Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Part VII - Aluminide-Ductile Binder Composite AlloysBy Nicholas J. Grant, John S. Benjamin
A series of composite alloys containing a high volume of NiAl, Ni3Ah or CoAl, bonded with 0 to 40 vol pct of a ductile metal phase, were prepared by powder blending and hot extrusion. The binder metals were of four types: pure nickel or cobalt, near saturated solid solutions of aluminum in nickel and cobalt, type 316 stainless steel, and niobium. Sound extrusions were obtained in almost all instances. Studied or measured were the following: interaction between the alunzinides and the binders, room-temperature modulus of rupture values, 1500° and 1800°F stress rupture properties, hardness, structure, and oxidation resistance. Stable structures can be produced for 1800°F exposure, with interesting high-temperature strength and good high-temperature ductility. Oxidation resistance was excellent. A large number of experimental investigations have been made of the role of structure on the properties of cermets and composite materials. Gurland,1 Kreimer et al.,2 and Gurland and Bardzil3 have indicated the preferred particle size in carbide base cermets to be about 1 µ, with a hard phase content of 60 to 80 vol pct. The optimum ductile binder thickness was noted to be 0.3 to 0.6 µ.1 Complete separation of the hard phase particles by the binder is important in reducing the severity of brittle fracture.' The purpose of the present study was to produce structures comparable to the conventional cermets, using a series of relatively close-packed intermetal-lic compounds rather than carbides as the refractory hard phase, and to study the effects of binder content and composition on both high- and low-temperature properties. The selected intermetallic compounds were particularly of interest because of the potential they offered in yielding room-temperature ductility. The highly symmetrical structures are known to possess high-temperature ductility and room-temperature toughness. Based on a ductile binder, the alloys were prepared by the powder-metallurgy route to avoid melting and subsequent alloying of the matrix, and were extruded at relatively low temperatures. It was expected that the composite alloy would retain useful ductility. In contrast, infiltration and high-temperature sintering led to alloying of the matrix and to decreased ductility. The systems Ni-A1 and Co-A1 were selected for this study. In the Ni-A1 system the compounds NiA1, having an ordered bcc B2 structure, and Ni3Al(?1), having an ordered fcc L12 structure, were chosen. In the system Co-A1 the intermetallic compound CoAl with an ordered bcc B2 structure was used. ALLOY PREPARATION The intermetallic compounds, see Table I, were prepared by using master alloys of Ni-A1 and CO-A1, with additions of either cobalt or nickel to achieve the desired compositions. The master alloy in crushed, homogenized form, was melted with pure nickel or cobalt in an inert atmosphere, cold copper crucible, nonconsumable tungsten arc furnace. The resultant intermetallic compounds were homogenized at 2192°C in argon, crushed, and dry ball-milled in a stainless mill to -100 and -325 mesh for the Ni-A1 compounds and to -325 mesh for the CoAl compound. Finer fractions were separated for some of the composite alloys. Several ductile binders were utilized. These included Inco B nickel, 5µ ; pure cobalt, 5 µ, from Sher-ritt Gordon Mines, Ltd.; fine (-325 mesh) niobium hydride powder; fine (15 µ) type 316 stainless-steel powder; and near-saturated Ni-A1 and Co-A1 solid-solution alloys, also in fine powder form. The niobium hydride was decomposed above about 700°C in processing of the compacts in vacuum to produce niobium powder. The Ni-7.1 pct A1 and the Co-5.3 pct A1 solid-solution alloys were prepared from pure nickel or cobalt and pure aluminum by nonconsumable tungsten arc melting under an inert atmosphere. The ingots were homogenized, lathe-turned to fine chips, and dry ball-milled in air to -325 mesh powder. These solid-solution alloys are designated NiSS and CoSS; see Table I. Subsequently the hard and ductile phases were dry ball-milled as a blend. Experiments clearly established the need to coat the hard particles with the ductile binder to optimize subsequent hot compaction by extrusion. Ordinary dry mixing usually resulted in nonhomogeneous alloys which were quite brittle. Conventional cermets are consolidated by liquid phase sinteiing or infiltration, which resulis in undesirable and uncontrolled alloying of the binder phase. For this study, a loose (unsintered) powder-extrusion process was emploved, minimizing reactions between binder and hard particle, thereby permitting much greater control of composition and structure. The constituent powders were first mixed in the desired
Jan 1, 1967
-
Mining - Relationship of Geology to Underground Mining MethodsBy George B. Clark
Many basic engineering principles of all four phases of mining operations, namely, prospecting, exploration, development, and exploitation, can be analyzed better in terms of quantitative geology. Geological data from both field and laboratory will also complement scientific methods now being developed. THE geological data emphasized so successfully in prospecting for new deposits, that is, structural controls, strength of solutions, and type of mineralization, are basically those required for successful exploitation. In the mining of newly discovered deposits the most economical methods should be employed as early as possible to keep the overall cost per unit produced at a minimum and to permit maximum extraction of valuable minerals. A crucial question is: How can geological data be translated into useful quantitative results which will aid in achieving this end? H. E. McKinistry' has suggested that a solution may be reached in one of two ways: 1—the usual approach, use of judgment based on experience; or 2—mathematical calculations and tests on models, both subject to certain limitations. He also suggests that in addition to better use of geology more case data and theoretical data are needed on which to base sound judgment. Further research, therefore, is necessary. Perhaps in this field the emphasis should be on more specialization in mining methods and ground movement by men with thorough training in physics, engineering, geology, and underground mining. These specialists would be equipped to point out the most economical and scientific methods of exploitation. Selection of a stoping method is governed by the amount and type of support a deposit will require in the process of being mined, or by the possibility of employing the structure of the deposit to advantage in mining the ore by a caving method. In addition to these factors there are others which almost invariably influence the choice of an economical method of mining:' 1—strength of ore and wall rocks; 2—shape, horizontal area, volume, and regularity of the boundaries of the orebody, and thickness, dip and/or pitch of the deposit and individual ore shoots; 3—grade, distribution of minerals, and continuity of the ore within the boundaries of the deposit; 4—depth below surface and nature of the capping or overburden: and 5—position of the de- posit relative to surface improvements, drainage, and other mine openings. In the final analysis it is usually necessary to disregard the less important of these factors to satisfy the requirements of the more important. Because of the variation of geological conditions throughout and surrounding the deposit, no mining method will be everywhere ideally applicable to the conditions encountered in one ore deposit. The immediate problem is to interpret the above physical characteristics of deposits in terms of geological characteristics. Very few quantitative geological data are available on the factors related to a choice of mining methods. However, there are many descriptive data in mining and geological literature which collectively show how important an effect details of geology have upon all phases of mining operations. The following categories of basic mining methods were investigated to establish the geological factors that have affected their successful application: 1— open stopes with pillars; 2—sublevel stoping; 3— shrinkage stoping; 4—cut-and-fill stoping; 5— square-set mining; 6—top slicing and sublevel caving; and 7—block caving. It should be noted that the first five of these methods are listed in the order of increasing support requirements. Mines were selected as examples only where geological descriptions were complete enough to warrant their use. A study of the geological factors involved in mining operations led to a choice of the following classifications, employed in Table I: 1—structural type of orebody; 2—dimensions (geometry); 3— country rock (type); 4—faulting, folding, and fracturing; 5—alteration of ore and rock; 6—type of mineralization; and 7—geological factors determining mining method (summary). Of these factors only one yielded results that can be defined from available data in a quantitative manner, i.e., dimensions of the deposit. These are the most reliable guides that can be used in selection of suitable mining methods. They are, in general, the properties of geologic structure most difficult to evaluate by studies of models, pho-toelastic studies, and other laboratory methods, all of which are at present more limited in their applications than the geologic method. Application of geology has proved a reliable guide in other phases
Jan 1, 1955
-
Technical Papers and Notes - Institute of Metals Division - Effect of Hydrogen on the Fatigue Properties of Titanium and Ti-8 Pct Mn AlloyBy W. S. Hyler, L. W. Berger, R. I. Jaffee
