combinations were found, and which provided further evidence of the regularity of occurrence of the phase in terms of periodic table relationships. In this laboratory attention has been focused on the isomorphs containing titanium, zirconium, or hafnium, and the role that oxygen plays in their occurrence. In some binary systems Ti,Nitype* phases occur having the formula A,B where A is the titanium group element. Based on previous workq and the present investigation, oxygen is known to be soluble in two of these binary phases, Ti,Co and Ti2Ni. It is probable that oxygen is also soluble in the other phases of this kind. In other binary systems the Ti,Ni-type phase does not occur, but does occur in the corresponding ternary systems with oxygen .3-5 The experiments described here were performed to determine whether the occurrence and composition of certain of the Ti,Ni-type phases could be related to an electronic effect and whether oxygen's stabilizing role is exerted through an influence on the electron: atom ratio. The ternary systems Ti-Mn-O, Ti-Fe-O, n-Co-O, and Ti-Ni-O were selected for study for two reasons: First, several schemes have been proposed for first long period elements which, although not in quantitative agreement, show a generally consistent trend for the variation of valency with atomic number. Although for a transition metal the term valency is difficult to define and is generally not a constant number which can be applied to all alloys, it is usually assumed to be an index of the number of electrons per atom involved in metallic cohesion. Second, the determination of the Ti2Ni-type phase boundaries was facilitated by the fact that the phase relations in several of these ternary systems have been investigated by other workers."' EXPERIMENTAL PROCEDURE___________________ The alloys were prepared by arc melting crystal-bar titanium, reagent grade TiO, and electrolytic manganese, iron, cobalt, and nickel. Each button was remelted at least three times. The metals had a minimum purity of 99.9 pct except the nickel whose purity was 99.4 pct, the major impurity in this instance being cobalt. The preparation of the manganese alloys was attended by the customary difficulties associated with the vaporization of manganese. The technique used in this case was to add approximately 10 pct extra manganese to the original charge and to continue remelting the button until the final weight was in agreement with its intended weight. At least three alloys in each system were analyzed chemically and the results, even for the manganese alloys, were in good agreement with the intended compositions. A few additional alloys in the Ti-Mn-O system were prepared by the sintering of mixed powders in evacuated quartz tubes followed in some cases by arc melting. For annealing, the alloys were wrapped in molybdenum foil and placed in fused silica tubes containing zirconium chips. The fused silica tubes were evacuated at room temperature to a pressure of 1 x l0-6 mm of Hg and sealed. These capsules were then annealed for 72 hr at an external pressure of 5 x 10-5 mm of Hg in a vacuum furnace whose temperature could be controlled to + 1°C. The success of this procedure in avoiding significant oxygen or nitrogen pickup was indicated by the bright, ductile condition of the molybdenum foil and by the complete absence of a microscopic reaction layer on the specimens. This method did not permit rapid quenching of the specimens but in no case did metal-lographic examination indicate that a solid-state transformation had occurred on cooling. Metallo-
Jan 1, 1961
-
Institute of Metals Division - Rate of Self-Diffusion in Polycrystalline MagnesiumBy P. G. Shewmon, F. N. Rhines
THE determination of the self-diffusion coefficient of magnesium has been made possible recently by discovery1-1 of a radioactive isotope, Mg28 having a half-life of 21.3 hr,1 and subject to manufacture in useful quantity. In the present research this material was condensed from the vapor phase upon a surface of high purity magnesium. The progress of diffusion of the tracer atoms into polycrystalline magnesium was followed by machining layers and measuring the change in the intensity of radiation as a function of the distance of each layer from the surface. The self-diffusion coefficient was found to be 2.1 X 10-8 sq cm per sec at 627°C, 3.6 X 10-9 sq cm per sec at 551°C, and 4.4 X 10-10sq cm per sec at 468°C; the activation energy is about 32,000 cal per mol. Experimental Procedure Since there was no other published measurement of a diffusion velocity in any magnesium-base material, is was