Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Part VII – July 1969 – Papers - Dynamic X-Ray Diffraction Study of the Deformation of Aluminum CrystalsBy Robert E. Green, Kenneth Reifsnider
Several experiments have been performed in order to illustrate the application of a recently developed X-ray image intensifier system to metallurgical investigations. In the present work the system has been used to study the instantaneous alterations in Laue transmission X-ray diffraction patterns during tensile deformation of aluminum single crystals. Expem'mental results are presented which demonstrate the capability of the system for crystal orientation, for following orientation changes due to lattice rotation during tensile deformation, and for showing changes in the homogeneity of the lattice planes along the specimen length as a function of strain rate. RECENTLY, a new X-ray system has been developed which incorporates a cascaded image intensifier and permits direct viewing and recording of X-ray diffraction patterns produced on a fluorescent screen.1"3 In the present work the results of several experiments are presented which demonstrate the usefulness of this system for metallurgical applications. EXPERIMENTAL PROCEDURE A schematic diagram of the experimental arrangement is shown in Fig. 1. In this system a Machlett AEG-50-S tungsten target X-ray tube, normally operated at 50 kv and 40 ma, serves as the X-ray source. The X-ray tube is placed in direct contact with a 10-in.-long collimator, which transforms the X-ray beam from one with a circular cross section to one with a rectangular cross section 3 in. high and 1/6in. wide. By blocking off all but a small portion of the rectangular slit, it is possible to work with the more conventional "pinhole" collimated X-ray beam commonly used for obtaining Laue diffraction patterns. In the present work the test specimens were 99.99+ pct aluminum single crystal wires & in. in diam and 3 in. long. For the deformation tests the wire crystals were mounted in a special set of grips in a table model Instron machine so that diffraction patterns could be recorded during specimen deformation. For the orientation tests the wire crystals were mounted in a rotating goniometer so that diffraction patterns could be recorded during specimen rotation. At a distance of 3 cm from the specimen axis, a 6 in. diam DuPont CB-2 fluorescent screen is positioned to transform the X-ray image to a visible one. A Super Farron f/0.87 72 mm coupling lens, corrected for 4 to 1 demagnification, transmits the visible image to the image tube. The image intensifier used is a three-stage magnetically focused RCA type C70021A with an S-20 input photocathode and a P-20 output phosphor. The tube has unity magnification and useful input and output screen diameters of 1.5 in. The image on the output phosphor is of sufficient intensity to be viewed directly, to be recorded cine-matographically, or to be displayed by vidicon pick-up on a television monitor. The recording device most commonly used is a 16 mm Bolex motion picture camera fitted with a Canon f/0.95, 50 mm lens. The overall gain of the system is 16,000 for direct viewing and 2240 for recording on 16 mm movie film. The resolution of the system is limited to 1 line pair per mm which is approximately that of the fluorescent screen. This system has been used for cine recording of transmission Laue X-ray diffraction patterns with exposure times as short as 1/220 sec and for vidicon television pick-up and display at a scan time of 1/30 sec. Quantitative information may be obtained from each frame of the movie film, by either stopping the vertical slit down to a point source in order to obtain a conventional Laue photograph or else by retaining the linear beam and introducing fiducial marks as described in a previous paper.4 In either case, each frame may be enlarged to appropriate size for analysis by either using a photographic enlarger and making prints of the desired frames, or, more conveniently, by using a microfilm reader. EXPERIMENTAL RESULTS The first series of photographs which are presented in Fig. 2 serves to demonstrate the usefulness of the system for crystallographic orientation determination. This series of prints, made from enlargements of a 16 mm movie film, shows the dynamic Laue transmission patterns produced by an aluminum single crystal wire which was rotating about the wire axis when the patterns were recorded. The movie films were taken at 16 frames per sec and the crystal was rotated at a rate of 15 rpm.