Hydrogen additions of 390 ppm to A-55 titanium and 368 ppm to Ti-8 pet Mn have no deleterious Hydrogenadditionseffect on the unnotched and notched rotating-beam fatigue properties of these materials. 'These amounts of hydrogen, however, are sufficient to cause severe notch-impact thesematerials.embrittlement in A-55 titanium and pronounced loss of tensile ductility in Ti-8 pet Mn. The lack of embrittling effect in fatigue in the latter alloy is consistent with the postulated strain-aging mechanism of hydrogen embrittlement in a-ß alloys. There is a significant strain-agingincrease in the unnotched endurance limit of A-55 titanium with the addition of hydrogen. This increase may be explained as the result of internal heating effects which would dissolve the hydride and cause solid-solution strengthening. TITANIUM and its alloys may be seriously embrittled by relatively small amounts of hydrogen. The form which this embrittlement takes has been shown to vary with alloy type. The a alloys, for example, suffer most strongly from loss of notch-bend impact toughness' when sufficient hydrogen is added, and this effect has generally been associated with the presence of hydride phase in the micro-structure. In a-ß alloys, on the other hand, hydrogen is most detrimental to tensile ductility in slow-speed tests,2-1 and the embrittlement may be detected in a most convincing manner by means of rupture tests at room temperature. This particular kind of embrittlement has not been associated with a change in microstructure, but has been classified rather generally as associated with a strain-aging type of mechanism.' In the present paper, the effect of an embrittling amount of hydrogen on the rotating-beam fatigue properties of both an a and an a-ß titanium alloy is covered. For this study, annealed commercially pure (A-55) titanium was chosen as an a alloy, and equilibrated and stabilized Ti-8 pet Mn as representative of a typical a-ß alloy. Nominal hydrogen levels of 20 and 400 ppm were evaluated, the latter amount having been shown previously to be severely detrimental to the impact toughness of commercially pure titanium and to cause pronounced strain-aging embrittlement in the Ti-8 pet Mn alloy. The only report of the effect of hydrogen on the fatigue properties of titanium is given by Anderson et al.,° in which a push-pull type of fatigue test was conducted on as-received commercial-purity titanium sheet. Much scatter was found in the results, but generally the presence of hydrides slightly decreased the fatigue strength of unnotched specimens in the longitudinal direction. The results of notched tests were masked too greatly by scatter to be significant. Experimental Procedure Preparation of Materials—Analyses of the A-55 titanium and the Ti-8 pet Mn alloy used in this investigation are given in Table I, which indicates the 8 pet Mn alloy to be more nearly a 6 pet Mn alloy. This alloy will be referred to as Ti-8 pet Mn, however, since this is the commercially designated composition. Both alloys were received in the form of5/8-in. diam rod and, after suitable surface preparation, 5-in. lengths were vacuum annealed at 820°C. Half of the rods for each material were then hydrogenated at 820°C to a nominal hydrogen content of 400 ppm. The hydrogenated and vacuum-annealed A-55 rods were hot swaged at 700°C from 5/8-in. diam to 1/4-in. diam, and then annealed 1 hr at 800°C and air cooled prior to preparation into test specimens. Fabrication of the Ti-8 pet Mn alloy was by hot swaging to 3/8-in. diam at 760" and then 1/4-in. diam at 704°C. This material was then annealed 1 hr at 704", followed by furnace cooling to 593"C, and finally air cooling to room temperature. Evaluation—In order to examine more completely the effects of hydrogen on the particular materials studied, slow-speed tensile and notch-bend impact properties were determined in addition to fatigue data. Tensile specimens were of the standard ASTM type with a reduced section of 1/8-in. diam and a gage length of 1/2 in. A subsize cylindrical Izod specimen was used for impact tests. These specimens had a 45" notch with a 0.005-in. radius and a 0.150-in. root diam, and the stress concentration factor of this notch in bending was Kr = 3. Both the ten-
Jan 1, 1959
-
Institute of Metals Division - Thermomechanical Treatments of the 18 Pct Ni Maraging SteelsBy Charles F. Hickey, Eric B. Kula
Thermomechanical treatments applied to the maraging steels include a) cold working in the austenitic condition at 650°F, followed by transformation to martensite and aging, b) cold working in the murtensitic condition and aging, and c) cold working in the aged condition with and without subsequent reaging. The strength increases in these steels are very small compared to the increases observed in conventional carbon and alloy steels. The changes that are observed are compatible with the strengthening mechanisms operative during thermomechanical treatment of conventional steels, however. Differences are caused by the absence of a carbide precipitate and the low work-hardening rate in both the solution-treated and the aged conditions. ThE 18 pct Ni maraging steels represent a class of steels which are finding great interest for high-strength applications.1~2 They are essentially carbon-free, and contain 7 to 9 pct Co, 3 to 5 pct Mo, and 0.2 to 0.8 pct Ti. Although austenitic at elevated temperatures, they can be air-cooled to room temperature to form a martensite, which because of the absence of carbon is relatively soft. On subsequent reheating age hardening occurs and strength levels of 250 to 300 ksi yield strength can be attained. These steels appear to be particularly suitable for studying the response to various thermome-chanical treatments for additional reasons other than the obvious one of attempting to improve their already attractive properties. Thermomechanical treatments can be defined as treatments whereby plastic deformation, generally below the recrystal-lization temperature, is introduced into the heat-treatment cycle of a steel in order to improve the properties. With an absence of intermediate transformation products on air cooling the maraging steels have good hardenability and hence can readily be cold-worked in the austenitic condition prior to transformation to martensite. Further, they can be worked in the martensitic condition prior to aging, and even can be deformed in the fully aged condition. Finally, it is of interest to compare their re- sponse to that of the more conventional alloy and carbon steels, where the role of carbides is important in the strength increase by thermomechani-cal treatments. The thermomechanical treatment of conventional steels has been the subject of a recent review.' I) MATERIALS AND PROCEDURE The steel used in this investigation was a commercially produced vacuum-melt heat, which had been rolled to 0.090 in. and mill-annealed. The composition of the alloy was as follows: 0.02 C, 0.08 Mn, 0.10 Si, 0.009 P, 0.009 S, 18.96 Ni, 7.34 Co, 5.04 Mo, 0.29 Ti, 0.05 Al, 0.004 B, 0.01 Zr, and 0.05 Ca. Unless otherwise stated the heat treatments used were the standai-d solution treatment at 1500°F for 1 hr, air cool, followed by a 900°F, 3 hr age. In this condition, the material exhibited 232 ksi yield strength and 239 ksi tensile strength. Mechanical properties were determined by Vicker's hardness measurement (20 kg) and by tensile tests on standard 1/2-in.-wide, 2-in.-gage-length sheet tensile specimens. Notch tensile tests were run using the 1-in.-wide NASA type, edge-notched specimen.4 Fracture-toughness determinations were made on 3-in.-wide, center-notched, fatigue-cracked specimens, following the recommendations of the ASTM Committee on Fracture-Toughness Testing.4 An electric-potential technique was used for measuring the crack size at the onset of rapid crack propagation5 which is necessary for calculations of Kc, the critical stress-intensity factor under plane-stress conditions. The critical stress-intensity factor under plane-strain conditions KI, was also calculated, using the stress at which the first observable crack growth occurred. 11) RESULTS A) Cold-Worked in the Austenitic Condition. The reported M, temperature for the 18 pct Ni maraging steel is about 310°F.1 Therefore, a temperature of 650°F was selected as suitable for rolling in the austenitic condition. Specimens were solution-treated at 1500°F for 1 hr, air-cooled to 650°F, and rolled varying percentages from 0 to 60 pct, at 20 pct reduction per pass. Tensile and hardness properties after aging at 900°F for 3 hr are shown in Fig. 1. The tensile strength increases from 253 to 271 ksi and the yield strength from 247 to 265 ksi as a result of a reduc-
Jan 1, 1964
-
Institute of Metals Division - Tungsten Oxidation Kinetics at High TemperaturesBy R. W. Bartlett
The rates of oxidation of tungsten have been determined at temperatures between 1320" and 3170°C and oxygen pressures to 1 amn using a surface -recession measurement technique. Above approximately 2000°C and 10-6 atm the rate is independent of temperature and can be calculated from gas collision theory assuming a constant reaction probability, e, of 0.06. Oxygen molecules react at surface sites where oxygen atoms have previously chemisorbed. This provides a direct pressure dependence at low pressures but at high pressures tungsten oxide molecule s form an adjacent gas boundary layer which lowers the PO2 at the tungsten surface. A correction for this effect using free-convection theory fits the rate data over the entire oxygen-pressure range from 10-8 to 1 atrn as well as data using O2-A mixtures. Below 10-6 atrn and above 2000°C, e decreases with increasing temperature because of desorption of oxygen atoms. Below 2000°C the rate decreases with decreasing temperature at all oxygen pressures following an apparent activation energy of 42 kcal per mole and depending on (Po2)n with n varying between 0.55 and 0.80. MOST of the previous tungsten oxidation studies have employed gravimetric methods and have been limited to temperatures below 1000°C where the weight loss associated with evaporation of tungsten oxides is negligible compared with the weight gain from oxidation.' At higher temperatures, oxygen-consumption rates have been determined from pressure measurements, usually at constant flow rates, by Langmuir,2 Eisinger,3 Becker, Becker, and Brandes,4 and Anderson.5 The sensitivity of this method decreases with increasing pressure and, with the exception of Langmuir's work, these investigations were confined to pressures below 10-6 atm. Above approximately 1300°C, depending on the oxygen pressure, the rate of oxide evaporation is greater than the oxide-formation rate and the recession of the tungsten surface can be measured optically without interference from an oxide layer. This was first done by Perkins and crooks6 who heated tungsten rods in air pressures from 1 to 40 torr at temperatures between 1300" and 3000°C. The present investigation of the oxidation kinetics of tungsten at high temperatures emphasizes oxygen pressures from 10-6 to 1 atm. This is the range of interest for earth atmosphere re-entry applications of tungsten for which little data were previously available. APPARATUS The apparatus is a modification of the type used by Perkins and crooks.' Ground tungsten seal rods, 6 in. long by 0.125 in. diam, were mounted vertically between two water-cooled electrodes, one fixed and the other having free vertical travel. The movable counter-weighted electrode is prevented from undergoing horizontal displacement by three sets of runners mounted at 120-deg intervals. Electrical contact is made by means of a water-cooled mercury pool. A 24-in. vacuum bell jar having a volume of approximately 267 liters was used as the reaction chamber with the sample holder mounted in the middle of the chamber. Power was supplied from an 800-amp dc variable power supply. Temperature readings were made by means of a Latronics automatic two-color recording pyrometer. With this instrument, corrections for emissivity are not necessary provided the spectral emissivi-ties at two closely spaced wavelengths are equal. Supporting measurements were made with a micro-optical pyrometer corrected for emissivity of bare tungsten and window absorptivity. The micro-optical pyrometer was calibrated against a National Bureau of Standards calibrated tungsten lamp and both pyrometers were periodically checked against the melting points of tungsten and molybdenum using the oxidation apparatus. Above 10-6 atm, pressures were measured with an Alphatron gage calibrated against a McCleod gage. At 10-6 atm, a hot-filament ionization gage was employed. A magnified image of the self-illuminated tungsten rod was formed using a 360-mm objective lens mounted outside the bell jar. When the experiment exceeded 1 hr, the image was focused on a ground-glass plate about 10 ft from the tungsten rod at about X8 and the recession of the thickness of this image was monitored with a Gaertner cathe-tometer. When faster rates were encountered, a 35-mm time-lapse cinecamera with a telephoto lens and bellows extension was substituted for the ground-glass plate and cathetometer. Diameter recession rates were determined from the photograph image projected on the screen of an analytical film reader. EXPERIMENTAL PROCEDURE After installing the rod in the apparatus and cleaning it with acetone, the system was evacuated to 5 1 x 10-5 torr. Before oxygen was introduced,