necessary to employ a number of new experimental techniques. The short half-life of Mg28 made it necessary to complete the entire experimental procedure within three or four days. This meant that the work had to be done where a cyclotron was readily accessible and that all operations, prior to the diffusion heat treatment, had to be so designed as to minimize their time requirements. Unusual problems were imposed also by the chemical reactivity of magnesium, its high vapor pressure, and the fact that no satisfactory method for elec-trodepositing magnesium on magnesium is presently available. Finally, the machining and handling of the easily air-borne radioactive-magnesium chips involved certain health hazards, resulting in the need for further experimental restrictions. Preparation of Mg28 The Mg28 was produced in the Carnegie Institute of Technology syncrocyclotron by the neutron spallation of chlorine.5 his involved bombarding a 2 gram crystal of high purity NaCl with a beam of 350 mev protons for a period of 2 hr, after which the crystal was dissolved in warm water and the Mg28 was concentrated and purified by chemical means (see Appendix). About 50 microcuries of Mg28 thus were obtained in the form of magnesium oxinate (8 hydroxyquin-olatc?), which was ignited in air to produce MgO. This in turn was reduced to magnesium metal vapor, by the method of Russell, Taylor, and Cooper," in the vacuum apparatus shown schematically in Fig. 1. Here the essential part is a tantalum ribbon, slightly dished to receive the MgO. The ribbon, pre- viously outgassed at high temperature, is heated to about 1700°C by passing an electric current through it, whereupon tantalum oxide is formed, magnesium vapor is released almost instantaneously, and condensed partly upon the diffusion sample. Diffusion-Sample Preparation: Hot-extruded magnesium rod, 21/32 in. round was used in making the diffusion specimens. The magnesium analyzed as follows: 0.004 pct Al, 0.027 pct Fe, 0.040 pct Mn, 0.0004 pct Cu, 0.0002 pct Ni, and less than 0.01 pct Ca, 0.0004 pct Pb, 0.0011 pct Si, 0.001 pct Sn, and 0.001 pct Zn. A brief study of the crystal texture of this material revealed a sharp fiber texture with the (001) plane roughly parallel to the extrusion axis. Cylindrical samples 1/2 in. long by 5/8 in. were machined from this rod, the end faces dressed on 3/0 emery, and lightly etched with 20 pct HC1 in water. These samples then were annealed for at least twice the intended time of diffusion, at the intended diffusion temperature, in order to stabilize the grain structure at about 1 mm average diameter. The annealing treatments were conducted in argon in the same apparatus and in the same manner as the subsequent diffusion treatments, which will be described presently. Thus, a strain-free plane surface was produced, but there remained a layer of MgO which had largely to be removed before the layer of Mg28 was deposited. Most of this layer was taken off by two light passes over 3/0 emery paper. The balance of the oxide and a thin layer of metal were then removed by etching 5 to 10 min in 4 pct nital (4 pct HNO3 and 96 pct ethyl alcohol) made with absolute alcohol. There followed immediately three quick rinses in: 1-49 1/2 pct methanol, 49 1/2 pct acetone, and 1 pct formic acid, 2-50 pct methanol and 50 pct acetone, and 3-pure benzene. This procedure is essentially that of Sturkey.7 The resulting surface, which was of almost elec-tropolished brightness, remained plane and was free of cold work. It could be kept clean by storing under benzene, or in a desiccator; short exposure
Jan 1, 1955
-
Thermal Metamorphism and Ground Water Alteration Of Coking Coal Near Paonia, ColoradoBy Vard H. Johnson
IN 1943 the U. S. Bureau of Mines undertook drilling in an effort to develop new reserves of coking coal in an area near Paonia, Colo., as a part of an attempt to alleviate the shortage of known coking coal of good quality in the western United States. Geologic mapping of the area was undertaken by the U. S. Geological Survey with the purpose of first furnishing guidance in location of drillholes and later aiding in interpreting the results of the drilling. The drilling program was under the general supervision of A. L. Toenges of the U. S. Bureau of Mines. J. J. Dowd and R. G. Travis were in charge of-the work in the field. Geologic mapping was started by D. A. Andrews of the Geological Survey in the summer of 1943 and was continued from the spring of 1944 to 1949 by the writer. The first few holes drilled failed to locate coking coal, but in the summer of 1944 coking coal was discovered