Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Metal Mining - Underground Radio Communication in Lake Superior District MinesBy E. W. Felegy
THE need for improved mine communication to increase efficiency and to insure greater safety has long been recognized. General and unrestricted communication between all points underground, and between the surface and all points underground, is probably the least advanced phase of the mining industry. An ideal system of mine communication must require no fixed wire installations. The equipment must be small, lightweight, and readily portable, and the power requirements low. A system that can be used not only under normal circumstances but also in an emergency, when the continuity of wires, tracks, and pipelines may be disrupted, must function independently of any aid furnished by standard installations. Radio communication offers possibilities of meeting all the requirements necessary for an ideal communication system in underground mines. Transmission of signals must be achieved through one or both of two mediums, through the air in mine openings or through the strata. The results or lack of results obtained by early investigators showed conclusively that radio communication by space transmission cannot be accomplished effectively beyond line-of-sight distances in underground passageways. A radio system underground therefore must depend solely upon transmission through soil and strata. The application of radio to underground mine communication was investigated by many individuals and agencies at different times in the last several decades, but little success was achieved before World war 11.2-0, The results of experiments during the war, and further knowledge gained in experiments with vastly improved communication methods and equipment after the war provided the background for additional research in radio communication in underground mines. During 1950 to 1.952 the University of Minnesota sponsored an investigation to determine the possibility of developing: a system of radio communication universally applicable in underground metal mines in the Lake Superior district. The possibility of using radio equipment to determine the imminence of rock bursts in deep copper mines in that district also was investigated. The investigation supplemented previous and concurrent emergency mine communication studies of the U. S. Bureau of Mines. Testing equipment and laboratory facilities maintained by the Bureau of Mines at Duluth, Minnesota, were used in the research program, which was conducted as a mining engineering graduate research problem by the present writer under the direction of T. L. Joseph and E. P. Pfleider. The radio units used in the research program were designed and built to specification solely to conduct tests of radio communication in mines. Two identical units were used in all tests. Each unit contained a transmitter section, a receiver section, and a power-supply section, mounted on a single chassis. The entire unit was enclosed in a single 10x12x18-in. metal case provided with a leather-strap handle for carrying purposes. The front of the case was hinged to open upward and provide easy access to the single control panel on which all controls were mounted. Storage batteries supplied the operating power for all tests. Standard 6-v automobile batteries were utilized to provide adequate capacity to conduct tests for a full day without exhausting the battery. A frequency range from 30 to 200 kc was covered in eight pre-fixed steps on each unit. The carrier frequencies were crystal-controlled and amplitude-modulated. The receiver employed an essentially standard superheterodyne circuit and was sufficiently sensitive to detect signal strengths of 5 micro v. A heterodyne circuit was employed in the transmitter to obtain the low-carrier frequencies used in the units. Power output of the transmitter, usually less than 2 w, rarely exceeded 3 w in any test. Tests were conducted in mines on the Vermillion iron range in Minnesota, the Gogebic iron range in Wisconsin, the Menominee and Marquette iron ranges in Michigan, and a copper mine in the upper Michigan peninsula. All tests were conducted when the mines were operating normally, and usual mining, maintenance, and transportation activities were in progress, so that any interference caused by normal production activities could be evaluated during the tests. Tests were made between different points underground in each mine, and between underground and surface points at some mines. Test readings obtained at any one mine were calibrated in the laboratory before another series of tests were begun at the next mine. The transmitter and receiver were separated by one or more levels in each test, and generally there was no other means of communication between test points. Two 100-ft lengths of rubber-covered wire were used for antenna wires on each unit in both transmission and reception. The ends of the wires were connected to ground points in one of several methods, depending upon physical conditions at each test site. The wires were clipped to metal rods about 200 ft apart in the back, side, or bottom of the mine opening where the character of the rock permitted driving rods. Both wires were clipped to points about
Jan 1, 1954
-
Part I – January 1967 - Papers - Interface Compositions, Motion, and Lattice Transformations in Multiphase Diffusion CouplesBy J. W. Spretnak, D. A. Chatfield, G. W. Powell, J. R. Eifert
In nzost cases, the driving force for a lattice transformation is produced by supercooling below the equilibriunz transformation temperature. The interfnce reaction in isothermally annealed, multiphase diffusion couples may involve a luttice transformation which also requires a driving force. Direct experinzental evidence has been obtained for the existence of the driring force in the form of a supersaturated phase at the aocc)-0@cc) interface in Cu:Cu-12.5 ult pct A1 couples; the super saturation is equivalent to an excess free energy of approximately 3 cal per mol at 905. A tentatiue interpretation of the dynanzic situation a1 the interface based on the free energy-composition diagram is proposed. THE presently accepted theory of diffusion in multiphase couples1 states that there will be a phase layer in the diffusion zone for every region which has three degrees of freedom and which is crossed by the diffusion path in the equilibrium phase diagram. For binary systems, this restriction excludes all but single-phase fields and, for ternary systems, only one- and two-phase fields are included. In addition, Rhines"~ as well as other investigators3 6 have reported that the compositions of the various phases adjacent to the interfaces are, for all practical purposes, the compositions given by the intersections of the diffusion path with the solubility limits of the single-phase fields of the equilibrium phase diagram. Some studies of the rate of thickening of these intermediate diffusion layers indicate that the thickness of the layer changes para-bolically with time, or: where x is the position of the interface relative to an origin xo, t is the diffusion time, and k is a temperature-dependent factor. crank7 shows mathematically that, if the compositions at an interface are independent of time and the motion of the interface is controlled by the diffusion of the elements to and from the interface, then the segments of the concentration penetration curve for a semi-infinite step-function couple will be described by an equation of the form: hence, Eq. [l] follows from Eq. (21 if the interface compositions are fixed and if the motion of the interface is diffusion-controlled. Although the concept of local equilibrium being attained at interfaces has assumed a prominent role in the theory of diffusion in multiphase couples, experimental evidence and theoretical discussions which challenge the general validity of this concept have been reported in the literature. arkeen' has stated that strict obedience to the conditions set by the equilibrium phase diagram cannot be expected in any system in which diffusion is occurring because diffusion takes place only in the presence of an activity gradient. Darken also noted that it is usually assumed that equilibrium is attained locally at the interface although the system as a whole is not at equilibrium, the implication being that the transformation at the interface is rapid in comparison with the rate of supply of the elements by diffusion. ISirkaldy3 indicates agreement with Darken in that he believes the concept of local equilibrium is at best an approximation because the motion of the phase boundary requires that there be a free-energy difference and, hence, a departure from the equilibrium composition at the interface. Seebold and Birks9 have stated that diffusion couples cannot be in true equilibrium, but the results obtained are often in good agreement with the phase diagram. The initial deviation from equilibrium in a diffusion couple will be quite large because alloys of significantly different compositions are usually joined together. Kirkaldy feels that the transition time for the attainment of constant interface compositions (essentially the equilibrium values) will be small, although in some cases finite. Castleman and sieglelo observed such transition times in multiphase A1-Ni couples, but at low annealing temperatures these times were quite long. Similarly, ~asing" found departures, which persisted for more than 20 hr, at phase interfaces in Au-Ni and Fe-Mo diffusion couples. Braun and Powell's12 measurements of the solubility limits of the intermediate phases in the Au-In system as determined by microprobe analysis of diffusion couples do not agree with the limits reported by Hiscocks and Hume-Rothery13 who used equilibrated samples. Finally, Borovskii and ~archukova'~ have stated that the determination of the solubility limits of phase diagrams using high-resolution micro-analyzer measurements at the interfaces of multiphase couples is not an accurate technique because of deviations from the equilibrium compositions at a moving interface; diffusion couples may be used to map out the phase boundaries in the equilibrium diagram, but the final determination of the solubility iimits should be made with equilibrated samples. The purpose of this work was to investigate the conditions prevailing at an interface in a multiphase diffusion couple and to compare the interface compositions with those associated with true thermodynamic equilibrium between the two phases. Microanalyzer techniques were used to measure interface compositions in two-phase Cu-A1 diffusion couples annealed at 80@, 905", and 1000°C for various times.