Jan 1, 1964
-
PART V - Phase Relations in the System PbS-PbTeBy Marius S. Darrow, William B. White, Rustum Roy
The PbS-PbTe systen has been studied by quench-ing and D.T.A. techniques f?om 400' to 1150°C. Runs were made in evacuated silica tubes so that all equilibria are at the vapor pressure of the system. Lattice parameters of the quenched salnples , measured by X-ray diffraction, show a complete crystalline-solution series existing over a narrow temperature range between approximately 805" and 871°C. An exsolution dome extends from a maximum of about 805"C (approximately 30 mole pct PbTe) to 1 and 96.5 pet PbTe at 400°C. A narrow melting region, deternined by D.T.A., extends form 918c (mp PbTe), The shapes of the liquides and solidus curves imply the existence of a minimum at 871°C at approximately 65 pct PbTe. THe exact composition of the minimum could not be established due to the very narrow two-phase region. At compositions containing less than 50 pet PbTe, liquidus temperatures begin to increase, while the solidus remains almost flat to about 15 mole pet PbTe before beginning to vise toward the mp of PbS (1075 C). LEAD sulfide and lead telluride are isostructural (NaC1 type) semiconductors whose electrical and optical properties have been extensively studied and used in recent years. If appreciable crystalline solution exists between these compounds, the variation of physical properties with composition could be of interest. The purpose of this investigation was to determine the extent, if any. of crystalline solution, and to obtain the phase diagram for the system. To the knowledge of the authors, only three studies of the system PbS-PbTe have been reported, and, in chronological order, each investigation found an increasing amount of crystalline solution. In 1956, Yamamoto reported finding no evidence of crystalline solution between the compounds. Sindeyeva and Godov-ikov,' in 1959, found very limited crystalline solution. but only under conditions of excess tellurium concentration. Finally Melevski s3 investigation in 1963 indicated that one solid phase exists in the region from PbS to 7 pct PbTe and from 82 pct PbTe to PbTe at 886'C, with an eutectic at 55 pct PbTe at that temperature. Detailed data on the solvus boundary were not given. EXPERIMENTAL EQUIPMENT AND MATERIALS Commercially produced PbTe and PbS powders were used as starting materials. Batches of specific mole percent composition were accurately weighed and mixed in a plastic bottle, in a shaker mill. An analy- sis of impurity content is given in Table I for pure PbS and PbTe and for two randomly selected batches after the powders were mixed. Individual samples, ranging in weight from 0.2 to 0.5 g, were sealed in evacuated silica tubes which had been thoroughly washed and rinsed with acetone and distilled water. Thus all data taken were at the pressure of the system. Subsolidus relations were studied down to 400°C by heating the samples in a vertical tube furnace for 24 hr. The sealed tubes were quenched in water with quench time from the hot zone not exceeding 1 sec. Temperatures were measured by a chromel-alumel thermocouple and controlled to 53°C for most runs. The number and composition of phases present were determined from powder X-ray diffraction patterns taken at room temperature on a Norelco diffractome-ter, using silicon as an external standard. Above 850°C quenching techniques were, in general, found to be unsatisfactory, and differential thermal analysis (D.T.A.) was used to determine melting relations. The evacuated tubes were recessed about 1 cm at one end to accommodate the differential thermocouple. Al203 was used as the reference material in a similar tube containing the other side of the differential couple. For temperature measurements, a separate thermocouple was placed in the recess of the tube containing the sample to be measured, thus providing an opportunity to obtain thermal, as well as differential, analysis. All thermocouples for these measurements were Pt-Pt 10 pct Rh. Temperature and differential curves were recorded separately on synchronized strip-chart recorders. Thermocouples and recording equipment were calibrated using NaCl and gold standards, using the melting points 801" and 1063 C, respectively, which span most of the temperature range of interest. Heating and cooling rates generally were from 4 to 7°C per min. It was found, in fact. that rates ranging from 1.5 to 25°C per min did not significantly change the data obtained.
Jan 1, 1967
-
Drilling-Equipment, Methods and Materials - Bit-Tooth Penetration Under Simulated Borehole ConditionsBy W. C. Maurer
A study of bit-tooth penetration, or crater forniation. under simulated borehole condirions has been made. Pressure conditions existing when drilling with air, water and mud have been sirnulated for depths of 0 to 20.000 ft. These crater tests showed that a threshold bit-tooth force must he exceeded before a crater is .formed. This thresh old force increased with both tooth dullness and diflerenrial pressure between the borehole and formalion fluids. At low differential pressures, the craters formed in a brittle manner and the cuttings were easily removed. At high differenlial pressures, the cunings were firmly held in the craters and the craters were formed by a pseudoplas-tic mechanism. With constant farce of 6,500 16 applied to the bit reeth, an increase in differential pressure (sitnulated mud drilling) from 0 to 5,000 psi reduced the crater volumes by 90 per cent. A comparable increase in hydrostatic fluid pressure (simulated water drilling) produced only a 50 per cent decrease in volutne while changes in overburden pressure (simulated air drilling) had no detectable effect on crater volume. Crater tests in unconsolidated sand subjected to differential pressure showed that high friction was present in the sand at high pressures. Similar friction belween the cuttings in craters produces the transition from brittle to pseudo plastic craters. INTRODUCTION The number of wells drilled below 15,000 ft increased from 5 in 1950 to 308 in 1964. Associated with these deep wells are low drilling rates and high costs. High bottom-hole pressures produce low drilling rates by increasing rock strength and by creating bottom-hole cleaning problems. This paper describes an experimental investigation of crater formation under bottom-hole conditions simulating air, water and mud drilling. Although numerous investigators have studied bit-tooth penetration (cratering) at atmospheric pressure conditions, only limited work has been done on cratering in rocks subjected to pressures existing in oil wells. Payne and Chippendale2 have studied cratering in rocks subjected to hydrostatic pressure using spherical penetrators. Garner et aLJ conducted crater tests in dry limestone by varying overburden pressure and borehole fluid pressure independently and using atmospheric formation-fluid pressure Gnirk and Cheathem4,5 have studied crater formation in several dry rocks subjected to equal overburden and borehole pressure and atmospheric formotion pressure. Podio and Gray studied the effect of pore fluid viscosity on crater formation using atmospheric borehole and formation-fluid pressurc and varying overburden pressure. Although these studies have provided useful information on crater formation under pressure, they were limited in that the three bottom-hole pressures could not be varied independently and, therefore, that many drilling conditions could not be simulated. The prersure chamber used in this study allowed visual observation of the cratering mechanism and independent control of the borehole, formation and confining pressures. By using different fluids in the chamber, pressure conditions existing in air, water and mud drilling to depths of 20,000 ft were simulated. The mechanisms involved in cratering at these different pressure conditions were studied for teeth of varying dullness and at different loadins rates. High-speed movies (8,000 frames/sec) and closed-circuit television were used to visually study the crater mechanism under pressure. EXPERIMENTAT PROCEDURE PRESSURE CHAMBER The Pressure chamber in Fig. I was used to simulate bottom-hole pressure conditions. This chamber has been pressure-tested to 22,500 psi and is normally operated at pressures up to 15,000 psi. The chamber contains four lucite windows' used for illuminating and observing the crater mechanism under pressurc. A closed-circuit television and a Fastax camera (8,000 frames/sec) have been used in these studies. Cylindrical rock specimens (8-in. diameter X 6-in. long) were subjected to three independently controlled pressures simulating overburden, borehole fluid and formation-fluid pressures. Overburden pressure, which corresponds to the stress induced by the overlying earth mass, was applied by exerting fluid pressure against a rubber sleeve surrounding the rock. Borehole pressure, which is the pressure exerted by the column of mud in the wellbore, was simulated by applying pressure to the fluid overlying the rock in the chamber. Formation pressure was simulated by applying pressure to the water saturating the rock. The borehole and formation pressures were equal except when mud was used in the chamber, in which case the differential pressure between these fluids acted across the mud filter cake.