Jan 1, 1970
-
Geophysics and Geochemistry - Some Problems in Geothermal ExplorationBy T. S. Lovering
The use of geothermal energy is expanding very rapidly. This type of energy has proven commercially profitable for generation of electricity, for space heating, process heating, auxiliary heating of water in conventional steam power plants and for recovery of chemicals contained in natural hot water and steam. Two types of geothermal energy sources are recognized: 1) hot springs in regions of nearly normal heat flow that tap a deep reservoir through which water moves slowly to a hot springs conduit and then rapidly to the surface; 2) hyperthermal areas in which the water is heated by a relatively concentrated heat source related to volcanicity. If there is a geologic trap that provides a geologic analog to a steam boiler, as at Larderello, Italy, the hyperthermal area will have a convecting system that develops superheated water at relatively shallow depth and may provide natural steam in large quantities. If a hyperthermal area is to be productive for a long time, the underflow into the reservoir should be slow enough to allow the heat source and convective system to heat the underflow to the working temperature, and the production rate must not exceed this rate of underflow. A model based on a typical aquifer suggests that the rate of movement of water through the reservoir be such that a few years are spent in transit between isotherms that are spaced about 2°F apart. The possibility of finding blind geothermal areas is illustrated by discussion of the techniques developed in evaluating the subsurface temperatures in the East Tintic district of Utah where a map of isotherms at water level (2000 to 2000 ft below the surface) shows that a hyperthermal area may exist a short distance southeast of the mining district. Very nearly all of the energy that man currently uses comes ultimately from the sun's radiation. This includes water power, fuels such as wood, peat, coal and petroleum, the wind and all our animal power. In the paper summarizing a conference on solar energyl6 the average amount of solar energy received daily on the earth is taken at about 1 cal per m2 per min or slightly less than 2 pcal per cm2 per sec; this is almost exactly the amount of energy on the average that the earth liberates in regions of normal geothermal gradient due to its own internal heating. In many places, however, the energy released is many times the average and in some of these hyperthermal areas, geothermal steam is used for generation of electricity, and hot springs are used for heating buildings and private dwellings, process heating, auxiliary heating of water in conventional steam power plants, and chemicals may be recoverable from both hot water and steam. The use of hot springs waters for heating houses goes back hundreds of years but until recently was confined to a few dwellings close to the hot springs. In Korea, some houses had hot spring water channeled through conduits in the floor centuries ago and thus the Koreans can be credited with pioneer development of radiant heating. In Iceland at present nearly a third of the population uses natural thermal water for domestic heating." The Reykjavik system pipes hot spring water at about 94°C throughout the city and has devised insulated double pipes that allow the water to be piped for some 25 km with a drop of only 1°C for every 5 km. The actual cost to the Icelandic consumer is only one-third the cost of heating by imported coal and yet the industry is one of the most profitable in Iceland. The most profitable use of geothermal energy has been its conversion into electricity which can be transmitted economically much greater distances than hot water. The largest installation at the present time is that at Larderello, Italy, where the Count of Larderello began to experiment in the production of electricity from geothermal steam 60 years ago — in 1904. He installed his first steam turbine, with a capacity of only 250 kw, in 1912 as the result of a local quarrel with the power company which furnished the current required in the Larderello chemical industry - an industry that then dated back nearly a century. As experience was gained in drilling deep holes to tap geothermal steam and in converting it to electric power, the capacity of the installation of Larderello gradually increased, but was all destroyed by the Germans during their retreat from Italy in the closing
Jan 1, 1965
-
Producing–Equipment, Methods and Materials - Burst Resistance of Pipe Cemented Into the EarthBy R. E. Zinkham, R. J. Goodwin
A mathematical study has been made of the amount of support a cement sheath could provide to casing cemented into the earth. Several assumptions were required to make the analysis, but only two of them are limiting: (I) the pipe must be completely surrounded with cement, and (2) any mud filter cake between the cement and formation has the same physical properties as either the cement or formation. The calculations showed that little support would be provided to the pipe before an unsupported cement sheath failed in tension; however, when the cement is confined between the pipe and wellbore and is loaded in compression, the pipe could receive a considerable amount of support. In fact, the theoretical results indicate the lower grades and larger sizes of pipe could have their working pressures doubled when reasonable compressive loads were applied to a surrounding cement sheath. These data are shown in six charts. Other down-hole conditions such as setting the cement under pressure, increased temperature and cement confinement all tend to increase the potential usefulness of the sheath. Because of size limitations, a laboratory program to verify the most important results of this mathematical study would be very difficult. However, small-scale field tests would be practicable. This paper shows that, if a solid cement sheath can be obtained in the field by either primary cementing or by repair after detection of flaws by surveys such as the new cement-bond logs, the use of this approach to reducing pipe costs merits further consideration. INTRODUCTION A modification in casing design practices is proposed which may either reduce the amount and grade of steel required to contain a specified internal pressure or permit the working pressure to be increased for a specified weight and grade of pipe. One of the more important considerations in casing design is its resistance to collapse; however, Bowers' and, more recently, O'Brien and Goins' have shown many casing programs are unnecessarily