by drilling 6 miles east of Somerset, Colo., the site of present mining. In the succeeding years, 1945 to 1948, 100 to 150 million tons of coal suitable for coking were blocked out by drilling. The ensuing discussion of the geologic controls on the distribution of coking coal in the area is based on the geologic mapping as well as the drilling done in the Paonia area, more complete descriptions of which have appeared or are in process of publication.1-5 In order that the possible geologic controls affecting the present distribution of coking coal may be considered, it is necessary to discuss briefly the indicators. of coking quality coals. Coking Coal Coal that cokes has the property of softening to form a pastelike mass at high temperatures under reducing conditions in the coke oven. This softening is accompanied by the release of the volatile constituents as bubbles of gas. After release of the contained gases and upon cooling, a hard gray coherent but spongelike mass remains that is referred to as coke. This substance varies greatly in physical properties and, to be suitable for industrial use, must be sufficiently dense and strong to withstand the crushing pressure of heavy furnace loads. Western coals have a generally high volatile content and therefore form a satisfactory coke only when they attain a rather high fluidity during the process of heating and distillation in-the coke oven. When this high degree of fluidity is developed, the volatile constituents escape and leave a finely porous coke. On the other hand, when the degree of fluidity is low the product is an excessively porous and therefore physically weak mass that is called char.6 Small quantities of oxygen present in coal are believed to decrease the fluidity of the material during the coking process and to favor the development of char rather than coke. In consequence, coal chemists have for some time considered the possibility of developing an index to coking. qualities by inspection of chemical analyses of coals.7 A formula has now been developed that does permit a rough preliminary estimate of the cokability of coal on the basis of the analysis on an ash and moisture-free basis. Coals may be eliminated as possible coking fuels if the oxygen content is greater than 11 pct. Similarly the ratio of hydrogen to oxygen must be greater than 0.5 and the ratio of fixed carbon to volatile constituents must be greater than 1.3. If the coal, on the basis of these limiting factors, appears to have possible coking qualities, the following formula permits determination of the coking index: Coking index =[ a+b+c+d 5] a equals 22/oxygen content on ash and moisture- free basis, . b equals two times the hydrogen content divided by oxygen content on moisture and ash-free basis, c equals fixed carbon/1.3 x volatile matter, and d equals the heating value on moist, ash-free basis/13,600. Coking indices higher than 1.0 suggest that the coal will coke, and indices above 1.1 indicate good coking tendencies. Although generally usable, this formula is not completely satisfactory because the percentage of oxygen shown in ultimate analyses is derived only by difference; i.e., by subtracting the sum of the percentages of the constituents determined analytically from 100 pct.8,9 Although the coking index indicates the coking tendencies of coal, it is necessary to make physical tests of coke before its industrial value can be determined. The U. S. Bureau of Mines has developed a standard procedure for determining the approximate strength of coke that would be formed from a given coal. In this test one part of ground coal, mixed with 15 parts of carborundum, is baked to form a standard briquette. The weight, in kilograms, necessary to crush the briquette is termed the agglutinating index. This test determines the relative fluidity attained in the coking process by measuring the cementing strength of the coal in the briquette. A
Jan 1, 1952
-
Reservoir Engineering - Variable Characteristics of the Oil in the Tensleep Sandstone Reservoir, Elk Basin Field, Wyoming and MontanaBy Joseph Fry, Ralph H. Espach