Jan 1, 1966
-
Reservoir Engineering-General - A Viscosity-Temperature Correlation at Atmospheric Pressure for Gas-Free OilsBy W. B. Braden
This paper presents a suitable method for predicting gas-free oil viscosities at temperatures up to 500F knowing only the API gravity of the oil at 60F and the viscosity of the oil measured at any relatively low temperature. The API pravity and the one viscosity value are used as parameters to determine the slope of a straight line on the ASTM slanaord viscosity-temperature chart. Then, knowing the slope of the line and one point on the line, the vrscosities at higher temperatures can be determined. The line slope correlations were developed at I00 and 210F since viscosity data are frequently measured at these temperatures. A procedure is given for predicting line slopes from measurements at other tetnperatures. A nomogram is furnished for solving the relationship. The correlation has been evaluated at temperatures up to 5OOF for oils varyzng in gravity from 10 to 33 " API. The correiution is applicable only to Newtonian fluids. Comparison at 500F of true viscosities and those predicted from values at 100F shows an average deviation of 3.0 per cent (maximum deviation of 6.0 per cent). Predictions from the values at 21 0F for the same oils how an average deviation of 1.5 per cent (maximum deviation of 3.4 per cent). INTRODUCTION Correlations have been developed by Beal' and by Chew and Connally' for predicting viscosities of gas-saturated oils at reservoir conditions. Each of these correlations requires a knowledge of the solution gas-oil ratio and the viscosity of the gas-free oil at the reservoir temperature. For temperatures below 350F, measurements of the gas-free oil viscosities can be made easily using commercially available equipment. In thermal recovery processes, however, reservoir temperatures well in excess of 350F are encountered. Viscosity measurements at such conditions are more difficult and time consuming and require modification of existing equipment or the construction of new equipment. Measurements are further complicated by the difficulty of handling highly viscous oils associated with thermal recovery processes. Therefore, it is desirable to have a correlation which allows accurate prediction of viscosities at high temperatures. A commonly used technique for predicting viscosities at high temperatures is to measure the viscosities at two lower temperatures, plot the values on ASTM standard viscosity-temperature charts and extrapolate to the temperatures desired. If either of the values is slightly in error, the extrapolated value can be significantly in error. To justify an extrapolation, three points are actually necessary. This procedure can consume much time, particularly with heavy oils. Considering the cost of viscosity measurements, it would be desirable to eliminate the need for direct measurements by having correlations which would allow viscosity predictions from other physical or chemical properties. Beal1 investigated the possibility of correlating viscosity with oil gravity at temperatures from 100 to 220F. While showing that a general relationship exists, he also found significant deviations. It is possible that correlations will be developed based on oil composition as more information becomes available. While not eliminating the need for viscosity rneasurements, the method presented herein requires that only one viscosity measurement be made. The API gravity must also be known. The theory is based on the fact that the viscosity of paraffins (high gravity) changes less with temperature than does the viscosity of naph-thenes or aromatics (low gravity). The gravity. therefore, is used as a parameter to determine the slope of a straight line on the ASTM standard viscosity-temperature charts. The correlation is applicable only to Newtonian oils, and deviations due to thermal decomposition and nonhomo-geneity cannot be predicted. Oils containing additives have not been evaluated. PROCEDURE Fifteen oils were used in developing the correlation; eight were crudes and seven were processed oils. Oil gravities varied from 9.9" API (naphthene base) to 32.7' API (paraffin base). The temperature range studied was 81 to 516F. Each oil used had a minimum of three viscosity measurements and each plotted essentially as a straight line on the ASTM charts. In all, 91 viscosity measurements were used in the correlation. Saybolt, rolling ball and capillary tube viscometers were used for the measurements. Viscosity data for Samples 1, 2, 4, 7, 10, 11 and 14 were obtained in Texaco, Inc. laboratories. The data for Samples 3, 5, 6, 8, 9, 12 and 15 were from Fortsch and Wilson,3 and data for Sample 13 were from Dean and Lane.' All data points used in the correlation are plotted in Fig. 1. It is seen that some of the viscosity values deviated slightly from the straight-line plots at the higher temperatures. Properties of the oils after exposure to the
Jan 1, 1967
-
Part X – October 1968 - Papers - Hydrogen Ernbrittlement of Stainless SteelBy R. K. Dann, L. W. Roberts, R. B. Benson
The mechanical properties of 300-series stainless steels were investigated in both high-pressure hydrogen and helium environments at ambient temperatures. An auslenitic steel which is unstable with respect to formation of strain-induced a (bee) and € (hcp) mar-tensile is embrittled when plastically strained in a hydrogen environment. A stable austenitic steel is not embriltled when tested under the same conditions. The presence of hydrogen causes embrittlement at the mar-lensitic structure and a definite change in the general fracture mode from a ductile to a quasicleavage type. The embrittled martensitic facets are surrounded by a more ductile type fracture which suggests that the presence of hydrogen initiates microcracks at the martensitic structure. If a steel is unstable with respecl to fortnation of strain induced martensile, plastic deformation in a hydrogen environment will produce rapid embrittlement of a notched specimen in comparison to an unnotched one. FERRITIC and martensitic steels can be embrittled by hydrogen that has been introduced into the alloys, either by thermal or cathodic charging prior to testing.1-5 However, conflicting reports exist as to whether austenitic steels that are stable or unstable with respect to formation of strain-induced martensite can be embrittled by hydrogen.8-12 A recent investigation has shown that cathodically-charged thin foils of a stable austenitic steel can be embrittled.13 An earlier investigation of a thermally charged 18-10 stainless steel revealed a significant decrease in the ductility only at the lowest test temperature of -78°C, although strain-induced bee martensite was shown to be present in one specimen tested at ambient temperatures.' When martensitic steels are tested in a hydrogen atmosphere, they are embrittled.'4-'7 It has been observed in this Laboratory that 304L steel, which is unstable with respect to formation of strain induced martensite, forms surface cracks when plastically strained in a high-pressure hydrogen environment. Work in progress elsewhere concurrent with this investigation has also established that 304L is embrittled when tested in a high-pressure hydrogen atmosphere." The objective of this investigation was to study the effect of a high-pressure hydrogen environment on the tensile properties of a stainless steel that contained strain-induced martensite (304L) and one that did not (310). EXPERIMENTAL TECHNIQUES Notched and unnotched cylindrical specimens were machined from 304L* and 310 rods that were heat- treated at 1000°C in argon for 1 hr followed by a water quench. The chemical analyses of these steels are given in Table I. The unnotched specimens had a reduced section diameter of 0.184 & 0.001 in., a gage length of 0.7 in., and were threaded with a 0.5-in.-diam. thread on each end. The notched specimens had a reduced section diameter of 0.260 * 0.001 in. and a 0.75-in. gage length, with a 30 pct 60 deg v-notch at the center. The notch had a maximum root radius of 0.002 in. The tensile bars were fractured in a hydrogen or helium atmosphere of 104 psi at ambient temperatures. The system used for mechanically testing the specimens is to be described in detail elsewhere.19 Several specimens of each type were tested in air using an Instron testing machine. The same yield strength and ultimate tensile strength were obtained in 104 psi helium with the above system as with the conventional testing machine. Magnetic analysis was employed to determine that there was a (bee) martensite in plastically deformed 304L and that it was not present in plastically deformed 310. The magnetic technique depended on allowing the material being studied to serve as the core between a primary and secondary coil. Thus, any change in the amount of magnetic material present between the annealed and plastically deformed steels will be indicated by corresponding changes in the induced voltage in the secondary circuit." The ratio of the output signal of a nonmagnetic stainless steel to a completely magnetic maraging steel was 2000 to I. Several unnotched 304L bars tested in hydrogen were analyzed for hydrogen by vacuum fusion analysis. There was an increase in the hydrogen content to approximately 2 ppm for the specimens tested in hydrogen, as compared to less than 1 ppm for the as-received material. Several thin sections cut from notched areas of 304L specimens tested in hydrogen and containing the fracture surface contained approximately 1.5 ppm H. The accuracy of these determinations was estimated to be ± 50 pct.
Jan 1, 1969
-
Institute of Metals Division - The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part II – A Structural InvestigationBy J. Alfred Berger, O. M. Katz
Selected samples of hydrided Zr-Hf alloys were rapidly quenched to voom temperature and exrtrnined metallographically, by X-ray diffraction, and through micro hardness studies to confirm high-temperutuve data Confirming experiments sllowed that there were five phases in this Lernary system: 1) hextrgonal with lattice parameters similar to that of the initia1 Zr-Hf alloy but slightly enlarged due to dissolved hydrogen; 2) fee with properties of a brittle, intermediate, hydride compound; 3) fct with c/a crvoltnd 1.07 and which appeared as a neetilelike precipitale; 4) hexagonal, designated ?, with c/a ratio of 2.37; and 5) orthorhombic, designated X, with a = 4.67, b = 4.49, and c = 5.093 and whose tnicro-st?ruct~ival nppetrl-nnce depcncled o/i, heat lvecrt~r~ent. The tetragonrrl phase never crppeal-erl witkorct the cubic hydricle. Abpecrrtrnce of 0 and A also tlependet on the hafnium content of the zirconium. A previous paper' on the Zr-Hf-H system described the thermochemical data obtained with a high-vacuum, high-sensitivity mirrogravimetric apparatus. This data presented a fairly complete picture of the phase relationships at elevated temperatures. However, it could not establish the actual crystal structures, lattice parameters, or metallographic disposition of the hydride phases. The present complementary study utilizes X-ray powder patterns along with light and electron microscopy to characterize completely the five hydrided phases found in Zr-Hf-H alloys quenched to room temperature. Crystallographic features of the zr-Hf,2,4 zr-H,5-7 and Hf-H8 systems have been summarized in Table I. Designations of a, ß, and ? were retained in the Zr-Hf-H system for the phase regions through which the pressure-composition isotherms always sloped. However, it was not firmly agreed that these were single-phase regions.' In fact, the region designated y always contained a cubic as well as a tetragonal phase after quenching to -196°C. MATERIALS Preparation of the high-purity Zr-Hf alloys has been described.' The four zirconium alloys which were hydrided contained 37 wt pct Hf (23 at. pct), 51 wt pct Hf (37 at. pct), 73 wt pct Hf (58 at. pct), and 91 wt pct Hf (82 at. pct), respectively. These were designated B-2, B-4, B-6, and B-8. Photomicrographs of the initial alloys showed the material to be quite clean as would be expected from the precautions exercised in producing them. However, there were a number of annealing twins but no other subgrain structure. In addition to the four original alloys, fifteen hydrided samples were observed at room temperature. Hydrogen compositions are given at the top of Tables I1 to V. APPARATUS The phases present at elevated temperatures were studied by quenching hydrided samples to room temperature by two different methods, both under vacuum: 1) fast cooling of the sample tubes of the microgravimetric apparatus1'9 with flowing air and 2) rapid quenching into liquid nitrogen. The cooling rate for 1) was 750° to 250°C in 30 sec. Since the microbalance chamber was not designed to permit very rapid cooling of a hydride sample, all liquid-nitrogen quenching was done in an auxiliary experiment. The auxiliary quenching apparatus consisted of a small-bore, high-temperature furnace, a sealed SiO2 tube containing the sample, and a dewar quenching flask filled with liquid nitrogen. The hydrided sample, previously quenched in the microgravimetric reaction chamber, was placed in a platinum boat in a vacuum-degassed SiO2 tube. A zirconium wire getter and degassed SiO2 rod, to reduce the internal volume, were also in the tube. After sealing the tube under vacuum the zirconium getter was heated to absorb the last traces of gas. Only the sample was heated at the reaction temperature for the desired length of time, and then the tube dropped through the opposite end of the furnace into the dewar. A quenching rate of 200" to 400° C per sec was estimated. Analyses of samples after the auxiliary experiment also showed practically no increase in oxygen or nitrogen content from heating in the SiO2 tube. All of the samples were examined at room temperature by the X-ray powder method. The majority of the powder patterns were obtained with double nickel-filtered CuKa radiation after 8- and 16-hr exposures in an 11.48-cm-diam camera. Cobalt and chromium radiation were also used to spread out the high d value end of the Pattern. Such patterns readily identified the minor phases. NO oxide or nitride lines were found. Where sharp back-reflection lines existed it was possible to reduce the