Jan 1, 1969
-
Part VIII – August 1968 - Papers - The Influence of Nitrogen, Titanium, and Zirconium on the Boron Hardenability Effect in Constructional Alloy SteelsBy R. M. Brown, W. J. Murphy, B. M. Kapadia
An investigatiott was conducted to study the influence of nitrogen, titanium, and zirconium on the boron llardenabilzty effect in a low-carbon constructiona2 alloy steel. The experimental steels investigated exhibited a significant variation in hardenability, the variation being dependent on the interactions of boron, titanium, and zirconium with the nitrogen. Only the boron not combined with nitrogen was effective in increasing hardenability. Titanium, and with lesser effectiveness zirconium, combined with available nitrogen, thereby protecting the boron. The hardenabil-ity effect mas related to an empirical expression for the "effective" boron content, P, deduced from experimental evidence of these interactions. The hardenabzlity effect reached a maximum at about 0.001 wt pct 0, and decreased somewhat as P increased further. The physical understanding of this relationship is discussed. FOR many years boron has been added to steels to obtain high hardenability. Although a great deal of research has been conducted on boron-treated steels, certain aspects of the boron hardenability effect have not been fully understood. For instance, the magnitude of the hardenability effect has been observed to vary markedly, depending on the steelmaking technique, even when the amount of boron in the steel was essentially constant. Furthermore, the optimum amount of this element to be added has not been definitely established. A better understanding of the boron hardenability effect is essential because too small an addition of boron is likely to be ineffective, while an excessive amount can cause brittleness'' and hot shortness. The findings of earlier investigations have shown that the hardenability effect cannot be consistently related to the amount of boron added or retained in the steel. Grossmann observed that in a 0.60 pct C steel the hardenability increased to a maximum with mold additions up to about 0.0025 pct B and then decreased with larger additions. Other investigators5 likewise reported a maximum in the hardenability at about 0.003 pct B. Crafts and Lamont, however, found that in commercial open-hearth heats of medium-carbon steel the hardenability increased linearly with boron up to 0.001 pct and remained essentially unchanged with larger percentages up to 0.006 pct. Other investigators7,' also observed a rather constant hardenability effect in the range about 0.0005 to 0.0035 pct B. These observations and other evidence suggest that the effectiveness of boron in increasing hardenability probably depends, in addition to the amount, on the form of boron retained in the steel, this form being influenced by the presence of other elements. Both oxygen and nitrogen apparently exert the strongest influence on the hardenability behavior, since, at the temperature of liquid steel, boron readily combines with these elements, thereby losing its effectiveness as most experimental evidence seems to indicate. For consistent recovery of the boron effective in increasing hardenability, it is necessary that the oxygen and nitrogen in the steel be either reduced to extremely small amounts by the steelmaking practice or neutralized by combination with other elements before the addition of boron. The importance of achieving adequate deoxidation prior to the addition of boron in order to realize the full hardenability effect of boron has been sufficiently emphasized by earlier investigators. Digges and Reinhart' and others have investigated the role of nitrogen and have shown that nitrogen also interacts with boron and reduces or nullifies altogether its effect on hardenability. Moreover, their work also demonstrated that the addition of strong nitride formers such as titanium and zirconium reduce the deleterious effect of nitrogen on boron hardenability by combining with nitrogen to form stable nitrides. Another element which has a pronounced influence on the boron hardenability effect is carbon. It has been shown7'10 that the hardenability effect of boron diminishes with increasing carbon content, and becomes almost negligible at the eutectoid composition. This observation is useful in comparing the potential increase in hardenability from boron of steels with different carbon contents, but is not relevant to a study of the effects of normal steelmaking variables. The amounts of oxygen and nitrogen in steel vary with the steel composition and steelmaking practice employed. Most commercia1 low-alloy steels are fully deoxidized by the addition of silicon and aluminum, or other strong deoxidizers, which adequately protect the boron from oxidation. In addition, one or more of the elements such as titanium or zirconium are usually added, either separately or in combination with boron, in the form of complex ferroalloys, to protect boron from combination with nitrogen in the steel. However, the actual amount and type of addition employed for a given processing requirement are usually selected by trial and error, and have a rather limited range of applicability. As a result, substantial variations in the hardenability of boron-treated steels are often observed in practice, particularly when the nitrogen content of the steel is a significant processing variable. These variations might therefore be reasonably attributed to the interactions between boron, nitrogen, and titanium or zirconium present in the
Jan 1, 1969
-
Part X – October 1969 - Papers - Effects of Sulfide and Carbide Precipitates on the Recrystallization and Grain Growth Behavior of 3 pct Si-Fe CrystalsBy Martin F. Littmann
Inclusions of MnS and Fe3C have been introduced into single crystals of 3 pct Si-Fe to study their effects on recrystallization behavior and textures after cold rolling and annealing. The presence of MnS in (110) [001] and (111)[112] crystals inhibited primary grain growth and promoted secondary recrystallization but did not alter the texture significantly after annealing at 1200°C. The presence of Fe3C in (llO)[OOl] and (100)[001] crystals caused a refinement of the primary re crystallized grain size but did not promote secondary recrystallization. THE texture behavior of single crystals of 3 pct Si-Fe during deformation and recrystallization has been studied by numerous investigators. The early work of Dunn' followed by Decker and Harker2 involved relatively small cold reductions. More detailed studies of Dunn3'4 and of Dunn and Koh5'6 involved a reduction of 70 pct and recrystallization at 980°C for several crystals. Walter and Hibbard7 studied a greater variety of initial orientations and sought to relate the textures to those of polycrystalline material. Attention was focused on the nucleation process during early stages of annealing and on surface energy effects in studies by Walter and Dunn8 and by HU.9'10 One of the most extensive investigations has been reported by T. Taoka, E. Furubayashi, and S. Takeuchi.11 Most of this work has been conducted using relatively pure crystals with minimal amounts of precipi-tate-forming elements such as carbon, oxygen, sulfur, and nitrogen. Recently, however, S. Taguchi and A. Sakakura have observed that AIN precipitates can alter the recrystallization textures of rolled (100)[001] crystals.12 The present studies were initiated to determine effects of MnS and Fe3C precipitates on recrystalli-zation and grain growth behavior of rolled single-crystals of 3 pct Si-Fe. Both of these types of inclusions play significant roles in the recrystallization behavior leading to the formation of the (110)[001] or cube-on-edge texture in commercial grain-oriented silicon iron. It is well known that (110)[001] primary grains are formed by recrystallization of (110)[001] or (11 l)[ 112] crystals after cold reduction of about 60 pct or more. Crystals of these orientations, therefore, were selected for study of the effect of MnS in-clusions on grain growth. On the other hand, a major component of the texture of cold-rolled, polycrystal-line 3 pct Si-Fe is the (100)[011] orientation. The function of Fe3,C inclusions is of interest for this orientation. EXPERIMENTAL PROCEDURE The single crystals used are listed in Table I and were obtained from commercial Si-Fe alloy processed to produce (110)[001] and (100)[001] texture by secondary growth. The cube-on-edge material was 0.59 mm thick. Suitably large (110)[001] crystals 25 mm wide were selected and their orientations were determined using an optical goniometer. Etch pits for texture determination were formed by a ferric sulfate solution. The other crystals used in the study with (100)[001], (100)[011], and (111)[112] orientations were obtained from sheet which contained large grains developed from secondary recrystallization by a surface-energy driving force.13 Most crystals had a (100) plane very nearly parallel to the sheet surface and the rolling direction could be selected readily. The same sheet also contained a few crystals with (111) planes parallel to the sheet surface, these also being a result of growth by surface energy. The crystals selected from the sheet were about 25 mm wide and 0.25 to 0.28 mm thick. As shown in Table 11, the crystals already contained about 0.070 to 0.10 pct Mn. Inclusions of MnS were incorporated into crystal 36 in the following manner. The crystals were first sulfurized by holding them Table I. Initial Orientations of Crystals Crystal No. Initial Orientation Thickness, mm Special Treatment 34 (I10) [00l]* 0.59 None 36s (110) [001] 0.59 Sulfide precipitates added 30,40 (111)[Ti21 0.28 None 43s (III) [Ti21 0.28 Sulfide precipitates added 37 (100) [Oll] 0.30 None 37C (100) [01I] 0.27 Carbon added 41 (100) (01I] 0.25 None 41C (100) [OI11 025 Carbide precipitates added 42 (100) [OOl] 0.25 None 42C (100) [001] 0.25 Carbide precipitates added *Tilted 4 deg to r~ght about R.D. Table II. Compositions of Crystals Special Treatments Base Analysis ~ ______________________£________________Crys- Crystals Pct Si Pct C Pct Mn Pct S Pct N Pct Al tal Pct C Pct S 34.36 2.93 • 0.099 <0.005 - 0.0014 36S 0.011 30.37 to 42 2.78 0.0057 0.070 0.001 0.0008 0.0011 43S 0.022 37C 0.029 -41C 0.028 -42C 0.026 *Estimate 0.004 pct. Oxygen estimated <0.003 pct on all samples
Jan 1, 1970
-
Part VIII – August 1968 - Papers - Heat Transfer in Liquid Metal Irrigated Packed Beds Countercurrent to GasesBy N. Standish
Heat transfer coefficients have been measured in beds of various packings irrigated with mercury and molten fusible alloy countercurrent to hot gases. The measured coefficients for both systems were found to increase with gas velocities and liquid rates. Correlations were determined which show this dependence and also indicate that heat transfer in these systems is influenced by the liquid flow characteristics and the thermal conductivity of the gas and the solid packings. A heat transfer model has beer2 proposed which explains the various features of the experimental results. On the basis of this study, which gives an insight into the heat exchange in the melting zone of the blast furnace, it was concluded that by comparison with the furnace stack heat transfer coefficients are about 1.5 times higher in the melting zone. EACH year large tonnages of metal are produced in operations which, in part, involve liquid metal irrigation of "packings" countercurrent to hot gases. The melting zone in blast furnaces and in cupolas is a good example of packings irrigated with a liquid melt countercurrent to gases. In all instances of this kind large amounts of heat are exchanged and it is desirable to have some knowledge of heat transfer phenomena involved in these systems. So far the most common method of analyzing furnace efficiencies, fuel requirements, and the general thermal state of the furnace has been through the use of heat balances. As heat balances are essentially statements of the first law of thermodynamics they give no real indication of the factors which govern heat transfer between phases in the various zones of blast furnaces. Hence, rational improvement in production efficiency and the development of theoretical models is only possible if the heat transfer characteristics are known at every stage of the process and related to the important variables involved. This has been generally recognized for some time but it was only recently that Kitaev et al.' have produced a comprehensive treatment of heat transfer in solid-gas countercurrent systems such as the blast furnace stack and the packed bed regenerator. Using their treatment it is now possible to predict the effect of particle size, thermal conductivity, bed porosity, and the flow rates of both the gas and the solid material on the heat transfer in the blast furnace stack. However, the stack of a blast furnace is only one part of an integral unit for which the heat transfer analysis cannot be complete without also considering the heat exchange in the melting zone. The complexity of heat transfer processes in this region of the furnace has so far escaped quantitative description. Yet, the melting zone accounts for a greater amount of heat exchange than all the other zones of the furnace put together. Moreover, if the reduction of oxides in the melting zone proceeds in part in the liquid state the importance of heat transfer on furnace productivity and on the metal and slag temperatures is obvious. THEORY Heat transfer for two-phase flow in packed beds is a complex problem involving a number of heat exchange paths for which interphase areas are not known with any degree of certainty. Analytical solution is, therefore, difficult. This difficulty is emphasized by noting that Rabinovich~ and Luck have only recently solved the steady-state heat transfer for simplified two-phase heat exchangers of known area. However, useful progress can be made for the system considered by making a not unreasonable assumption that the usual heat transfer considerations apply and restricting treatment to the steady state. For these conditions the rate of heat transfer dq in a height dz of a packed bed of unit area is: dq = UaATdz [I.] Integration of Eq. [I] then gives the total heat transferred: assuming both U, the overall heat transfer coefficient, and a, the interphase area, to be independent of bed height. Since a, in these systems, is unknown it is convenient to combine this term with U. The group U, then represents the overall heat transfer coefficient on a volumetric basis. If AT is linear with q, then for a bed of unit volume Eq. [Z] can be integrated to give: is the log mean of terminal temperature differences. From Eq. [3] U, can be readily calculated as q and {AT)im are experimentally obtained quantities, but a difficulty arises in interpreting its meaning. Two approaches are possible depending on whether the effect of packing in the transfer of heat is neglected or not. If the packing is thermally decoupled then the resistance concept gives the relationship: which states that the overall resistance is the sum of the gas phase and the liquid phase resistances (assuming areas are equal throughout). Because the resistance to heat transfer in liquid metals is negligible by comparison with that of the gas,4 Eq. [4] can be simplified, i.e.:
Jan 1, 1969
-
Part IX – September 1969 – Papers - The Shape and Strain-Field Associated with Random Matrix Precipitate Particles in Austenitic Stainless SteelBy F. H. Froes, D. H. Warrington
Electron microscope evidence which indicates that TaC may precipitate at random sites in the matrix is presented. Initially the particles are almost spherical and coherent with the matrix. However, as they grow in conditions in which there are insufficient vacancies to relieve lattice strain, the particles rapidly lose coherency in two directions and continue to grow as plates with approximately the full lattice mismatch strain present perpendicular to the plane of the plate. The necessary relief of strain comes from dislocations loops which do not become visible until the later stages of aging. The rapid decrease of apparent strain to low values of appoximately 1 pct at small particle sizes arises not from a complete incoherency but from applying a model wrong for the particle shape and strain distribution. PREVIOUS work has shown that MC-type carbides may precipitate intragranularly in austenitic stainless steel on dislocations,1'2 in association with stacking faults,3'4 and randomly through the matrix,5-7 In investigations of the matrix precipitate by thin-foil electron microscopy, considerable lattice strain has been found to occur around the precipitating phase.7'8 Attempts have been made to evaluate the amount of lattice strain by using the methods developed by Ashby and brown.9,10 Values of the linear strain, much less than the 17 pct theoretical mismatch (for TaC), have been reported; it has been suggested that this is due to either a loss of coherency1' or vacancy absorption which occurs during either the initial nucleation or growth of the precipitate." This report is an extension of earlier work7 that dealt with the precipitation of TaC from an 18Cr/12Ni/ 2Ta/O.lC alloy after it had been quenched from 1300°C and aged between 600" and 840°C. In particular, the shape of the precipitate particles and the amount of strain in the matrix, due to the precipitate, have been studied. The work described here is part of a wider investigation of factors that affect carbide precipitation in austenitic stainless steel," details of which are to appear elsewhere. RESULTS The present investigation can be conveniently split into two aspects of the strain-fields surrounding the matrix particles: 1) information derived from the strain-field which indicates the shape and habit plane of the precipitate particles and 2) the magnitude and sign of the strain-field. The Shape and Habit Plane of the TaC Precipitate. In the early stages of aging twin lobes (normally black F. H. FROES, formerly at the University of Sheffield, Sheffield, England, is Staff Scientist, Colt Industries, Crucible Materials Research Center, Pittsburgh, Pa. D. H. WARRINGTON is Lecturer, Department of Metallurgy, University of Sheffield. Manuscript submitted November 1, 1968. IMD on white background, i.e., for the deviation parameter, S > 0) that indicate the strained region of the matrix define the position of the particles by bright field transmission electron microscopy. The actual particles were not detected until they were approximately 120Å diam; below this size they were too small to be imaged in the electron microscope. This meant that particle growth that had occurred before this stage had to be inferred from the matrix strain-field contrast. In all cases when diffraction effects were observed from the precipitate particles, a cube-cube orientation relationship (i.e., (llO)ppt Il<llO>matrix and {1ll }ppt {III} matrix) existed between the precipitate and the matrix. From the matrix precipitate particles lying along edge-on {111} planes (e.g., at A, Fig. I), the precipitates are seen to be plate-like with their diameter being roughly 18 times their thickness after 5000 hr at 650°C. However, the exact shape of the particles cannot be determined because of the masking effect of the strain-field contrast. If a dark-field micrograph, using a precipitate reflection, is studied, Fig. 2, a number of the projected images of the TaC particles [on the (110) foil surface] apear to have straight edges parallel to projected f111) planes. Thus, it appears that in the later stages of aging the TaC particles are plate-like with some tendency for the edges of the plate to be bounded by the matrix close-packed {ill} planes (though the general shape of the particles in the plane of the plate is circular and thus the "diameter" of the particles has a real physical significance). It should be noted that the bands of fine discrete particles observed in Figs. 1 and 2 are not the matrix precipitate discussed in this paper but are precipitates associated with extrinsic stacking faults3j4 occurring on (111) matrix planes. **£** ****** \ *x 23 Fig. 1—18/12/2~a/0.1~ alloy. Solution treated at 1300°C for 1 hr, water quenched, and aged 5000 hr at 650°C. The (112) directions shown are the traces of the e&e-on (111) planes. Foil normal [110]; operating reflection (331); bright field micrograph.
Jan 1, 1970
-
PART VI - Preferred Orientation of Beryllium Sheet Using Small Spherical SpecimensBy O. Hoover, M. Herman, V. V. Damiano
The Jetter and borie' teclznique of determining textures using a spherical specimen has been applied to tlze study of compression-rolled beryllium sheet. Snzall spheres the order of 1 mm in diam cut from the beryllium sheet were autotnatically rotated about tz41o axes using the G.E. single-crystal goniometer. Quantitative pole figures were obtained without tke need to apply absorption corrections. Compression-rolled beryllium exhibited peak intensities ,for (0002) planes of positions tilted 10 deg to the rolling plane and a near random distribution of (1010) planes about the nornal to the rolling plane. TECHNIQUES for determining textures of rolled sheet material are amply described in the literature. The techniques are found to be variations of two basic methods. One due to Decker, Asp, and arker, referred to as the transmission method, utilizes a thin-sheet specimen in which the X-ray beam enters the specimen from one side and the intensity of the beam which emerges from the opposite side is measured. The second method due to chulz,3 referred to as the reflection method, utilizes a thick specimen and the intensity of the beam emerging from the same side is measured. The two rotations of the specimen in the beam are designated a and 8. In order to completely determine the texture of sheet material, it is generally necessary to use a combination of the two methods. The calculations involved in correcting the raw X-ray data for absorption effects and the combining of the data obtained by the two methods are very laborious and time consuming. To avoid the intensity corrections which arise as a result of the changing diffraction volume and path length within the sample other methods have been proposed. The Norton method utilizes a cylindrically shaped specimen cut from the sheet material. Since the rods have rotational symmetry, the absorption correction is constant for rotations about the sheet texture. Jetter and Borie' employed a spherical specimen to analyze the fiber texture of extruded aluminum rods. The spheres were rotated rapidly about the fiber axis to include a large number of grains in the X-ray beam and changes in intensity with respect to tilts of the fiber axis were measured. The absorption correction was constant for all angles and was neglected. The Jetter and Borie' technique finds excellent ap- plication to very fine-grained low-absorbing metals in which the entire sphere volume can contribute to the diffraction volume. In the case of low-absorbing metals, however, serious limitations on specimen thickness occur as demonstrated by Braggs due to de-focussing effects. Peak shifts may occur which negate the assumption that integrated intensities are proportional to peak intensities. These limitations in sphere size to the order of 0.5 to 1 mm for beryllium require that the grain size be sufficiently small to include a large enough statistical sample. The present paper describes the application of spherical specimens less than 1 mm in diam to the quantitative determination of pole figures for compression-rolled beryllium sheet having a grain size the order of 10 p. EXPERIMENTAL 1) Specimen Preparation. Two techniques for spark-machining beryllium spheres were tried. One involved the use of a hollow cylinder as a cutting tool. The tool was fed into the rotating cylindrical specimen as shown in Fig. l(a). The hollow cylinder was carefully aligned such that the axis of the cylinder and the axis of the specimen lay in the same plane and were 90 deg to each other. As the hollow cylinder was fed into the rotating cylindrical specimen, a spherical shape was formed as shown in Fig. 1. Alignment was very critical. Slight misalignment resulted in the formation of a barrel-shaped specimen instead of a sphere. A second technique involved the use of a cutting wheel shaped as shown in Fig. 2 with a groove of the desired radius. A section of the sheet specimen was first turned into a cylinder on the left part of the cutting wheel. It was then shifted to the right and a spherical specimen was turned as shown in Fig. 2. The axis of the cylinder lay in the plane of the sheet. Flats corresponding to the rolling plane of the sheet were used to grip the specimen during the machining operation and these served to identify the rolling plane of the sphere. 2) Rotation of Spec=. The spherical specimen is shown mounted on the G.E. single-crystal goniometer in Fig. 3. The knob A of the goniometer shown in Fig. 3 rotates the specimen about the pedestal axis. These angles have been designated as @ angles. The knob B rotates the specimen about an axis perpendicular to the pedestal axis. These angles have been designated as p angles. A device was made to automatically drive the single-crystal goniometer by means of two flexible shafts connected to the A and B knobs as shown in Fig. 3. The motor system was designed to rotate the knob A, thus rotating the specimen through angles of $I while the B knob remained stationary. After one complete
Jan 1, 1967
-
Institute of Metals Division - Measurements of Surface Diffusion Coefficients on Silver Single CrystalsBy J. J. Pye, J. B. Drew
Mzasurements of the surface diffusion coefficients of metals have been made. Diffusion profiles for the Ag-Ag system were obtained by means of a radioactive point source and a precision auto-radiographic technique. The activation energy for silver self diffusion (=8.1 kcal per mole) is lower than that previously reported (-10 kcal per mole) on poly crystalline wire by Nickerson and Parker. The bresent data indicate an effect due to parasitic volume diffusion at temperatures above 500°C. RELATIVELY few measurements have been made of the surface self-diffusion coefficients of metals. Nickerson and arker' measured the diffusion of silver over the surface of poly crystalline wires and estimated that the activation energy was 10.3 kcal per mole. Winegard and chalmers2 carried out measurements on both polycrystalline and single crystal surfaces but did not report a value of the activation energy. They found, however, that at temperatures between 250" and 400°C the diffusion coefficients were on the order of lo-' sq cm per sec and that there was an acceleration of the migration of silver on the polycrystalline sample when a change of surface shape occurred. Winegard and Chalmers used an autoradiographic technique, hereafter designated ARG, and Nickerson and Parker used a surface scanning geiger counter in order to determine the diffusion profiles. More recently, Hackerman and simpson3 measured the surface self-diffusion coefficient of copper at a single temperature (750°C), and the value of the diffusivity (- 10-5 sq cm per sec) is in agreement with that given by jostein from his thermal grooving measurements. This paper reports the results of an investigation of the surface self-diffusion coefficients of silver over a large temperature range and describes the adaptation of autoradiographic (ARG) techniques for the determination of diffusion profiles obtained from a radioactive point source. EXPERIMENTAL PROCEDURE The experimental procedure is a modification of the method employed by Hackerman and simpson3 in their measurements on copper. A brief description of their technique is as follows: A radioactive needle which sinters to the surface during the diffusion an- neal serves as the source of diffusing atoms. After the diffusion run the needle is removed and the surface is scanned with a shielded counting arrangement. The diffusion profiles reported in this paper were obtained by a modification of the above procedure which employs a precision ARG technique. Previous investigations in this laboratory and elsewhere51B have shown that under carefully controlled developing conditions and by the use of calibration sources a linear relation exists between the concentration of the isotope and the photographic density for values below unity. The use of ARG under these conditions has advantages over the counter scanning method in that cumbersome shielding and requirements for great mechanical precision of the scanner are eliminated. Also the ARG gives a complete picture of the surface which is advantageous in studies of anisotropic diffusion. A recording microdensitometer having a 0.1 p wide slit was employed. At low temperatures the disturbing effects of subsurface radiations are negligible. The diffusion anneals are carried out in the cell shown in Fig. 1. The needle is formed by grinding down a 1.0 mm rod of high-purity silver until a tip of 0.2 mm radius or smaller is formed. This tip is plated withA"' which becomes the source of the diffusing atoms that are detected by ARG. The needle carrier and the crystal holder, Fig. 1 are constructed of quartz and ports are provided in the holder pedestal which allow free vapor circulation ((2.0 oz) and the carrier apron fits snugly over the crystal holder cap, insuring that the needle does not move and scratch the surface. Temperatures are provided by a stabilized tubular furnace which can be quickly positioned around the cell, thus bringing the crystal up to temperature in a time that is short compared to the diffusing times. The diffusion anneals range from 2 hr for the high-temperature samples to about 25 hr for those at the lowest temperature. The possibility of vapor transport of the radioactive metal as a contributing factor in the diffusion profile was investigated in two ways. One method was to suspend the needle directly over a dummy sample, raise the temperature, for periods of time equal to the diffusion times, and then take an auto-radiograph of the surface. Negligible radioactivity appeared. In the second method a thin slot in the crystal face on one side of the source provided a "cong path" for surface diffusion. If evaporation was the primary source of surface atoms the region of radioactivity around the source would be symmetrical. This was not the case. The profile dipped abruptly at the edge of the slot but on the other side of the source the usual diffusion profile appeared.