In the spring of 1943, when it was evident that the Tensleep bandstone in the Elk Basin Field, Wyoming and Montana, held a large reserve of petroleum, Bureau of Mines engineers obtained samples of oil from the bottom of nine wells and analyzed them for such physical characteristics as the volumes. of gas in solution. saturation pressures or bubble points, shrinkage in volume caused by the release of gas from solution, expansion of the oil with decrease in pressure, and other related properties. The composition of the gas in solution in the oil was studied. The pressures and temperatures existing in the reservoir and the productivity characteristics of the oil wells were determined. The data obtained indicate that the oil in the Tensleep Reservoir of the Elk Basin Field has unusually varying physiral characteristics, such as a saturation pressure of 1,250 psia and 490 cu ft of gas in solultion in a barrel of oil at the crest of the structure and a saturation pressure of 530 psia and 134 cu ft of gas in solution in a barrel of oil low on the flanks. The hydrogen sulfide content of the gas in solution in the oil varies from 18 per cent for oil on the crest to 5 per cent for oil low on the flanks of the structure. Of even greater significance is the fact that these and other variable characteristics of the reservoir oil are related to the position of the oil in the structure. Many geologists and petroleum engineers have considered that all the oil in a petroleum reservoir has rather uniform physical characteristics and that equilibrium conditions prevailed in all underground accumulations of oil and gas; that such is not always so is borne out by the results of the study by the writers. INTRODUCTION The Rocky Mountain region is one in which may be found striking examples of the unusual in oil and gas accumulations, as is evident from the following: The high helium content (7.6 per cent) of the gas in the Ouray-Leadville limestone sequence in the Rattlesnake Field, New Mexico, and gases of similar helium content in other fields; 50" to 55' API gravity distillate in solution in carbon dioxide gas and recoverable through retrograde condensation, in the North McCallum Field, Colorado; the occurrence of gas, oil, or both in closely related structures contrary to the usual concepts of gravimetric segregation: the accumulation of gas and/or oil in structures closely related to other structures that apparently are more favorable but do not contain oil or gas accumulations; the high hydrogen sulfide content (as high as 42 per cent) of the gas associated with oil in some fields in the Big Horn Basin, Wyoming; and the wide range of fluid chararteristics found in the Elk Basin reservoir. Elk Basin, an interesting old oil field that has been producing oil from the Frontier formation since 1915, is situated in a highly eroded basin resulting from the erosion of the crest of an anticline and some of the underlying softer shales. The field came back into national prominence during 1943 when it became known that it was the largest single reserve of new oil discovered in the United States that year. The Tensleep sandstone was found to contain oil in November. 1942, when a well drilled to a depth of 4,538 ft (44 ft into the Tensleep sandstone) flowed oil at the rate of 2,500 B/D. By the end of 1949, 137 oil-producing wells and five dry holes had been drilled, and approximately 32 million bbl of oil had been produced. Approximately 6,000 acres may be considered productive of oil in the Tensleep Reservoir, and estimates of the oil that will be produced average 200 million bbl. The Tensleep Reservoir has further interest because it ha-greater closure than any oil field in the Rocky Mountain region; the closure of the Elk Basin anticline is variously estimated at 5.000 to 10,000 ft. of which the top 2.00 ft of the structure contained oil. SUBSURFACE OIL SAMPLING Fig. 1 is a structural map of the Elk Basin Tensleep Reservoir, on which the nine wells used in this study and the numbers correvponding to the well designations hereafter referred to are shown. Wells 1. 2, 3, 4, and 8 were tested and sampled during October and November. 1943. and Wells 5, 6. 7, and 9 during June and July, 1944. An electromagnetic type sampler developed by the Bureau of Mines and described by Grandone and Cook' was used in obtaining the subsurface oil samples. As the wells were tubed nearly to bottom, the sampler was run as far as possible in the tubing hut never below the top perforations. The following procedure was used in testing and sampling the wells: A well was shut in for at least three days, after
Jan 1, 1951
-
Reservoir Engineering - Variable Characteristics of the Oil in the Tensleep Sandstone Reservoir, Elk Basin Field, Wyoming and MontanaBy Joseph Fry, Ralph H. Espach