Jan 1, 1965
-
Institute of Metals Division - The Creep Behavior of Heat Treatable Magnesium Base Alloys for Fuel Element ComponentsBy P. Greenfield, C. C. Smith, A. M. Taylor
The Mg-Zr alloy ZA and Mg-Mn alloy AM503(S) are shown to have a markedly improved resistance to creep deformation after suitable heat treatments. This improvement makes them suitable for certain stress-bearing fuel element components in nuclear reactors. The extent of strengthening is described and an explanation of the behavior of both materials is given, based on a combination of strain-aging and grain growth. The increase in operating temperatures of fuel element components in Calder Hall type nuclear reactors has necessitated the development of magnesium base alloys with a very high resistance to creep at temperatures up to 500°C. Such alloys are not required for fuel element cans, which require high-creep ductility rather than strength, but for can supporting and stabilizing components, which are needed to support the imposed loads without deforming more than about 1 pct in times of up to 40,000 hr. The amount and type of alloying addition made to magnesium for these parts is limited by the necessity of keeping the cross-section to thermal neutrons as low as possible. The alloys must also possess a high resistance to oxidation in CO2. Alloys which have been developed for this application include ZA, an alloy of magnesium with 0.5 to 0.7 pct Zr and AM503(S), an alloy of magnesium with 0.5 to 0.75 pct Mn. In the as-extruded condition these alloys are very weak and ductile in creep but it has been found that they can be strengthened to a significant extent by heat treatment. This paper describes the method of developing a high-creep resistance in ZA and AM503(S), the extent of the strengthening produced and discusses the probable mechanisms of strengthening. TEST MATERIALS Specimens were taken from typical casts of ZA and AM503(S) alloys extruded into 2 1/4-in.-diam bars, supplied by Magnesium Elektron Ltd. Typical analyses of the bars were as follows: The as-extruded mean grain diameter was 0.001 to 0.002 in. for the ZA alloy and 0.003 in. for the AM503(S) alloy. EXPERIMENTAL METHODS Extruded bars of ZA alloy, 2 1/4 in. in diameter and 9 in. long, were heat treated in electrical resistance furnaces in an atmosphere of flowing CO2 containing 50 to 300 ppm water, thereby reducing the extent of oxidation compared with that which would have occurred in air. Heat treatments were carried out at 600oc for times of 8, 24, 48, 72, and 96 hr and material was subsequently both furnace cooled and water quenched. In order to measure the effect of time of heat treatment, specimens were creep tested at 400°C and 336 psi for about 1000 hr. Subsequently, the behavior of material heat treated for 96 hr at 600°C and furnace cooled was tested at a variety of stresses from 200° to 500°C. Tests were also conducted at 200o and 400°C on material in the as-extruded condition for comparative purposes. With the AM503(S) alloy, only the effect of heat treatment at 565°C for 4 hr was examined. It has been shown1 that such a heat treatment produces marked strengthening in this alloy. Tests on this material were conducted at a variety of stresses at 200°, 300°, and 400oc with comparative tests on as-extruded material at 200o and 400°C. The creep tests were carried out on machines using dead-weight loading and direct micrometer strain measurements on specimens 5 in. long and 0.357 in. diameter. At temperatures of 400° C and below, the creep tests were conducted in air, but at higher temperatures an atmosphere of CO2 was used. Grain size measurements were made on ZA in the extruded and heat treated states and on each specimen after creep testing. This was done by a line count of a minimum of 20 grains in two or three random fields in the longitudinal and transverse directions. The same method was used for measuring the grain size of as-extruded AM503(S), but the grain size of the heat treated material was so large that this method could not be employed. For heat-treated AM503(S) the large grained characteristics (between 0.1 and 1 in.) were confirmed by the measurement of individual grains. In the case of the ZA alloy, specimens taken from various stages in the program were analysed for hydrogen by a combustion method. Material in various states was also analysed for the soluble and insoluble zirconium content by dissolving in dilute hydrochloric acid. This technique has been useda for the determination of amounts of zirconium present
Jan 1, 1962
-
Symposium Review and SummaryBy Willard C. Lacy
Rather than attempting to present a summary of the many and highly varied papers that have been presented at this symposium on sampling and grade control, I will attempt to extract the general philosophy of analysis and approach, and attempt to identify the trend of future developments. First, the term "sampling" is used with its broadest connotations. A sample consists of a representative portion of a larger mass, and must represent the mass not only in the grade of contained metals or minerals, but also in all other respects in terms of mineralogy and mineral quality (1, 5), deleterious materials, recoverability of economic components, physical behavior, geophysical response (I), and even archaeological and environmental aspects (7, 11). The sample must be taken from a locality and in such a manner and quantity that it is representative of the larger rock mass. This calls for complete and accurate geological control and an understanding of the nature and distribution of the contained chemical and physical elements and a record of the effectiveness of the different sampling methods. Second, value of a given mass of ore material is based upon its profitability - the difference between recoverable value and costs to achieve recovery, beneficiation and sale. There is a strong movement in mining geology control toward more complete analysis in determining cutoff grades and in grade control, as illustrated by the kriging of metallurgical recovery factors as well as grade at the Mercur Mine (8). To achieve a "profit- ability factor" as a guide for economic mining practice requires further integration of: 1) the value of contained metal or mineral, 2) percentage recovery of values, 3) dilution of ore with waste rock, 4) addition to, or loss of value as a consequence of by-product materials or deleterious components, 5) cost of producing a saleable product plus mini- mum profit to justify the effort (cutoff), and 6) cost of land restoration (7, 11). All these parameters vary with the rock type, rock structure, mineralogy, depth, geometry, mining and metallurgical methods, but they must be sampled and analyzed if sampling and grade control are to reflect profitability. A wide variety of deposits has been presented at this symposium; each deposit with its own problems and special solutions. Deposits containing high unit-value components, e.g. precious metals and diamonds, present special problems in the obtaining of accurate samples and generally require statistical analysis control methods or may disregard or modify occasional high or occasional low values, based upon experience (12 ) Grade control may be accurate for the long term but may vary for the short term. Bulk sampling is always essential. Deposits containing metals or minerals with low unit value are very sensitive to transport costs, and they are often very sensitive to small amounts of deleterious components or differences in physical or chemical behavior. Problems of sampling and grade control change with the genetic type of deposit, with the stage of deposit development and with the size of the information base. Precious metal epithermal deposits (2, 6, 8), because of rapid vertical zonation and erratic lateral distribution of values, have always been difficult to evaluate and maintain grade control and ore reserves. On the other hand, evaluation and grade control are relatively easy in bulk-low- grade deposits (4, 13). However, these deposits generally have a low margin of profit and are sensitive to mining and beneficiaton costs, price fluctuations and political costs. Industrial mineral deposits (5) often must be evaluated on the basis of their behavior, rather than by chemical analysis. Environmental impact generally increases with the scale of the operation, but certain elements or minerals have especially high impact effects (7, 11). In the exploration phase there is no production control of sampling procedures and careful geological observations are particularly essential. The greatest number of problems is related to the oxidized outcrop where the chemical environment of the ore body has changed and the contained values may have been enriched, depleted or values left unchanged (2, 6). Present evidence suggests that gold values may be very mobile under certain conditions (2, 6) and stable under others. Everything must be sampled in detail. Principal values and by-product or deleterious elements may vary dependent upon their position within the soil profile. Such factors as geomorphic position, erosion rate, vegetation, climate, etc., may affect the interpretation (1, 3). During the development phase it is equally easy to overtest, to have "paralysis by analysis," as to undertest (3, 6). Bulk samplng and testing are
Jan 1, 1985
-
Institute of Metals Division - Effect of Initial Orientation on the Deformation Texture and Tensile and Torsional Properties of Copper and Aluminum WiresBy B. D. Cullity, K. S. Sree Harsha
When a copper or aluminum single crystal is swaged into wire, the resulting deformation texture depends on the original orientation of the crystal. The<100> and <111>orientations me essentially stable, while <110> is unstable. The greater the <100> content of the deformation texture, the stronger the wire is in torsion. the greater the<111>content, the stvonger it is in tenszotz. The preferred orientation (texture) of fcc wires, either after deformation or recrystallization, is usually a double fiber texture in which some grains have <100> parallel to the wire axis and others have <111>. The relative amounts of these two texture components, as reported by different investigators for the same metal, vary considerably. Previous work in this laboratory' has shown that the starting texture of a wire, i.e., the texture which it has before deformation, can have a decided influence on the texture produced by deformation. In particular, it was found that the deformation texture of copper wire is essentially a single <100> texture, if the wire before deformation contains only a <100> component. This is true even when the deformation is carried to more than 98 pct reduction in area. This paper reports on further studies of the role played by the starting texture. Copper and aluminum single crystals of various orientations have been cold swaged into wire, and quantitative measurements of the resulting deformation textures have been made. The tensile and torsional properties of the deformed wires have also been measured, and the relation between these properties has been correlated with the texture of the wire. These measurements were made in order to demonstrate that a cold-worked wire can be made relatively strong in torsion and weak in tension, or vice versa, by proper selection of the texture before deformation. MATERIALS The copper was of the tough-pitch variety, containing, by weight, 99.962 pct Cu, 0.003 pct Fe, 0.025 pct 0, and 0.0021 pct Si. The aluminum contained more than 99.99 pct .'41; the only reported impurities were 0.001 pct Fe, 0.001 pct Si, and 0.003 pct Zn, by weight. Large single crystals of these metals were grown by the Bridgman method in graphite crucibles and a helium atmospliere. Cylindrical specimens of predetermined orientation, about 1.5 in. long and 0.36 in. in diameter, were machined from the as-grown crystals and then etched to 0.25 in. to remove the effects of machining. Their orientations were checked by back-reflection Laue photographs, and they were then swaged to a diameter of 0.050 in. (96 pct reduction in area). 111 order to study the "inside texture" of the deformed wires, they were etched, after swaging, to a diameter of 0.040 in. before the texture measurements were made. TEXTURE MEASUREMENTS The fiber texture which exists in wire or rod can be represented by a curve showing the relation between the pole density I, for some selected crystal-lographic plane, and the angle $ between the pole of that plane and the wire axis (fiber axis). Such a curve will show maxima at particular values of , and these values disclose the texture components which are present. The relative amounts of these components can be determined2'3 from the areas under the maxima on a curve of I sin F vs F. It is seldom necesszlry to measure I over the whole range of F from 0 to 90 deg, since the existence of maxima in the low-F relgion can be inferred from measurements confined to the high-F region. The X-ray measurements were made with a General Electric XRD-5 diffractometer and filtered copper radiation, according to one or the other of the following procedures: 1) A method developed in this laboratory,4 involving diffraction from a single piece of wire. 2) A modification of the Field and Merchant method.5 This method was originally devised for the examination of sheet specimens, but it can easily be adapted to the measurement of fiber texture. Three or four short lengths of wire are held in grooves machined in the flat face of a special lucite specimen holder. The axes of the wires are parallel to the plane defined by the incident and diffracted X-ray beams, and the holder to which the wires are attached can be rotated step-wise about the diffractometer axis for measurements at various angles 9.