Jan 1, 1963
-
Institute of Metals Division - Viscous Flow of Copper at High Temperatures (Discussion, p . 1274)By A. L. Pranatis, G. M. Pound
Changes in length of copper foils of varying thickness and grain size were measured under such conditions of low stress and high temperature that it is believed that creep was predominately the result of interboundary diffusion of the type recently discussed by Conyers Herring. The surface tension of copper was calculated and results confirmed previous work within the limits of experimental error. Under the assumption of viscous flow, viscosities were calculated as a function of temperature and grain size. Predictions of the Nabarro Herring theory of surface grain boundary flow were borne out fully and the Herring theory of diffusional viscosity is strongly supported. ONLY a relatively few techniques for obtaining the surface tension of solids are presently available. Of these, the simplest and most straight forward is the direct measurement of surface tension by the application of a balancing counterforce. Thin wires or foils are lightly loaded and strain rates (either positive due to the downward force of the applied load or negative if the contracting tendency of surface tension is sufficiently greater than the applied stress) are observed. By plotting strain rates against stress, the load which exactly balances the upward pull is found and a simple calculation yields a value for the surface tension. The technique is of comparative antiquity, and solid surface tension values were reported by Chapman and Porter,' Schottky; and Berggren" in the early part of the century. Later, the filament technique became fairly well established as a method for determining the surface tension of viscous liquids, and Tammann and coworkers,'. " Sawai and co-worker and Mackh howed good agreement between the values of surface tension for glasses and tars obtained by the filament technique and by more conventional methods. With the increased confidence in the technique gained in these experiments, the method was applied to solid metals and the first reliable values of surface tension of solid metals were reported by Sawai and coworkers10' " and by Tammann and Boehme." More recently, Udin and coworkersu-'" have reported the results of experiments with gold, silver, and copper wires. Similar experiments with gold wires were carried out by Alexander, Dawson, and Kling.'" The excellent review articles of Fisher and Dunn" and of Udinl@ should be referred to for detailed criticism of the foregoing work and for discussion of underlying theory. In all the foregoing calculations, it is assumed implicitly that the material contracts or extends uni- formly along the length of the specimen and also that it flows in a viscous fashion, i.e., that strain rates are proportional to stress. For an amorphous material, such as glass, tar, or pitch, the assumptions are quite valid and good agreement is obtained with values of surface tension measured by other techniques. The values reported for metals, however, are occasionally regarded with misgiving, since it can be argued that, because of their crystalline nature, true solids can not deform in a viscous fashion. If this is true, then the results reported for solid metals over a long period of years are of only doubtful value. Thus it is clearly necessary that a mechanism be established that would explain both the viscous flow and the uniform deformation that has been assumed. Such a mechanism has been proposed by Herring."' Briefly, he suggests that, under the conditions of the experiment, deformation takes place by means of a flow of vacancies between grain boundaries and surfaces. This is a direct but independent extension of the theory proposed by Nabarro" in an attempt to explain the microcreep observed by Chalmer~.In a condensed form the Herring viscosity equation is TRL there 7 is the viscosity, T the absolute temperature, R and L grain dimensions, and D the self-diffusion coefficient. In its complete form, all constants are calculable and it includes such factors as grain shape, specimen shape, and degree of grain boundary flow. When applied to existing data, good agreement was obtained between predicted and observed flow rates. The theory received provisional confirmation from the work of Buttner, Funk, and Udin" who observed viscosities in 5 mil Au wire much higher than those in the 1 mil wire used by Alexander, Dawson, and Kling.'" More significant were the completely negligible strain rates found by Greenough" in silver single crystals. Opposed to these observations were those of Udin, Shaler, and Wulff'" who found indications of viscosity decreasing as grain size increased. Thus, complete confirmation of the theory was lacking in that the data to which it could be applied contained only a limited number of grain sizes. Hence, it was proposed that a series of experiments be carried out with thin foils of varying grain size up to and including single crystals, where, according to the Herring theory, deformation would occur only at almost infinitely slow rates.
Jan 1, 1956
-
Part XI – November 1968 - Papers - On the Temperature Effect in the Fatigue Fracture of Copper and Cu-7.9 wt pct Al AlloyBy A. R. Krause, C. Laird
In order to establish whether or not there is a real temperature effect in fatigue (independent of environment) , poly crystalline copper and Cu- 7.9 A1 alloy have been cycled at 298° and 7° K in vacuo and the fatigue lives compared with those in air and in liquid nitrogen. The lives of both copper and the alloy were found to be highly temperature-dependent in the absence of environment. This result casts serious doubt on the validity of the cell structure hypothesis for stage I crack propagation as presently formulated, because it predicts that there should be no such tempevnture dependence. On the other hand, the plastic blunling process is consistent with the result. Effects of environment aside, the homogenization of slip which accompanies testing at low temperature, and at low strains, seems to be the main cause for increased fatigue life. At high strain amplitudes, the fatigue lives of wavy slip materials, typically copper, are independent of temperature.' It is well-known, however, that low-strain lives greatly as as the temperature of testing is decreased. By contrast, the lives of planar slip materials, such as Cu-7.9 pct A1 alloy, increase to an even greater extent with decreasing temperature throughout both the high and low strain ranges.1'2'5 The mechanism of this temperature effect is associated with the earliest stages of fatigue failure,'" crack nucleation, and stage I growth,"' which is slow propagation along slip bands to the depth of a few grain diameters. Such life behavior has been interpreted on at least two different bases. On the one hand, those interested in the temperature effect at high strain amplitudes1 believe that stage I growth occurs by the plastic blunting process of crack propagation.7'9 They explain the effect in planar slip materials by the homogenization of slip* which accompanies fatigue testing at low temper- atures and serves both to delay crack nucleation and to decrease the rate of stage I propagation. On the other hand, Holt and Backofen,2 who have studied the effect in low strain fatigue, believe that stage I growth can be interpreted by a cell structure hypothesis.10-12 They have challenged2 the conclusion that there is a real temperature effect in this regime of fatigue testing and have interpreted the increased fatigue lives almost entirely in terms of the "environmental-protective'' effect of the liquid nitrogen and helium baths used to obtain low temperatures. This interpretation by Holt and Backofen2 may offer a means of discriminating between these two mechanisms as currently formulated and used to explain stage I growth. On the basis of the plastic blunting process applied to stage I crack propagation,7* the low strain fatigue lives of both wavy and planar slip materials should be increased with decreasing temperature. This follows because both materials show increased slip homogenization in this strain regime."13 Consequently, crack nucleation in intensified bands will be delayed and the linking of such small cracks into larger stage I cracks will be difficult. In addition, the blunting process required to lengthen a stage I crack from the order of 2 to 10 (where the strain concentration of the crack begins to overcome the slip homogenization property of the material) will also be retarded. These delays will give rise to longer lives in both kinds of material. In contrast to the blunting hypothesis, no temperature dependence has been predicted on the basis of the cell structure hypothesis, because it is well-known that materials cycled at low temperature show no differences in type of dislocation structure for a given strain amplitude.18"20 If the lives of wavy and planar slip materials do show a temperature dependence when the environment is eliminated as a variable, then it is questionable whether cell structures per se have a fundamental role in fatigue fracture. Accordingly, specimens of copper and Cu-7.9 wt pct A1 have been cycled at 298° and 77°K in vacuo and the fatigue lives compared with those in air and in liquid nitrogen, in order to establish whether or not there is a real temperature effect in low strain fatigue. Since it is difficult to measure the strains in specimens when cycled in vacuo, S-N curves have been used as the basis of comparison. In studying the influence of temperature on fatigue life in ordinary environment, Holt and Backofen2 used the superior basis of E-N curves. However, they also published S-N curves and thus established the relationship between E-N and S-N curves. This relationship is used to support the S-N comparison reported in the present investigation. EXPERIMENTAL Materials. The copper employed in this investigation was of 99.99 pct purity and the cu-7.9 pct A1 was prepared from metals of the same purity. The stock, of 3 in. initial diam, was reduced in size by rolling
Jan 1, 1969
-
Core Analysis - The Kobe Porosimeter and the Oilwell Research PorosimeterBy Carrol M. Beeson