In the spring of 1943, when it was evident that the Tensleep bandstone in the Elk Basin Field, Wyoming and Montana, held a large reserve of petroleum, Bureau of Mines engineers obtained samples of oil from the bottom of nine wells and analyzed them for such physical characteristics as the volumes. of gas in solution. saturation pressures or bubble points, shrinkage in volume caused by the release of gas from solution, expansion of the oil with decrease in pressure, and other related properties. The composition of the gas in solution in the oil was studied. The pressures and temperatures existing in the reservoir and the productivity characteristics of the oil wells were determined. The data obtained indicate that the oil in the Tensleep Reservoir of the Elk Basin Field has unusually varying physiral characteristics, such as a saturation pressure of 1,250 psia and 490 cu ft of gas in solultion in a barrel of oil at the crest of the structure and a saturation pressure of 530 psia and 134 cu ft of gas in solution in a barrel of oil low on the flanks. The hydrogen sulfide content of the gas in solution in the oil varies from 18 per cent for oil on the crest to 5 per cent for oil low on the flanks of the structure. Of even greater significance is the fact that these and other variable characteristics of the reservoir oil are related to the position of the oil in the structure. Many geologists and petroleum engineers have considered that all the oil in a petroleum reservoir has rather uniform physical characteristics and that equilibrium conditions prevailed in all underground accumulations of oil and gas; that such is not always so is borne out by the results of the study by the writers. INTRODUCTION The Rocky Mountain region is one in which may be found striking examples of the unusual in oil and gas accumulations, as is evident from the following: The high helium content (7.6 per cent) of the gas in the Ouray-Leadville limestone sequence in the Rattlesnake Field, New Mexico, and gases of similar helium content in other fields; 50" to 55' API gravity distillate in solution in carbon dioxide gas and recoverable through retrograde condensation, in the North McCallum Field, Colorado; the occurrence of gas, oil, or both in closely related structures contrary to the usual concepts of gravimetric segregation: the accumulation of gas and/or oil in structures closely related to other structures that apparently are more favorable but do not contain oil or gas accumulations; the high hydrogen sulfide content (as high as 42 per cent) of the gas associated with oil in some fields in the Big Horn Basin, Wyoming; and the wide range of fluid chararteristics found in the Elk Basin reservoir. Elk Basin, an interesting old oil field that has been producing oil from the Frontier formation since 1915, is situated in a highly eroded basin resulting from the erosion of the crest of an anticline and some of the underlying softer shales. The field came back into national prominence during 1943 when it became known that it was the largest single reserve of new oil discovered in the United States that year. The Tensleep sandstone was found to contain oil in November. 1942, when a well drilled to a depth of 4,538 ft (44 ft into the Tensleep sandstone) flowed oil at the rate of 2,500 B/D. By the end of 1949, 137 oil-producing wells and five dry holes had been drilled, and approximately 32 million bbl of oil had been produced. Approximately 6,000 acres may be considered productive of oil in the Tensleep Reservoir, and estimates of the oil that will be produced average 200 million bbl. The Tensleep Reservoir has further interest because it ha-greater closure than any oil field in the Rocky Mountain region; the closure of the Elk Basin anticline is variously estimated at 5.000 to 10,000 ft. of which the top 2.00 ft of the structure contained oil. SUBSURFACE OIL SAMPLING Fig. 1 is a structural map of the Elk Basin Tensleep Reservoir, on which the nine wells used in this study and the numbers correvponding to the well designations hereafter referred to are shown. Wells 1. 2, 3, 4, and 8 were tested and sampled during October and November. 1943. and Wells 5, 6. 7, and 9 during June and July, 1944. An electromagnetic type sampler developed by the Bureau of Mines and described by Grandone and Cook' was used in obtaining the subsurface oil samples. As the wells were tubed nearly to bottom, the sampler was run as far as possible in the tubing hut never below the top perforations. The following procedure was used in testing and sampling the wells: A well was shut in for at least three days, after
Jan 1, 1951
-
Iron and Steel Division - Relation between Chromium and Carbon in Chromium Steel RefiningBy D. C. Hilty