Jan 1, 1962
-
Part VII – July 1969 - Papers - The Plasticity of AuZn Single CrystalsBy E. Teghtsoonian, E. M. Schulson
The tensile behavior of bcc ordered P' AuZn single crystals (CsCl structure) has been investigated under varying conditions of temperature, composition, and orientation. Between -0.2 and 0.4 T, multi-stage hardening occurs fm stoichiometric and nonstoichio-metric crystals oriented near the middle of the primary stereographic triangle. At higher and lower temperatures, parabolic type hardening occurs, followed by work - softening at the higher temperatwes. Deviations from stoichiometry give rise to increased flow stresses. Multi-stage hardening was observed for most orientations, except along the [loll-[lll] boundary and near the [001] corner of the stereo -graphic triangle, where parabolic type hardening occurs. Along two slip systems, (hk0)[001] and (, operate simultaneously while in the [001] comer, slip occurs mainly on the system. Electron microscopy of deformed crystals revealed bundles of edge dislocations forming walls approximately Perpendicular to the glide plane. In general the plasticity of 4' AuZn closely resembles the plasticity of bcc crystals. In recent years, considerable interest has arisen concerning the mechanical properties of the CsCl type intermetallic compounds Ag Mg,'- Fe co,' and Ni Al.'-' The compound P'AuZn is structurally similar. It has a low and congruent melting point of 725"~,'" remains ordered up to the melting point,16 and pos-esses a range of solid solubility from 47.5 to 52.0 at. pct Au at room temperature.15 The present paper reports the results of an investigation on the general tensile behavior of material in single crystal form. Some dislocation configurations characteristic of the deformed state are also reported. The results of a detailed study of the slip geometry in AuZn are presented in a separate paper.17 PROCEDURE Alloy preparation, crystal growing techniques, and the procedure followed in selecting specimens of minimum composition variation are reported elsewhere.17 Dumb-bell shaped tensile specimens were prepared by carefully machining single crystals in a jewellers' lathe to a gage length of 0.80 in. and diam of 0.090 in. Back-reflection Laue X-ray patterns and room temperature tensile tests revealed that machining damage could be eliminated by electrochemically polishing 0.005 in. from the machined surface followed by annealing at 300°C for 1 hr. Specimens were polished in fresh 5 pct KCN solution (40°C, 12 v). Experiments were performed by gripping specimens in a self-aligning pin-chuck and threaded collet system, then straining in a floor model Instron tensile machine. All tests were performed in duplicate. Experimental variables included temperature, composition, and orientation. Unless otherwise stated the strain rate was 2.5 x 10"3 per sec. Liquid testing environments included nitrogen (WOK), nitrogen cooled petroleum ether (133" to 293"K), and silicone oil (293" to 488°K). Resolved shear stress-shear strain curves were electronically computed from autographically recorded load-elongation curves. Stress and strain were resolved on the macroscopic noncrystallographic (hkO) [001] system operative under the specific test conditions of temperature, strain rate, and orientation reported earlier.17 RESULTS The temperature dependence of the work-hardening curves is shown in Fig. 1 for gold-rich crystals of 51.0 at. pct Au oriented near the center of the stereo-graphic triangle. Over the range of intermediate temperatures from -200" to 400°K, they are very similar to those classically observed for fcc metals (reviewed by Nabarro et al.).'' The beginning of deformation is characterized by a region of decreasing hardening rate, stage 0, which is followed by a region of low linear hardening, stage I, and then a region of higher linear hardening, stage 11. At the higher temperatures, stage 111 is observed, a region of decreasing hardening rate. Over the intermediate temperature range, the extent of stage 0 and of the slow transition between stages I and I1 decreases with increasing temperature. Total ductility is large, often greater than 300 pct shear. As the temperature is either increased or decreased, the extent of stage I is decreased, giving rise to parabolic type flow and reduced ductility. Similar temperature effects have been reported for bcc ~r~stals.~~-~~ Below -14O°K, hardening is terminated in brittle fracture while above -400°K. initial hardening is followed first by work-softening and then by chisel-edge type ductile fracture. Stoichiometric (50.0 at. pct Au) and Zn-rich (51.0 at. pct Zn) crystals were also tested from 77" to -500°K. The effect of composition on the flow behavior is illus-
Jan 1, 1970
-
Further Discussion of Paper Published in Transactions Volume 216 - A Laboratory Study of Rock Bre...By J. L. Lehman, J. D. Sudbury, J. E. Landers, W. D. Greathouse
A full scale field experiment on cathodic protection of casing answers questions concerning (1) the proper criteria for determining current requirments, (2) the amount of protection provided by different currents, and (3) the transfer of current at the base of the surface pipe. Three dry holes in the Trico pool in Rooks County, Kans., were selected for cathodic protection tests. The three holes were in an area where casing failures opposite the Dakota water sand often accur in less than a year. Examination of the electric togs showed the wells to be similar to other wells in the field where casing in four of seven producing wells has failed. The three holes were cleaned out and cased with 75 joints of new 51/2-in. 14-tb J-55. Each joint was visually inspected and marked before it as run. The casing was bull plugged and floated in the hole 50 that the inside might remain dry and free of excessive attack. Also, if a leak occurred, a pressure increase could be observed on gawge at the surface. Extensive testing was done, including potential profiles, log current-potentid curves and electrode measurements from both surface and downhole connections. Based on these data, a current of 12 amps was applied to one well and 4 amps to mother. The third well was left to corrode. During the two-year period when the casing was in the ground, [he applied current was checked weekly, and reference electrode measurements were made about every two months. Three sets of casing potential profi1e.c were run. When the three strings were pulled, each joint was examined for type of scale formed, presence of sulfate-reducing bacteria, extent of corrosion nttnck and pit depth. Since the pipe was new when run, quantitative determination of the protection provided by current was possible. This is the first concrete field evidence to help resolve the many arguments about the proper method for selecting adequate current for cathodic protection of oilwell (-using. INTRODUCTION A casing string is run when a well is drilled. This pipe is supposed to protect this valuable "hole in the ground" for the life of the well. Often the casing does not last the life of the well; it is with these casing failures that this work is concerned. The cost of repairing a casing failure varies from field to field—from as much as a $30,000 per leak average in California to $5,000 per leak in Kansas. Additional costs other than actual repairs are also important. These include formation damage, lost production, etc. Casing damage caused by internal corrosion is important in some areas. Treatment normally consists of flushing inhibitor down the annulus, but further research is being done on control measures. The test described in this paper is concerned only with external corrosion. The problem of casing failure from external attack has appeared in several areas including western Kansas, California, Montana, Wyoming, Texas, Arkansas and Mississippi. Cathodic protection is currently being used in an attempt to control external corrosion. From reports in the NACE there are thousands of wells currently under cathodic protection. The quantity of current being applied ranges from 27 amps on some deep California wells to a few tenths of an amp being supplied from magnesium anodes on wells in Texas and Kansas. Considerable field and laboratory effort1,9,5,6 was exented on the problem of cathodic prctection of casing, and it became fairly obvious that this method could be used to protect wells. Early workers showed that current applied to a well distributed itself over the length of the casing and was not concentrated on the upper few hundred feet. Basic cathodic protection theory had shown that corrosion attack could be stopped by applying sufficient current. The problem resolved itself, then, into one of trying to decide just how much current was necessary. Various criteria were utilized in installing the many existing cathodic protection installations. These methods included the following. 1. Applying sufficient current to remove the anodic slope as shown by the potential profile." 7. Applying enough current to maintain all areas of the casing at a pipe-to-soil potential of .85 v.' 3. Applying the current indicated by a log current-potential (or E log I) curve." 4. Supplying the current necessary to shift the pipe to-soil potential .3 v." 5. Applying 2 or 3 milliamps of current per sq ft of casing."