Reasons are given for using a Boyle's-law porosimeter in conducting core analysis for either routine or research purposes. Among other things, it is pointed out that such a porosimeter permits the measurement of all basic properties on the same sample, thereby eliminating the sources of error inherent in the use of adjacent samples. References are made to investigations of gas adsorption on various porous materials, to show that the use of helium in Boyle's-law porosimeters reduces to negligible proportions the error due to the adsorption or desorption of the operating gas. Two Boyle's-law instruments are described. which permit accurate and rapid measurements of porosity. Schematic sketches and explanation:; are included, along with derivations of equations required in performing precise determinations. Summaries of data obtained during calibration are tabulated and analyses of the data are resented as indications of the precision and accuracy of each device. Comparisons are also shown for measurements made with each of the instruments on the same test pieces and cores. INTRODUCTION An accurate porosimeter, operating on the principle of Boyle's law. is of considerable value in the analysis of cores for either routine or research purposes. This is due primarily to the fact that the measurement of porosity with such an instrument leaves the sample free of contamination by any liquid. When used in conjunction with an extraction apparatus' for determining oil and water saturations, a Boyle's-law porosimeter permits the measurement of all basic properties on the same sample. This eliminates the sources of error inherent in the use of adjacent samples, or the necessity of determining porosity after all other properties have been obtained. Large errors may result from combining measurements made on adjacent samples in order to obtain a single property. This type of error is definitely involved when oil and water are measured with one sample, and the pore vo1ume is measured with an adjacent one. Furthermore, the source of error would be present to some extent, even if the analyst could choose the samples so they were truly adjacent from a geological standpoint. The use of adjacent samples in routine core analysis also necessarily decreases the probability of correlating core properties. For example, the chance of correlating the "irreducible" interstitial-water saturation with permeability, is bound to be greatly reduced by measuring these properties on "adjacent" samples. For research purposes, amplification is scarcely required concerning the greater flexibility of a method for measuring porosity which leaves the core free of contamination by any liquid. Even under those circumstances which require that the core be saturated with a liquid, a previous measurement of porosity with a gas is useful in determining the degree of saturation that has been attained in the process. Furthermore, for comparable accuracy, porosity usually may be determined more rapidly with a gas than with a liquid. This advantage of the Boyle's-law instrument is most outstanding when the determination time is compared with that required in obtaining porosity by evacuation of the core followed by saturation with a liquid of known density. Several porosimeters which operate on the principle of Boyle's law have been described2,3,4,5,6,7 in the literature. No comparison will be attempted between those instruments and the ones described herein. Before helium gas became readily available, Boyle's-law porosimeters were subject to an appreciable error due to the adsorption of the operating gas on the surface of the core solids. There is considerable direct and indirect evidence in the literature to support the contention that the adsorption of helium on porous solids is negligible at room temperature. In discussing the use of Boyle's-law porosimeters, Washburn and Bunting2 stated that "for most ceramic bodies dry air is a satisfactory gas, but hydrogen will be required in some instances. Helium could, of course, be employed for all types of porous materials at room temperatures or above." Howard and Hulett8 obtained evidence that the adsorption of helium was negligible at room temperatures, even on activated carbon ; for the density measured with this gas was unaffected by changes in pressure or by changes in temperature from 25 °C to 75 °C. For oil-well cores, Taliaferro, Johnson, and Dewees" obtained lower porosities with helium than with air, but apparently did not study helium adsorption. From the work of these investigators, it follows that the use of helium in Boyle's-law porosimeters reduces the error due to gas adsorption to negligible proportions. This makes it possible to construct instruments which permit the determination of porosity with (1) a high degree of accuracy, (2) with great rapidity, and (3) without contamination. THE KOBE POROSIMETER The fundamental design of the Kobe Porosimeter was developed by Kobe, Inc., which firm built about 12 of the instruments during 1936 and 1937. Since that time, seven or eight more have been constructed with their permission, making a total of about 20 that have been put into operation.
Jan 1, 1950
-
Industrial Minerals - Importance and Application of Piezoelectric MineralsBy Hugh H. Waesche
Of all the military services, the Signal Corps is the most concerned with piezoelectric minerals because of its function as a supply service to the strategic and tactical military forces. Consequently this paper is written from the point of view of one associated with that organization. The Signal Corps is responsible for the research, development, and supply of communications, radar, and components to the using services of the Department of the Army and to some extent the Other branches of the National Defense Department. Their work therefore includes the study of the sources* characteristics, and application of quartz and other piezoelectric materials. These materials have become a vital consideration in strategic planning and are essential for efficient tactical operation by all the Armed Forces. The Signal Corps at the beginning of world War 11 Was respon-sible for both Army Ground and Air Force electronic equipment. Since that time this Army service organization has probably done more in the development of frequency control devices using piezoelectric materials than any other group. The U.S. Department of the Interior, Bureau of Mines, Minerals yearbook of 1945, shows that during the four war years, 1942 through 1945, 9,598,-410 Ib of quartz crystal were imported for all uses and of this total, 5,168,000 lb were consumed to produce 78,320,-000 crystal units for electronic application. Other government records confirm these data which conclusively show that approximately 53 pct of the crystalline quartz imported was consumed in the production of electronically applied quartz crystal units. It may be assumed that some effort was made to maintain a stockpile over demands for all purposes. and this would mean that the actual percentage of quartz used electronically was considerably over the 53 pct figure. These data only emphasize that electronic application of crystalline quartz was the greatest requirement, and per- haps the actual value in this application to national defense is many times greater in importance than is apparent on first inspection. Current electronic research and development programs of the Armed Forces are planned around the fundamental use of piezoelectric minerals for frequency control and this at present, at least, means quartz. Definition and Early Development The word piezoelectricity is formed from combination of the Greek word "piezein". meaning "to press," and "electricity." It is that property shown by numerous crystalline substances whereby electrical charges of equal and opposite value are produced on certain surfaces when the crystal is subjected to mechanical stress. It appears to be intimately associated with the better known property, pyro-electricity and in fact, the two may be manifestations of the same phenomeuon. This property was discovered by Pierre and Jacques Curie in quartz, tourmaline, and other minerals in 1880 while studying the symmetry of crystals. The converse effect, that is, mechanical strain in the crystal when placed in an electrical field, was predicted by the French physicist, G. Lippman, in 1881, and verified by the Curies almost immediately. As has been the case with many discoveries of similar character in the basic sciences, not much attention was paid to this property for man)- years except as an entertaining curiosity. Between 1890 and 1892 a series of papers was published by W. voigt in which the theoretical physical properties were put into mathematical form. The first practical application of piezoelectricity occurred during World War I when professor P. Langevin of France used quartz mosaics to produce underwater sound waves. The same mosaics were used to pick up the sound reflections from submerged objects which were in turn, amplified by electronic means and used to determine the distances to such objects. This device was intended for use as a submarine detector but development was not completed in time for war service although it was used later for determining ocean depths. About the same time, A. M. Nicholson, of Bell Telephone Laboratories, developed microphones and phonograph pickups using Rochelle salt crystals. A major step in the application of piezoelectric quartz came in 1921, when professor W. G. Cady, of wesleyan university, showed that a radio oscillator could be controlled by a quartz crystal; from that date, this use of quartz has increased steadily, reaching its peak in world war 11 as is shown by the figures previously given. Essentially all American electronic equipment for communication, navigation, and radar, utilized quartz crystals for the exacting frequency control required. Crystalline Minerals with piezoelectric Properties QUARTZ Hundreds of piezoelectric crystalline materials are known, most of which are water soluble. Of these, quartz appears to be without a peer for electronic frequency control. Unfortunately, the quartz must be of superior quality. It must be free of mechanical flaws, essen-tially optically clear, free of both Brazil and Dauphiné twinning and must be, for average uses, over 100 g in weight. Because of these stringent requirements, raw quartz of the quality desired is of rare occurrence. In addition to quartz, several other naturally occurring crystalline materials are known to have the piezoelectric property and could perhaps be substituted for quartz in some applications. These
Jan 1, 1950
-
Part VII – July 1969 – Papers - Colony and Dendritic Structures Produced on Solidification of Eutectic Aluminum Copper AlloyBy Pradeep K. Rohatgi, Clyde M. Adams
Structures produced upon solidification of the eu-tectic composition (33 wt pct Cu) aluminum copper alloy have been examined as a function of freezing rate dfs /d? , the rate of change of fraction solid (fs) with time (8). Slow (dfs/d? = 0.0016 sec-1), intermediate (dfs/d? = 0.02 sec-1) and rapid (dfs/d? = 0.4 to 7.30 sec-1) freezing rates were used. The lamellar Al-Cual2 eutectic is arranged in the form of rod-shaped colonies at rapid freezing rates. The colonies are aligned parallel to the direction of heat flow, whereas the lamellae within the colonies are aligned at various angles, as high as 90 deg, to the direction of heat flow. The colony spacing (C) is proportional to the square root of inverse freezihg rate. The relationship is C = 15.5(dfs/d?)-1/2 where C is in µ and 8 is in sec. The ratio of colony spacing to lamellar spacing is greater than 20.0 and increases with a decrease in the freezing rate. A duplex dendritic structure is produced at intermediate freezing rates. A fine lamellar eutectic is arranged within the dendrites (exhibiting side branches at an angle close to 60 deg from the main stem) and a coarse irregular eutectic appears in the interdendritic regions. The duplex eutectic structure is also produced at slow freezing rates. However, at slow freezing rates there is a Platelat of CuAl2, along the center of the main stem of each dendrite and the other lamellae are arranged perpendicular to the central platelet. THE eutectic between CuA12 and a! aluminum has been reported to freeze in a lamellar form by several workers.'