It has long been known that in melting high-chromium steels, some of the carbon might be oxidized out of the melt without excessive simultaneous oxidation of chromium, and that higher temperatures favor retention of chromium. The advent of oxygen injection as a tool for rapid decarburization of a steel bath permits significantly higher bath temperatures, and it was quickly recognized that the use of oxygen injection facilitated the oxidation of carbon to low levels in the presence of relatively high residual chromium contents. Up to the present time, however, specific data pertaining to the chro-mium-carbon-temperature relations in chromium steel refining have not been available. Individual steelmakers have evolved practices more or less empirically, but there has been very little real basis for predicting how effective any given practice can be in permitting maximum oxidation of carbon with minimum loss of chromium. The current investigation, therefore, was undertaken in an effort to establish the fundamental carbon-chromium relationship in molten iron under oxidizing conditions. As reported below, the equilibrium constant and the influence of temperature on that constant have been derived for the iron-chromium-carbon-oxygen reaction in the range of chromium steel compositions with what appears to be a fair degree of precision. The practical application of the result will be obvious. Experimental Procedure The laboratory investigation was carried out on chromium steel heats melted in a magnesia crucible in a 100-lb capacity induction furnace at the Union Carbide and Carbon Re- search Laboratories. The charges for the heats consisted of Armco iron, low-carbon chromium metal, and high-carbon chromium metal, the relative proportions of which were calculated so that the various heats would contain from approximately 0.06 pct carbon and 8 pct chromium to 0.40 pct carbon and 30 pct chromium at melt-down. When the charges were melted, the bath temperatures were raised to the desired level, and the heats were then decarburized by successive injections of oxygen at the slag-metal interface through a ½-in. diam silica tube at a pressure of 30 psi. The duration of the oxygen injections was from 30 sec to 2 min. at intervals of approximately 5 to 30 min. It did not appear that length or frequency of the injection periods had any significant effect on the results; cansequently, no effort was made to hold them constant and they were controlled only as was expedient to the general working of the heats. Between successive injections, the heats were sampled by means of a copper suction-tube sampler that yields a sound, rapidly-solidified sample representative of the composition of the molten metal at the temperature of sampling. This sampling device is a modification of the one described by Taylor and Chipman.1 An attempt was made to vary bath temperatures between samples, but it quickly became evident that, unless the variations were small or unless the new temperature was maintained for a minimum of 15 min. during which an injection of oxygen was made in order to accelerate the reactions, a very wide departure from equilibrium resulted. For most of the runs, therefore, temperature was maintained relatively constant at approximately 1750 or 1820°C. A few reliable observations at other temperatures, however, were obtained. Temperature Measurement The high temperatures involved in this investigation were measured by the radiation method, utilizing a Ray-O-Tube focused on the closed end of a refractory tube immersed in the metal bath. The immersion tubes employed were high-purity alumina tubes specially prepared by the Tona-wanda Laboratory of The Linde Air Products Co. These tubes were quite sturdy under reasonable mechanical stress at high temperature. They were unusually resistant to thermal shock, and chemical attack on them by the melts was slow. With care, it was found possible to keep these tubes continuously immersed in a heat for as long as 5 hr at temperatures up to 1850°C, before failure by fluxing occurred. The Ray-O-Tube—alumina tube assemblage was similar to those supplied commercially for lower temperature applications. In operation, the alumina tube was slowly immersed in the molten metal to a depth of approximately 5 in., and the device was then clamped solidly to a supporting jig where it remained for the duration of the run. A photograph of the equipment, in operation with Ray-O-Tube in place and oxygen injection in progress, is shown in Fig 1. When in position in a heat, the instrument was calibrated by means of an immersion thermocouple and an optical pyrometer. For calibration through the range of temperatures from 1500 to 1650°C, a platinum -platinum + 10 pct rhodium thermocouple in a silica tube was immersed alongside the alumina tube. Output of the Ray-O-Tube in millivolts and the