-
Institute of Metals Division - The Solid Solubilities of Iron and Nickel in BerylliumBy R. E. Ogilvie, A. R. Kaufmann, S. H. Gelles
The solid-solubility limits of iron in beryllium were determined between 850o and 1200oC by analysis of differential type multiphase diffusion couples, using an X-ray absorption technique. The maximum value of the solubility limit was found to be 0.92 ± 0.02 at. pct (5.46 wt pet) at the eutectic temperature 1225°C. The solubilities of nickel and beryllium were determined between 900°and 1200°C by the same technique and the maximum solubility was found to be 4.93 + 0.01 at. pct (25.2 wt pet) at the eutectoid temperature, 1065°C. A previously unreported high-temperature phase which decomposes eutectoidally at 1065 °C was found to exist in the beryllium-nickel system at a composition of approximately 8 at. pct Ni (36 wt pet) by diffision-couple analysis. The presence of this phase was confirmed by thermal analysis and metallo-graphic analysis of the structure resulting from the eutectoid decomposition. G. V. Raynor1 has treated the solid solubilities of some of the elements in beryllium on the basis of the "Hume-Rothery" rules2 which have been modified to include ionic size and ionic distortion effects. It was predicted that the solubility of iron and nickel in beryllium should be slightly less than that of copper. The lowering of the solubility, according to Raynor, is due to a more unfavorable relative valency effect and an ionic size effect. Kaufmann and corzine3 have compiled data on the solubilities of elements in beryllium and have discussed them in the light of the Raynor paper. These authors feel that, because the elements having the greatest solubility in beryllium systematically fall in the Group VIII and IB Columns of the periodic table, the electronic structure greatly influences the maximum solid solubility of elements in beryllium. The solubility of iron in beryllium was determined by Teitel and cohen4 as part of the study of the beryllium-iron phase diagram. The determination was carried out by X-ray and thermal analysis and according to the phase diagram presented, the maximum solubility of iron in beryllium is 0.41 at. pct (2.5 wt pct) at 1225oC. However, it is estimated that the uncertainty in the position of the a-beryllium primary solid-solution boundary is about 0.5 at. pct (3wtpct). Losana and Goria3 in studying the beryllium-nickel phase diagram, determined the solid solubility of nickel in beryllium by thermal analysis. They found the maximum solubility to be between 1.65 and 2.65 at. pct (10 to 15 wt pct) at 1240°C. This value decreased rapidly with decreasing temperature. In determining approximate ranges of solubilities for different elements in beryllium, Kaufmann, et al,8 reported a value of between 1.3 and 1.7 at. pct (7.9 to 10.1 wt pct) for the solubility of nickel in beryllium. The value was obtained by metallographic examination of quenched alloys and lattice-parameter measurements. However, the authors also noted a single-phase structure for a 1.7 at. pct Ni alloy (10 wt pct) on cooling from the liquid. This would indicate a higher solubility range than was reported. ~isch,' in his X-ray studies of beryllium-copper, beryllium-nickel, and beryllium-iron intermetallic compounds, reports the disappearance of a second phase (Ni,Be2) in the beryllium primary solid solution at approximately 4 at. pct (20 wt pct). THEORY The analysis of concentration gradients in diffusion couples has proven to be a useful tool in determining phase equilibria.8-14 In this particular study the diffusion couples were chosen to straddle the expected composition range of the phase boundary, then heat treated at a given temperature and the concentration gradient evaluated. The composition of the phase boundary for a given temperature appears at a point of discontinuity of the composition gradient. Examples of typical phase diagrams and the concentration gradients which should be found in such systems are shown in Fig. 1. In the present work, gradients of the form of Fig. l(c) were obtained in diffusion couples made of pure beryllium and two-phase alloys of beryllium with either iron or nickel. The composition at the point where the gradient becomes discontinuous, Cs, corresponds to the solubility limit of either iron or nickel in beryllium. The analysis of the concentration gradients was carried out by an X-ra absorption method developed and applied by Ogilvie and later used by Moll13 and Hilliard.l4 It depends on the fact that the absorption of X-rays by matter is determined by the concentration and type of the various atomic species present. The relationship for the intensity, I, of a monochro-
Jan 1, 1960
-
Institute of Metals Division - The Permeability of Mo-0.5 Pct Ti to HydrogenBy D. W. Rudd, D. W. Vose, S. Johnson
The permeability of Mo-0.5 pel Ti to hydrogen was investigated over a limited range of temperature and pressuire (709° to 1100°C, 1.i and 2.0 atm). The resulting permeability, p, is found to obey the The experimental data justifies the permeation mechanism as a diffusion contl-olled pnssage of Ilvdrogen atoms through the metal barrier. 1 HE permeability of metals to hydrogen has been investigated by a number of workers and their published results have been tabulated by Barrer' up to 1951. Since most of the work on the permeability has been accomplished prior to this date, the compilation is fairly complete. Mathematical discussion of the permeability process has been reported by Barrer, smithells, and more recently by zener. From these efforts several facts are observed. First, the permeability of metals to diatomic gases involves the passage through the metal of individual atoms of the permeating gas. This is evidenced by the fact that the rate of permeation is directly proportional to the square root of the gas pressure. Second, the gas permeates the lattice of the metal and not along grain boundaries. It was shown by Smithells and Ransley that the rate of permeation through single-crystal iron was the same after the iron had been recrystallized into several smaller crystals. Third, it has been observed that the rate of permeation is inversely proportional to the thickness of the metal membrane. Johnson and Larose5 verified these phenomena by measurirlg the permeation of oxygen through silver foils of various thicknesses. Similar findings were noted by Lombard6 for the system H-Ni and by Lewkonja and Baukloh7 for H-Fe. Finally, it has been determined that for a gas to permeate a metal, activated adsorption of the gas on the metal must take place. Rare gases are not adsorbed by metals, and attempts to measure permeabilities of these gases have proved futile. ~~der' found negative results on the permeability of iron to argon. Also, Baukloh and Kayser found nickel impervious to helium, neon, argon, and krypton. From what was stated above concerning the dependence of the rate on the reciprocal thickness of the metal barrier, it is seen that although adsorption is a very important process, at least in determining whether permeation will or will not ensue, it is not the rate determining process for the common metals. A case in which adsorption is of sufficient inlportance to cause abnormal behavior has been noted in the case of Inconel-hydrogen and various stainless steels.'' APPARATUS The apparatus used in this study is shown in Fig. 1. The membrane is a thin disc (A), but is an integral part of an entire membrane assembly. The entire unit is one piece, being machined from a solid ingot of metal stock. When finished, the membrane assembly is about 5 in. long. Two membrane assemblies were made; the dimensions of the membranes are given in Table I. The wall thickness is large compared to the thickness of the membrane, being on the average in the ratio of 13 to 1. There exists in this design the possibility that some gas may diffuse around the corner section of the membrane where it joins the walls of the membrane assembly, If such an effect is present, it is of a small order of magnitude, as evidenced by the agreement of the values of permeability between the two membranes under the same temperature and pressure. A thermocouple well (B) is drilled to the vicinity of the membrane. The entire membrane assembly is then encased in an Inconel jacket and mounted in a resistance furnace. The interior of the jacket is connected to an auxiliary vacuum pump and is always kept evacuated so that the membrane assembly will suffer no oxidation at the temperatures at which measurements are taken. The advantages of this configuration are: 1) there are no welds about the membrane itself, so that the chance of welding material diffusing into the membrane at elevated temperatures is remote. 2) It is possible to maintain the membrane at a constant temperature. Since the resulting permeation rate is very dependent upon temperature, it is advisable to be as free as possible from all temperature gradients. 3) It is possible to obtain reproducible results using different specimens. The only disadvantage to this configuration is the welds (at C) in the hot zone. The welding of molybdenum to the degree of per-
Jan 1, 1962
-
Iron and Steel Division - Equilibrium in the Reaction of Hydrogen with Oxygen in Liquid IronBy J. Chipman, M. N. Dastur
The importance of dissolved oxygen as a principal reagent in the refining of liquid steel and the necessity for its removal in the finishing of many grades have stimulated numerous studies of its chemical behavior in the steel bath. From the thermodynaniic viewpoint the essential data are those which determine the free energy of oxygen in solution as a function of temperature and composition of the molten metal. A number of experimental studies have been reported in recent years from which the free energy of oxygen in iron-oxygen melts can be obtained with a fair degree of accuracy for temperatures not too far from the melting point. Certain discrepancies remain, however, which imply considerable uncertainty at higher temperatures; also several sources of error were recognized in the earlier studies. It has been the object of the experimental work reported in this paper to reexamine these sources of uncertainty and to redetermine the equilibrium condition in the reaction of hydrogen with oxygen dissolved in liquid iron. The reaction and its equilibrium constant are: H2 (g) + Q = H2O (g); K1 _ PH2O / [1] Ph2 X % O Here the underlined symbol Q designates oxygen dissolved in liquid iron. The activity of this dissolved oxygen is known to be directly proportional to its concentrationl,2 and is taken as equal to its weight percent. The closely related reaction of dissolved oxygen with carbon monoxide has also been investigated:3,4,5 co (g) +O = CO?(g); K _ Pco2___ [2] K2= pco X % O [2] The two reactions are related through the wat,er-gas equilibriuni: H2 (g) + CO2 (g) = CO (g) + H2O (g); K2 = PCO X PH2O [3] PH2 X PCO2 and with the aid of the accurately known equilibrium constant of this reaction, it has been shown5 that the experimental data on reactions [1] and 121 are in fairly good, though not exact, agreement. Experimental Method Great care was taken to avoid the principal sources of error of previous studies, namely, gaseous thermal diffusion and temperature measurement. The apparatus was designed to provide controlled preheating of the inlet gases and to permit the addition of an inert gas (argon) in controlled amounts, two measures found to be essential for elimination of thermal diffusion. A known mixture of water vapor and hydrogen was obtained by saturating purified hydrogen with water vapor at controlled temperature. This mixture, with the addition of purified argon, was passed over the surface of a small melt (approximately 70 g) of electrolytic iron in a closed induction furnace. After sufficient time at constant temperature for attainment of equilibrium the melt was cooled and analyzed for oxygen. GAS SYSTEM A schematic diagram of the apparatus is shown in Fig 1. Commercial hydrogen is led through the safety trap T and the flowmeter F. The catalytic chamber C, held at 450°C, was used to convert any oxygen into water-vapor. A by-pass B with stopcocks was provided so that the hydrogen could be introduced directly from the tank to the furnace when desired. From the catalytic chamber the gas passed through a water bath W, kept at the desired temperature by an auxiliary heating unit, so that the gas was burdened with approximately the proper amount of water vapor before it was introdvced into the saturator S. All connections beyond the catalytic chamber were of all-glass construction. Those connections beyond the water bath were heated to above 80°C to prevent the condensation of water vapor. After the saturator, purified argon was led into the steam-hydrogen line at J, and finally the ternary mixture was introduced into the furnace. THE SATURATOR The saturator unit comprised three glass chambers, as shown in Fig 1, the first two chambers packed with glass beads and partially filed with water and the third empty. Each tower had a glass tube with a stopper attached for the purpose of adjusting the amount of water in it. The unit was immersed in a large oil bath, which was automatically controlled with the help of a thermostat relay to constant temperature, ± 0.05ºC, using thermometers which had been calibrated against a standard platinum resistance thermometer. The performance of the saturator over the range of experimental conditions was checked by weighing the water absorbed from a measured volume of hydrogen; the observed ratio was always within 0.5 pct of theoretical.