-3 chadwick4 has measured the interlamel-lar spacing as a function of growth rate. Kraft and Albright2 have reported on irregularities in the lamellar structures, and have proposed growth models which account for the formation of faults during solidification. In certain instances the lamellar eutectic has been found to exist in colonies. The colony formation315 has been attributed to the breakdown of a planar liquid-solid interface due to rejection of impurities. The aim of the present work is to study the structures produced from the eutectic aluminum-copper alloy under relatively fast solidification rates, such as encountered in casting and welding operations. The solid-liquid interface presumably remains planar under conditions of slow unidirectional freezing which produce lamellae aligned parallel to the direction of heat flow. The local growth velocities are the same over the entire interface and are equal to the rate of growth of the all-solid region. The spacing between the eutectic lamellae is inversely proportional to the square root of the growth rate of the all-solid region. Under the freezing conditions used in the present study, the solid-liquid interface is cellular or dendritic and the local growth velocities are different in the different regions of the interface. The relationship between the growth rate of the all solid region and the local growth velocities varies with the location and the shape of the interface. The growth rate of the all-solid region is, therefore, an inadequate parameter to describe the eutectic micro-structures which depend upon the local growth velocities. For this reason the structures have been examined as a function of freezing rate, dfs/d?, where fs is the fraction solidified at time 0. The freezing rate was varied by a factor of 4000. The relationship between the freezing rate, dfs/d?, and the growth velocit of the all solid region depends upon the specimen geometry and the shape of the interface. EXPERIMENTAL PROCEDURES The A1-33 pct Cu alloy used throughout this study was made in an induction furnace, using electrolytic copper and aluminum of commercial purity (99.7 pct), the primary impurities being silicon (0.12 pct), iron (0.14 pct), and zinc (0.02 pct). Three ranges of freezing rates were investigated: 1) A spectrum of rapid freezing rates (ranging from 0.40 to 7.30 sec-1) was obtained in arc deposits made on 2-in. thick cast plates of the eutectic alloy. The arc was operated at constant power and was made to travel at constant velocity on the surface of the plate that was in contact with the chill surface during solidification. The pool of liquid metal formed under the moving tungsten arc solidified rapidly by heat extraction through the unmelted plate. Conditions of unidirectional heat flow were achieved near the fusion zone interface, especially in the center of the arc deposits. The great advantage of the arc technique is that rapid cooling and freezing rates can be varied in a qualitative way. The correlation between the arc parameters and the solidification rate is given by the following relationship:6-8
Jan 1, 1970
-
Coal - Convertol ProcessBy W. L. McMorris, A. H. Brisse
IN the last several years the coal industry has intensified its effort to solve the growing problem of cleaning and recovering fine mesh coals. On one hand these has been increasing civic pressure for cleaner streams, and on the other hand there has been increasing production of fine mesh coal, resulting directly from adoption of the modern mining methods so essential to the economy of the coal mining industry. Cleaning fine coal with the same precision possible with coarser coals is a difficult task, and for coals finer than 200 mesh it has been impractical. Furthermore, the inclusion of —200 mesh material in the final product markedly increases costs of de-watering and thermal drying, which are necessary steps if coal is to meet market requirements. Consequently these extreme fines have generally been wasted. As a result, problems have been created in many districts because there has not been enough area for adequate settling basins. Wasting of coal in the -200 mesh slimes may account for a loss in washer yield equivalent to 2.0 to 2.5 pct of the raw coal input. With rising mining costs the value of such a loss is constantly increasing and a need for a better solution to the fines problem becomes more pressing every day. From an operating viewpoint, also, continuous removal of extreme fines from the washing plant circuit permits good water clarification practice, improving significantly the overall cleaning efficiency. The obvious desirability of recovering a commercially acceptable coal from washery slimes prompted U. S. Steel Corp. to investigate the merits of the Convertol process developed in Germany." Although this process has been used commercially in Europe for some time, little if any consideration has been given to its possible adoption in the U. S. until very recently. Fundamentals of the Convertol Process: In the Convertol process, droplets of dispersed oil are brought into intimate contact with the solids suspended in the coal slurry to be treated. This contact causes oil to displace the water on the surface of the coal by preferential wetting, or phase inversion, after which the coal particles are allowed to agglomerate in a manner permitting their re- moval from the slurry by centrifugal filtration. The clay and other particles of mineral matter suspended in the slurry do not have the affinity for oil the coal particles have. Consequently the oil treatment is preferential to coal to the extent that more than 95 pct of the oil used reports with the clean coal recovered. Figs. 1 through 3 will clarify the steps involved in the process. Fig. 1 shows the suspended material in the slurry to be treated, which is a thickened product containing 40 to 45 pct solids. Oil is now injected into the slurry under vigorous agitation to produce good oil to coal contact conditions, which result in preferential oiling of the coal particles. These coal particles are then permitted to agglomerate by gentle stirring in a conditioner to form flocs, as shown in Fig. 2. At this point in the process the agglomerated oiled coal can be washed and partially dewatered on a vibrating screen, as shown in Fig. 3. Finally, the washed flocculate can be further dewatered in a high-speed screen basket centrifuge or in a solid bowl centrifuge. Commercial Application of the Convertol Process in Germany: The original Convertol process was developed by Bergwerksverband zur Verwertung von Schutzrechten der Kohlentechnik, G.m.b.H., a German research organization controlled by the Coal Operators Assn. of the Ruhr Valley. The process as reduced to commercial practice in Germany' is shown in Fig. 4. In this process a thickened slurry (40 to 45 pct solids) mixed with a predetermined percentage of oil is fed from a surge tank to the phase inversion mill. After the phase inversion step, the slurry is usually discharged directly to a highspeed screen centrifuge. From 3 to 10 pct oil is used, depending on type of oil, size consist of coal to be recovered, and operating temperature. The top size of fine coal cleaned in Germany by the Convertol process is limited by the size of the openings in the centrifuge screen basket. Any mineral matter coarser than the basket opening, which is generally 60 to 80 mesh, must remain with the oiled coal. If the coal fines have been effectively cleaned down to about 80 mesh, the cleaning performance of the process is practically unaffected by the presence of coarse coal particles. However, since recovery of coal much coarser than 80 mesh is mow economical by conventional methods, it normally becomes more costly to allow substantial percentages of this coarse coal in Convertol process feed. Where the general plant layout does not permit effective cleaning of coal sizes down to 80 mesh or lower. there is some justification for a coarser Con-
Jan 1, 1959
-
Producing–Equipment, Methods and Materials - Use of Oxygen Scavengers to Control External Corrosion of Oil-String CasingBy F. W. Schremp, J. W. Chittum, T. S. Arczynski
This paper describes a laboratory study of causes of external casing corrosion and the test work that led to the use of oxygen scavengers to prevent this attack. External casing failures are classified as water-line, casing-casing, collar and body failures. A corrosion mechanism based on principles of differential oxygen availability is developed that is consistent with facts known about each kind of failure. The field use of oxygen scavengers is depicted as a direct result of the laboratory study. A part of the paper is devoted to reporting on the field use of hydra-zine to control external casing corrosion. Results of field measurements made over a period of several years are presented as evidence of the efectiveness of the hydrazine treatment. The first conclusion reached is that the use of hydrazine materially reduces the cathodic protection requirements for treated wells. This result is interpreted to mean that a reduction is taking place in the amount of corrosion on the casing. Results indicate also that hydrazine shows its greatest usefulness within the first 12 to 18 months after a well is completed when pitting corrosion is likely to be most active. INTRODUCTION According to surveys sponsored by the National Association of Corrosion Engineers,' the cost of repairing casing leaks caused by external corrosion may exceed $4 million per year. In addition, well damage and lost production resulting from casing leaks probably costs the petroleum industry an additional $5 to $6 million per year. Concern about the cost of external casing corrosion led to an extensive laboratory study of factors causing this external corrosion and to the development of a new approach to its prevention. This paper presents a discussion of various causes of external casing corrosion, details of laboratory studies and the results of the field use of an oxygen scavenger in well cementing fluids to prevent the external corrosion of oil-string casing. Measurements on test wells over a period of several years show that cathodic-protection current requirements are greatly reduced when hydrazine is used in cementing mud. Reduction of current requirements can be interpreted to mean that removal of oxygen by hydrazine has greatly suppressed corrosion cells on the external surface of the casing and thereby, has reduced corrosion. To date, hydrazine has been used by the Standard Oil Co. of California in more than 200 well completions. KINDS OF CASING FAILURES A survey of a large number of casing leaks disclosed four types of external casing failures — water-line, casing-casing, collar and body failures. These types are identified largely by their location on the casing. Water-line failures are found just below the surface of water or mud in the casing annulus. Casing-casing failures occur on the oil string just below the shoe of the surface string. Collar failures are found in the threaded ends of casing joints where they are screwed into casing collars. Body failures may occur at any point on the body of a casing joint. Ex- amples of each kind of failure have some of the general characteristics that are shown in Fig. 1. Water-line failures usually result in the circumferential severance of an oil-string casing. The corrosive action causing a water-line failure usually is sharply defined and is limited to a short length of the casing. Casing-casing failures usually are accompanied by pitting corrosion distributed around the oil-string casing for distances up to 100-ft below the shoe of the surface string. Casing-casing failures may also sever the casing. Collar failures seem to start on the first thread at the bottom of recesses between collar and casing joint. Corrosion proceeds across the threads by what appears to be a normal pitting mechanism. Both casing and collar are severely attacked. Body failures are the result of highly localized pitting at any point on a casing wall. Besides the pit that perforates a casing, a large number of other pits usually are found along one side of the casing joint. The pits occasionally are filled with corrosion products consisting largely of oxides and sulfides.' Frequently, the mill scale is largely intact on the rest of the casing. Examination of a casing failure does not always reveal the cause of the failure. Frequently, the necessary details are destroyed when the failure occurs. For example, formation water flowing through a perforation at high velocity may enlarge the hole and destroy any remaining evidence of the cause of the failure. One way to obtain undistorted information about a failure is to study the nature of other pits on the casing in the vicinity of the failure. A study of such pits frequently suggests that they are characteristic of an attack resulting from the differential availability of molecular oxygen.