Jan 1, 1950
-
Block Cave Mining at the Mather MineBy Paul R. Bluekamp
The Mather Mine property is composed of a 5.2 sq km (2 sq mile) area within the Cities of Ishpeming and Negaunee which are located in the Upper Peninsula of Michigan. Production in this mine started in 1943; it ran continuously until its closing in 1979, having produced slightly over 55 million tons of iron ore. This mine was a joint venture between several steel companies and The Cleveland- Cliffs Iron Company (CCI), with CCI being the fee holder and operator. For the first 17 years of operation, the ore was shipped in its natural state directly from the mine to the steel mill. By 1960, iron ore pellets were on the market and they proved so superior to the natural soft Mather ore that the latter became difficult to sell except for the coarser portions. It was decided to develop a pelletizing process for the Mather ore, and this was accomplished by 1965 when the first Mather pellets were produced. From this date, all but the coarse fraction of the Mather ore was shipped as pellets. The geological setting is that of a large east-west trending synclinorium which plunges to the west. The lowest member of this trough-like structure is, for the most part, a quartzite-like graywacke, the upper 20 m of which grades into a softer, fine grained slate. Lying conformably on this graywacke footwall member is an iron- formation member which is over 1,300 m in thickness. This iron-formation is cow posed of thin alternate bands of iron oxides and chert and is intruded by a number of diorite sills - some up to 122 rn (400 ft) in thickness. The north limb of this synclinorium dips at approximately 45' and bottoms out at about 1,000 m from surface in the central part of the mine. There are two sets of faults, many of which are intruded by diorite dikes, which trend east-west and southeast-northwest. Displacements are varied, reaching a maximum displacement of 243 m (800 ft). The ore is found lying directly on the slatey footwall and its position is largely controlled by the faults and dikes, with the bulk of the ore being on the upper side of these structures. The ore is composed of soft earthy hematite and martite with vertical thicknesses up to 122 m (400 ft) although the average thickness would be closer to 46 m (150 ft). The ore averaged 60% iron and 7% silica on a dried analysis. The Mather Mine is located on the north limb of the syncline and was worked from two shafts, the deepest of which. was 1,09 7 m. These two shafts are about 2 km apart and serviced a total of 8 working levels between them during the life of the mine. The level spacing was about 61 m (200 ft). The main haulageways were driven parallel to the ore/footwall contact in the hard cow petent graywacke wherever possible. On the lower levels, deeper into the footwall, naked development was common. This material graded into roof bolting ground towards the upper stratigraphic portion. As drifting progressed further into the upper stratigraphic portion of the footwall, progressively stronger steel sets had to be used. From the main haulageway, cross-cuts were turned into the orebody on 61 m (200 ft) centers and extended as far as needed to recover the ore available to that particular cross-cut. The main haulageways and cross-cuts were driven 3 m (10 ft) high, 3 m (10 ft) wide at the top and 4.6 m (15 ft) wide at the bottom. This configuration would accomodate a set composed of a 2.7 m (9 ft) cap on top of two 2.7 m (9 ft) legs angled out at 18'. A sill plate was used under each leg to prevent its sinking into the ore below. The type of steel used was dependent on the expected weight to be experienced. Sets were placed on 1.63 m (5 ft 4 in.) centers; however, in extremely heavy areas, it was sometimes necessary to install sets on 0.8 m (2 ft 8 in.) centers. On the top two levels (5th and 6th), the ore was considerably hard-er and was mined by sub-level stoping and long hole drilling. Very light steel sets were used in the main haulageways and cross-cuts and timber was used in the production drifts. Some con- crete production drifts were installed on 6th level, but proved to be uneconomical. However, as mining reached greater depths, the ore became softer and more massive, reaching its maximum vertical heights on 11th and 12th levels. On levels 7 through 10, yielding steel sets were used extensively in the slusher drifts. While they were satisfactory on 7th and 8th levels, their success diminished with depth and they were
Jan 1, 1981