Jan 1, 1950
-
Institute of Metals Division - Plastic Deformation of Rectangular Zinc MonocrystalsBy J. J. Gilman
The data presented indicate that the critical shear stress and strain-hardening Thedatapresentedrate of a zinc monocrystal depend on the orientation of its slip direction with respect to its external boundaries. The tendency of a crystal to form deformation bands also depends on its shape. THE plastic behavior of pairs of zinc monocrystals in which both members of the respective pairs had the same orientation with respect to the longitudinal axis, but each had different orientations with respect to their rectangular external shapes, were compared in this investigation. The purpose of the investigation was to see what influence the shape or surface of a zinc crystal has on its mechanical properties. In a previous investigation of triangular zinc monocrystals,1 anomalous axial twisting was observed which seemed to be related to the triangular shape of the crystals. Wolff,' in 400°C tensile tests of rectangular rock-salt crystals bounded by cubic cleavage planes, found that, of the four equivalent slip systems, the two with the "shorter" slip directions yielded and produced slip lines at lower stresses than the other two. This observation and the work of Dommerich³ as formulated by Smekal4 as a "new slip condition" for rock-salt: "among two or more slip systems permitted by the shear stress law, with reference to the formation of visible slip lines by large individual glides, that slip system is preferred which has the shortest effective slip direction." More recently, Wu and Smoluchowski5 reported essentially the same effect for ribbon-like (20x2x0.2 mm) aluminum crystals at room temperature. Experimental Chemically pure zinc (99.999 pct Zn), purchased from the New Jersey Zinc Co., was the raw material. Glass envelopes, containing graphite molds and zinc, were evacuated while hot enough to outgas the graphite but not melt the zinc. At a vacuum of about 0.2 micron the envelopes were sealed off and then lowered through a furnace at 1 in. per hr so as to melt and resolidify the zinc and produce mono-crystals. One-half of one of the molds is shown in Fig. la. Each mold consisted of four pieces from a cylindrical graphite rod that was split longitudinally and transversely at its midpoints. Rectangular milled grooves 0.050 in. deep and % in. wide formed the mold cavity when the split halves were assembled with twisted wires. Fig. lb shows the specimen shape obtained when the top and bottom mold-halves were rotated 90" with respect to each other. Good fits prevented leakage and excess zinc was necessary to provide enough liquid head to fill the mold completely. In removing soft crystals from the molds it was impossible to avoid small amounts of bending. However, manipulations were carried out whenever possible with the crystals protected by grooved brass blocks. All specimens were annealed prior to testing. From the top and bottom sections of each crystal, X-ray specimens and tensile specimens 7 to 8 cm long were sawed. The tensile specimens were annealed inside evacuated tubes for 1 hr at 375°C. Next the crystals were cleaned and polished by 2-min dips in a solution of 22 pct chromic acid, 74 pct water, 2.5 pct sulphuric acid, and 1.5 pct glacial acetic acid.' Cleaning was followed by a 10-sec dip in a 10 pct caustic solution, then washed in water and alcohol, and dried. This treatment results in a bright surface covered by an invisible oxide film. The testing grips were a slotted type with set screws and were supported in a V-block during the mounting operations in order to avoid bending the crystals. A schematic diagram of the recording tensile-testing machine is shown in Fig. 2. The machine has been described elsewhere.' The head speed was 0.3 mm per sec for all tests. The crystal orientations were determined by the Greninger X-ray back-reflection method with an estimated accuracy of 1. Description of Crystal Geometry A schematic picture of a rectangular zinc mono-crystal is shown in Fig. 3. ABD designates the front edge of a basal plane (0001) of the crystal, the only active slip plane for zinc at room temperature. Of the three possible (2110) slip directions, the active one is indicated by an arrow. Cartesian coordinates are taken parallel to the specimen edges. The normal, n, to the basal plane (n is parallel to the hexagonal axis) has the direction cosines a, ß and ?. X0 = 90 — y is the angle between the longitudinal axis and
Jan 1, 1954
-
Iron and Steel Division - Effect of Rare-Earth Additions on Some Stainless Steel Melting VariablesBy R. H. Gautschi, F. C. Langenberg
Rare-earth additions were made to laboratory heats of Type 310 stainless to observe their effect on as-cast ingot structure, nitrogen and sulfur contents, and nonmetallic inclusions. Lanthanum had a grain-refining effect in 30-lb ingots, but results with 200-lb ingots were inconsistent. Cerium, lanthanum, and misch metal lowered the sulfur content when the sulfur exceeded 0.015 pct and the rare-earth addition was greater than 0.1 pct. The rare-eardh content in the metal dropped very rapidly within the first few minutes after the addition. The size, shape, and distribution of nonmetallic inclusions was not changed in 30-lb ingots, but changes were noticed in larger ingots. RARE-earth* additions have been made to austenitic Cr-Ni and Cr-Mn steels to improve their hot workability. The high alloy content of these steels often results in a considerable resistance to deformation and inherent hot shortness at rolling temperatures, particularly in larger ingots. Rare earths in the metallic, oxide, or halide form are usually added to the steel in the ladle after deoxidation although they can be added in the furnace prior to tap or in the molds during teeming. The literature- indicates that the effects of rare-earth treatments on these stainless steels are not consistent, and sometimes even contradictory. Since no mechanism has been presented which satisfactorily accounts for the claimed improvements, the effects of rare earths are a qualitative matter. The work described in this paper was initiated to expand the knowledge of the effects of rare-earth additions on melting variables such as ingot structure, chemical analysis, and nonmetallic inclusions. REVIEW OF LITERATURE Ingot Structure—Rare-earth additions to stainless steels have been reported to cause a change in primary ingot structure in that there are fewer coarse columnar grains. However, the results are inconsistent. While one investigation1 has shown a large reduction in coarse columnar crystals, another2 has been unable to observe this effect, particularly when small ingots were poured. Post and coworkers3 observed ingot structures for a number of years and found that the columnar type of structure is not definitely a cause of any particular trouble in rolling or hammering, provided the alloy is ductile. Knapp and Bolkcom4 found rare-earth additions to be quite effective in preventing grain coarsening in Type 310 stainless steel. Chemical Analysis—Many effects of rare-earth treatment on chemical analysis have been claimed in the literature. Russell5 observed that some sulfur is removed by rare-earth metals, and that a high initial sulfur content improved the efficiency of sulfur removal. Lillieqvist and Mickelson6 report that rare-earth treatment causes sulfur removal in basic open-hearth furnaces, but not in basic lined induction furnaces. Knapp and Bolkcom found no sulfur removal in acid open-hearth and acid electric furnaces, probably because the acid slag can not retain sul-fides. snellmann7 showed that sulfur could be lowered apprecfably with rare-earth additions; however, a sulfur reversion occurred with time. Langenberg and chipman8 studied the reaction CeS(s) = Ce(in Fe) + S(in Fe), and found the solubilit product [%Ce] [%S] equal to (1.5 + 0.5) X 10-3'at 1600°C. Results in 17 Cr-9 Ni stainless were about the same as those in iron. Beaver2 treated chromium-nickel steels with 0.3 pct misch metal and observed some reduction in the oxygen content. He also noted an inconsistent but beneficial effect of rare earths when tramp elements were present in amounts sufficient to cause difficulty in hot working. It is not known whether rare earths reduce the content of the tramp elements or change the form in which these elements appear in the final structure. No quantitative data are available concerning a possible effect of rare-earth treatment on hydrogen and nitrogen contents. However, Schwartzbart and sheehan9 stated that additions of rare earths had no effect on impact properties when the nitrogen content was low (0.006 pct), but served to counteract the adverse effects of high nitrogen content (0.030 pct) on these properties. Knapp and Bolkcom4 analyzed open-hearth heats in the treated and untreated conditions and found the nitrogen content (0.006 pct) to be unaffected. These two results lead to the speculation that rare-earth additions can reduce the nitrogen content to a certain level. Decker and coworkers10 have observed that small amounts of boron or zirconium, picked up from magnesia or zirconia crucibles, increased high-tem-
Jan 1, 1961