-
Part IX - Papers - Thermodynamics of Iron-Platinum AlloysBy Emerson F. Heald
A systematic study was made of new and old data on chemical activities in Fe-Pt alloys at elevated ternperatuves. Experimental results may be expressed in terms of the excess free energy using Least-squares analysis of the data gave the following values for the constants: for the temperature range 1130° to 1350°C, and tentatively to 155O°C, B = -3.326564 and C = 0.221051; for the temperature range 650" to 850°C, B = -2.555690, C = 1.762735, and D =0.097196. In the study of iron-containing silicate systems, it is sometimes desirable to have a direct experimental measure of the activity of iron in the system. The well-known solubility of iron in platinum, often a headache in experimental work on iron compounds under reducing conditions, can be used to advantage in this respect. If the activity of iron in an Fe-Pt alloy in equilibrium with the silicate is known as a function of the composition of the alloy, chemical analysis of the alloy will give a knowledge of the activity of iron in all of the phases in the system. The present study was undertaken in order to elucidate the characteristics of Fe-Pt alloys as iron activity indicators. This work is intended to tie together some previous work, which may be summarized as follows. Larson and Chipman1 determined the activity of iron in Fe-Pt alloys at 1550°C by equilibrating platinum metal with calcium oxide-iron oxide-silica melts of known iron activity. Compositions of the resulting alloys were determined by chemical analysis. A similar study was carried out by Taylor and ~uan,' who worked at 1300°C. They brought the Fe-Pt alloys into equilibrium with iron oxide under conditions of known partial pressure of oxygen, and thus, from the work of Darken and ~urr~,~ conditions of known iron activity. Compositions were determined indirectly, by following the change in weight of the sample. Sundaresen et el* used the electromotive force of cells in which the alloy formed one electrode in order to measure the activity of iron in the alloy at 650" and 850°C. These temperatures were chosen to be above and below the first-order phase transition which takes place upon the ordering of Fe3Pt and the second-order transition which occurs upon the ordering of FePt3. EXPERIMENTAL 1) High Temperatures. The starting materials used were thin platinum foil, about 0.002 mm thick, and Fisher Certified reagent ferric oxide, Fez03, which had been heated for 24 hr at 1000°C. An intimate mixture of 80-mesh Fez03 and platinum platelets was placed in a thin platinum foil envelope. The latter was suspended from thin platinum wires in the hot zone of a vertical-tube, platinum-wound furnace of the type described by Muan and ~sborn.~ A capillary gas mixer similar to that used by Darken and Gurry3 was used to prepare a precisely known mixture of carbon dioxide and hydrogen, which was allowed to flow upward through the furnace tube. The partial pressure of oxygen in contact with the sample was thereby fixed at a value which was calculated from the charts prepared by porter? Temperatures were measured with a Pt-10 pct Rh-in-platinum thermocouple, which was calibrated using the melting points of gold (1062 .@C) and diopside, CaMgSizOB (1391.5"C). Temperature control was maintained to within i3"C with a Geophysical Laboratory proportional controller, using the furnace resistance as the sensing element. Samples were quenched by passing a small current through the platinum suspension wires, allowing the sample to drop into a bath of dibutyl phthalate at the bottom of the furnace tube. Prior to chemical analysis the samples were washed with acetone and dried. 2) Chemical Analysis. It proved possible, in almost all cases, to separate the Pt-Fe platelets physically from particles of iron oxide. The platelets were dissolved in a small volume of aqua regia, evaporated to dryness, and redissolved to 0.1 M HC1. In order to determine iron in the platinum alloy potentiometrically, it is necessary first to remove the platinum. A 10-cm column of Amberlite IR-120 cation exchange resin in the hydrogen form provided separation quickly and quantitatively: The mixture of iron and platinum in 0.1 M HC1 was added to the top of the column, and washed with about 100 ml of 0.1 M HC1. Under these conditions, the iron, principally in the form of cations such as FeC1" and FeCl;, is held quantitatively in the uppermost centimeter of the column. The platinum, in the form of anions such as PtC&- , is washed through without being adsorbed. After a qualitative test with stannous chloride indicated all of the platinum was removed, the iron was
Jan 1, 1968
-
Minerals Beneficiation - Energy Transfer By ImpactBy P. L. De Bruyn, R. J. Charles
THE transfer of kinetic energy of translation into other forms of energy by impact is a fundamental process in most crushing and grinding operations. During and after the impact process the original source energy may be accounted for in any of the following possible forms: 1) Kinetic energy of translation of both the impacted and impacting objects. 2) Kinetic energy of vibration of the components of the impact system. 3) Potential energy as strain energy of the components of the system or in the form of residual stresses. 4) Heat generated by internal friction during plastic deformation or during damping of elastic waves. 5) New surface energy of fractured materials. At any instant during the impact process only the strain energy of the components of the system can contribute directly to the brittle fracture process. If fracture is the desired result, as in comminution, it would seem advantageous to choose or arrange the conditions of impact so that a maximum amount of the original kinetic energy could be converted to strain energy at some moment during a single impact. The present work deals with determination of these desirable conditions for a simple case of impact and application of the principles involved to general cases of impact. Experimental Method: Longitudinal impact of a rod with a fixed end was chosen as the impact system for investigation. The rod was mounted horizontally and the fixed end was formed by butting one end of the rod against a rigidly mounted steel anvil. The rod, of pyrex glass, was 10 in. long by 1 in. diam with both ends rounded to a 6 in. radius. The rounded ends permitted reproducible impacts on the free end of the rod and assured a symmetrical fixed end. Pyrex was selected as the rod material because of the marked elastic properties of such glass and the similarity of fracture between pyrex and many materials encountered in crushing and grinding operations. The frequency of natural longitudinal oscillation of the rod was 10 kc, and thus simple electronic equipment could be used for observation of strain changes occurring in the rod at this frequency. As shown in Fig. 1, impacts on the free end of the rod were obtained either by a pendulum device or by a spring-loaded gun. Relatively heavy hammers (100 to 600 g) of mild steel were used in the pendu- lum impacts, while fairly light projectiles (20 to 80 g) were fired from the spring-loaded gun. One of the main objects of the experimental work was to obtain the strain-time history of the rod as a function of the mass and kinetic energy of the impacting hammers. For this purpose a technique involving wire resistance strain gages and a recording oscilloscope was employed. Five gages were applied at equidistant sections along the rod, and by means of a switching arrangement the strain-time history at any section, and for any impact, could be obtained in the form of an oscillograph with a time base. The equation relating strain and voltage change across a strain gage through which a constant current is flowing is as follows: e = ?v/iRF [1] ? = strain, ?v = voltage change, i = gage current, R = gage resistance, and F = gage factor (from manufacturer's data — SRA type, Baldwin Lima Corp.). With the above equation an oscillograph depicting voltage change vs time on a single trace can be converted directly to a strain-time diagram if a calibration of the vertical response on the oscilloscope screen for specific voltage inputs is available. In the present case the calibration was obtained by photographing precisely known audio frequency voltages on the same oscillograph as that on which a voltage-time trace from a strain gage had been made. Synchronization of the beginning of the single trace with the beginning of the impact was accomplished by permitting contact of the impacting objects to close an electrical circuit from which a voltage pulse, sufficient to initiate the trace, was obtained. The struck end of the rod was lightly silvered for purposes of electrical conduction so that it would form one of the electrical contacts. Markers every 100 micro-seconds on the traces served for a time base calibration. Determinations of the kinetic energies of translation prior to impact were made in the case of the pendulum hammers by measuring the height of fall of the hammer and in the case of the projectiles by measuring the exit velocity from the gun barrel by means of an electrical circuit employing light sources, slits, and phototubes.' During the experimental work it became evident that the time of contact between the impacting object and the rod was an important variable in the impact process. Measurements of the times of contact were made, therefore, for every impact for which a strain-time record was obtained. The time of contact was determined by permitting the impacting components, when in contact, to act as a closed switch and discharge a condenser at relatively constant voltage. The discharge was observed and photographed with a time base on the oscilloscope screen.
Jan 1, 1957
-
Part X – October 1968 - Papers - High Damping Capacity Manganese-Copper Alloys. Part 1-MetallographyBy P. M. Kelly, E. P. Butler
Four Mn-CLL alloys, containing 60, 70, 80, and 90 pct Mn, respectively, have been examined in the quenched and the quenched and aged conditions using electron microscopy and electron, neutron, and X-ray diffraction. After certain heat treatments the alloys transform from fee to fct and in the tetraom1 condition show a domain structure parallel to {101} planes. Neutron diffraction indicates that the domains are antiferrornagnetically ordered. The domain boundary contrast has been examined using bright- and dark-field microscopy, and the contrast effects observed under favorable conditions have been used to deduce the c axis orientation in each domain. The domains are extremely mobile and can be nucleated at precipitate particles and screw dislocations. The domain mobility is responsible for the high damping capacity. In the aged material a Mn precipitates in the Kurdjumov-Sachs orientation and results of both electron microscopy and neutron diffraction indicate that the matrix separates into two components—one rich in manganese and the other rich in copper. ALLOYS of manganese and copper have the unusual combination of a high damping capacity and good mechanical properties and have been the subject of a number of investigations as part of a general interest in high damping capacity alloys for engineering purposes.',' SO far, however, there has been no reported electron metallographic study of these alloys. The Mn-Cu system has an extensive range of solid solubility at high temperatures, and the equilibrium phases are expected to be y (fee) and a Mn. The high damping capacity is associated with a metastable tetragonal structure of variable c/a ratio, which forms from the high-temperature y phase. This latter phase becomes more difficult to retain as the manganese content increases, and alloys containing more than 82 wt pct Mn undergo a reversible martensitic fcc — fct transformation on quenching. The X-ray work of Basinski and christian3 showed that the Ms temperature for the transformation was below room temperature for alloys in the range 70 to 82 pct Mn and increased linearly with manganese content. When quenched from the y region, alloys in the range 50 to 82 pct Mn are cubic at room temperature, but become tetragonal if aged at temperatures between 400" and 600°C. The martensite transformation occurs on cooling from the aging temperature. Tetragonal alloys have a banded microstructure and the bands analyze to be traces of (110) planes. Similar microstructures have been observed in In-Tl4 and in other manganese-base systems, such as Mn-Au5 and Mn-Ni.6 The mobility of the bands in Mn-Cu alloys can be demonstrated by optical examination of a polished specimen surface subjected to a cyclic stress.7 The bands appear and disappear as the stress is varied, and X-ray measurements of the (200,020) and (002) peak intensities confirm that a reversible reorientation of the tetragonal structure occurs. Meneghetti and sidhu8 investigated the magnetic structure of Mn-Cu alloys and found antiferromagnetic ordering in furnace-cooled alloys of composition >69 at. pct Mn. Magnetic super lattice reflections occurred at the (110) and (201) positions and the proposed structure was fct with the spins along the c axis. A more complete investigation by Bacon et al.9 confirmed this structure. The magnetic ordering temperature Tn was found to increase linearly with manganese content in the same way as the Ms temperature, and at any composition, Tn > Ms. This relationship suggested that the magnetic ordering was responsible for the cubic — tetragonal transformation in the manganese-rich alloys. The purpose of this investigation was to study the mechanism of high damping and the structural changes that occur on aging. The main technique used was transmission electron microscopy, but X-ray and neutron diffraction experiments were also carried out. EXPERIMENTAL Materials and Heat Treatment. The four alloys, provided by the Admiralty Materials Laboratory. were of nominai composition 60, 70, 80, and 90 Mn and all had low impurity levels, <0.05 pct C, <0.2 pct Fe. This material was cold-rolled to 200-µ strip with intermediate annealing and then given a final heat treatment of 24 hr in the range 800° to 900°C followed by water quenching. An identical heat treatment was given a length of 3/4-in.-diam bar of the 70/30 alloy from which the neutron diffraction specimens were machined. It was suspected that the tetragonal structures would be metastable at room temperature, and so the alloys were not aged until required for experiments. After aging in a salt bath the alloys were water-quenched. Thin Foil Preparation. Initial thinning to 50 to 75 µ was possible in a solution consisting of: 50 ml nitric acid 25 ml acetic acid 25 ml water The surface deposit and grain boundary etching was removed by a final electropolish at around 20 V in an electrolyte consisting of:
Jan 1, 1969
-
Geophysics - Work of the Geochemical Exploration Section of the U. S. Geological SurveyBy T. S. Lovering
GEOCHEMICAL prospecting extends the age-old method of searching out lodes with a gold pan and rationalizes the prospector's hunch that certain plants are associated with ore. It uses sensitive but cheap and rapid analytical methods to find the diagnostic chemical variations related to hidden mineral deposits. Exploration geologists can gain tremendous assistance from this new tool, although its optimum use is not simple. To bring out the geochemical pattern that reveals the presence of a hidden ore deposit with a minimum number of samples requires a combination of shrewdness, chemical knowledge, and exploration geology. The use of sensitive analytical methods for prospecting had its start in the 1930's in northern Europe, where Scandinavian and Russian geologists had some success in these early efforts. Very little geochemical prospecting was carried on in the United States at this time, and no sustained interest was manifest until the close of World War 11, when geochemical investigations were started by the Mineral Deposits Branch of the U. S. Geological Survey. The purpose of these investigations was to apply geochemical principles and techniques to surface exploration for mineral deposits. Both the research on analytical methods and the routine trace analyses for field investigations were at first conducted by a single group, but it later became apparent that the trace analyses could be done by men of less experience than that required for successful research on methods. For the past several years there have been two groups of chemists, and although their functions overlap, three of the chemists are chiefly concerned with research, while four to six other men make the trace analyses for field projects. The chemical investigations, as well as the field projects of the Geochemical Exploration Section, concern only those phases of the subject that are appropriate to a government organization; every effort is made to help private industry, but not to compete with it, in finding orebodies. The chief aim of the Section, therefore, is to develop new analytical techniques and publish the results promptly, to carry out field investigations of the fundamental principles of geochemical dispersion, and to field test promising- techniques under controlled conditions. Some routine geochemical exploration work is carried on in connection with DMEA loans, and in district studies where the project chief wishes geochemical information on certain areas for his report. It should be emphasized, however, that geologists of the Geochemical Exploration Section are primarily concerned with fundamental principles underlying the distribution, migration, and concentration of elements in the earth's crust. To facilitate the use of geochemical methods the USGS has published much information on its methods of analysis and has provided opportunities from time to time for qualified professional personnel to study these methods, to work in the USGS laboratory, or to attend demonstrations of the analytical techniques at the Denver Federal Center. Typical of the research carried on are the problems now being investigated: 1) Development of rapid and sensitive analytical methods suitable to the determination of traces of metals and other minor elements in various materials, such as rock, soils, plants, and water. At the present time attention is being concentrated on U, Bi, Cr, and Hg, and satisfactory rapid trace analytical methods are virtually perfected for U and Bi. Good methods are also available for: Cu, Zn, Pb, Ni, Co, As, Sb, W, Mo, Ag, Nb, Ge, V, Ti, Fe, Mn, S, and P. 2) The relation of geochemical anomalies in plant materials to the geochemical distribution of elements in soils surrounding the plant. 3) A study of the dispersion halos in transported sedimentary cover such as glacial drift and alluvium over known orebodies. 4) A study of the behavior of ore metals in the weathering cycle. 5) A study of the behavior of the ore metals during magmatic differentiation. This requires a study of the distribution of minor metals in fresh igneous rocks and their component minerals in a well established differentiation series and in adjacent country rock. 6) A study of the dispersion of metals in primary halos in the wall rock surrounding orebodies. 7) Regional and local studies of the metal content of surface and groundwater in mineralized and barren areas. Many field projects of the Mineral Deposits Branch also require the services of USGS chemists during their investigation of the geochemical environment of ore deposits. From the work that has been done certain general principles have emerged. Concentrations of an element that are above the general or background value of barren material are called positive geochemical anomalies or simply an anomaly, whereas values less than background are called negative anomalies. The anomalies most commonly investigated in geochemical prospecting are those formed at the earth's surface by agents of weathering, erosion, or surficial transportation, but more and more attention is being given to primary anomalies found
Jan 1, 1956
-
Part II – February 1968 - Papers - The Effect of Deformation on the Martensitic Transformation of Beta1 BrassBy V. Pasupathi, R. E. Hummel, J. W. Koger
Specimens of P1 brass were plastically deformed at room temperature to various degrees of deformation and subsequently cooled in order to transform them to low-temperature martensite. Deformation shifts Ms. A, , and the temperature of minimum resistivity to lower temperatures, and also decreases the temperature coefficient of electrical resistivity. These properties change rapidly up to about 15 pct reduction but vary very little with higher deformation. The possible relationships between martensite formed by deformation and the M, temperature of low-temperature martensite are discussed. Evidence is given that deformation martensite delays the formation of low-temperature martensite. BETA' brass undergoes at least two different types of martensitic transformations. One of these transformations (B1- B2) was first observed by Kaminski and ~urdjumov' and occurs when 81 brass with a zinc content between 38 and 42 wt pct (quenched from the single-phase region) is cooled below room temperature. Jollev and Hull' determined the structure of 0" from X-ray and electron-diffraction data as ortho-rhombic. Kunze came to the conclusion that the super-lattice cell of 0" is one-sided face-centered triclinic (pseudomonoclinic). The second martensitic transformation (B1-A1) occurs when the specimens are deformed at or somewhat above room temperature. This type of martensite will be called deformation martensite. Horn-bogen, Segmuller, and Wassermann4 determined the structure of deformation martensite to be bct. (An intermediate phase, az, occurs before the final phase appears.) At deformations higher than 70 pct, a, transforms into a.4 A critical temperature Md exists above which no transformation occurs during deformation and is estimated to be around 400°C in P1 brass.5 This martensite has elastic properties.6 When the sample is stressed, martensitic plates appear; when the stress is released, the plates disappear. The present paper studies the effect of deformation martensite on the formation of low-temperature martensite. The experiments involved samples of 8, brass which were plastically deformed by various amounts and were subsequently cooled below the transformation temperature. EXPERIMENTAL PROCEDURE The 13 brass investigated was made from 99.999 pct pure copper and 99.9999 pct pure zinc and contained 38.8 wt pct Zn. The specimens, consisting of foils 0.1 mm in thickness, were heat-treated at 8'70°C for 15 min in an argon atmosphere and then quenched into ice water. They were then deformed by cold rolling and subsequently cooled at a rate of 1°C per min. The martensitic transformation that occurred during cooling was followed by electrical resistivity measurements. The resistance measurement technique and its accuracy have been described in a previous paper. Because the transformation 81 —-8" occurs below room temperature, the samples were placed in a cryo-stat which contained isopentane as a cooling medium. The isopentane was cooled by liquid nitrogen pumped under pressure through a 15-ft coil of copper tubing which was immersed in the isopentane. The nitrogen flow was regulated by a temperature controller using two thermistors in the cooling medium. The cryogenic liquid could be heated with an immersion heater. The useful temperature range with this device was from +25° to approximately -155~C. EXPERIMENTAL RESULTS Resistivity Measurements. The following abbreviations are used in this paper to label the characteristic temperatures during the martensitic transformation. M, is the starting point of the martensitic transformation and is defined as that temperature where the resistivity vs temperature curve on cooling first deviates from a straight line. Mf is the temperature at which the martensitic transformation is completed. On reheating, the transformation from martensite to the parent phase starts at a temperature A, and ceases at a temperature Af. Fig. 1 presents five different resistivity vs temperature curves corresponding to the transformation of brass from Dl to 8" after different degrees of reduction in thickness. The following observations can be made from these curves. 1) With increasing degree of deformation the Ms temperature is shifted to lower temperatures. This shift ranges up to 35°C compared to the undeformed state. This is also indicated in Fig. 2, where AM, (the shift of Ms, compared to the undeformed state) is plotted vs the degree of deformation. AM, increases rapidly until a reduction of about 15 pct is reached. With higher deformations, no additional increase in AM, was found. 2) With increasing degree of deformation the temperature of minimum resistivity (M) is also shifted to lower temperatures. The shift, attains a maximum of about 61°C compared to the undeformed state. In Fig. 3, AM is plotted as a function of deformation. It can be seen that, as in 1 above, AM increases rapidly and no further shift of M occurs for deformations greater than 15 pct. 3) The temperature coefficient of resistivity, is given by the slopes (dp/dT) of the linear portions of
Jan 1, 1969