conservative in this respect, and they have indicated how savings can be made by designing for more realistic down-hole conditions. Earlier, Saye and Richardson howed that pipe costs could be reduced by considering the cement sheath as a part of the casing string when collapse resistance was being calculated. More recently, Rogers4 has raised the question as to whether a cement sheath might be considered in the design for burst resistance of the cemented casing. Calculations have been made for the increased burst resistance a cement sheath would provide for casing in a wellbore, and the results show that a sizable amount of support could be obtained in some instances. These data are presented in addition to a discussion of several other factors that are considered to affect the burst strength of pipe supported by cement. Two types of support are treated: Case I for tensile loading of the unconfined cement sheath, and Case for compressive loading of the confined cement sheath. ANALYTICAL TREATMENT AND RESULTS CASE I—TENSILE STRESSES IN AN UNCONFINED CEMENT SHEATH Conditions like this would most likely occur in a greatly enlarged portion of the hole where the cement was not in immediate contact with either the formation or a thin and hard mud cake. The mathematical analysis for this condition, as shown in the Appendix, rests on the following concepts. Pressure inside a unit length of pipe causes: (1) a tensile or tangential stress to be exerted over the longitudinal cross-sectional areas of the pipe and cement; and (2) an equal amount of strain in both the pipe and cement that is uniformly distributed over the wall thickness of each. This analysis was then used to make several calculations for a cement sheath around 51/2-in. OD pipe. The results are illustrated in Fig. 1, which shows that a tensile stress of 500 psi is imposed on a 5-in. thick sheath when the casing contains a pressure of only 1,450 psi. It also shows that a 10-in. thick sheath would be stressed to 500 psi in tension when the pipe contained a pressure of only 2,350 psi. Alternatively, if the stress analysis is made by means of the Lame thick-wall cylinder theory, the inner fibers of the 10-in. thick sheath will be stressed to 500 psi in tension when the pressure in the pipe is only 990 psi. This, of course, reveals that an unconfined sheath is of little support to the pipe in burst; however, an entirely different result is obtained when the cement is confined between the pipe and formation.
-
Natural Gas Technology - Evaluating a Slightly Permeable Caprock in Aquifer Gas Storage: I Caprock of Infinite ThicknessBy P. A. Witherspoon, S. P. Neuman
Evaluating the permeability of a caprock overlying a potential gas storage reservoir is a very critical problem. Pumping water from the reservoir can be used as an evaluation tool in analyzing this problem. Fluid level changes that occur in the aquifer us well as in the caprock can be measured with appropriately placed wells. If the leakage of water from the caprock into the aquifer is considerable, the effects will be apparent in the aquifer. If the leakage is slight, however, it will not be possible to detect it with certainty from observations in the aquifer alone. Fluid level measurements in the caprock must be relied upon. and improved methods of analyzing such effects have been developed which are based on a theoretical analysis of fluid flow through a caprock of infinite thickness. An example applying these methods to field data is discussed. INTRODUCTION One of the most critical problems in evaluating an aquifer gas storage project is determining the tightness of the caprock overlying the formation to be used as the storage reservoir. A formation that has previously held oil or gas obviously has a suitable caprock, but an aquifer that contains only water gives no such assurance. A number of aquifer projects in the United States have been troubled by gas leaking out of the intended storage zone, and the ensuing difficulties have led to the development of new evaluation methods. One of these new methods is pump testing wherein water is removed from the aquifer at some controlled rate prior to injection of gas. This fluid withdrawal causes a pressure drop to move out through the aquifer for considerable distances in a matter of days or weeks. Depending on the properties of the caprock, a pressure transient can also pass upward (as well as downward) through the caprock layers adjacent to the aquifer. Thus, if the operator has placed observation wells at appropriate distances from the pumping well, the rapidity with which the pressure transients reach different points in the system can be used to investigate the fluid transport properties of both the aquifer and its caprock. The usefulness of pump testing has been recognized by groundwater hydrologists for many years as a means of determining the potential yield and properties of aquifers used in water supply They have introduced the term "leaky aquifer" for a system in which an aquifer is overlain (or underlain) by semipermeable caprock layers. The ease with which water leaks into the aquifer during pumping can, of course, be very beneficial in bringing additional water to the pumped well. Hydrologists have therefore devoted considerable attention to this prob-lem. From the gas storage standpoint, however, the tighter the caprock layers that overlie the intended storage reservoir, the better are the conditions for minimizing or eliminating any vertical migration of gas. Thus, after a suitable geologic structure has been found, the emphasis in aquifer storage projects is in determining that the caprock is tight. Attention has recently been focused on the use of pump testing as one approach to solving this problem.23,24 This paper presents a further development on evaluating the permeability of a slightly leaky caprock when the caprock is of infinite thickness. From the practical standpoint, this means that the caprock layers are thick enough that pressure transients do not reach the outer boundaries of the system during the pumping test. In a subsequent paper, an analysis of the case where the caprock is of finite thickness will be presented. PREVIOUS WORK ON LEAKY AQUIFERS Jacob" developed a partial differential equation describing the flow of water in an aquifer of permeability k that is overlain by a leaky caprock of permeability k'. Fig. 1 shows a schematic cross-section of the system under consideration. One of his principle assumptions was that if k > > k', the direction of flow is essentially vertical in the caprock and horizontal in the aquifer. Neuman19 confirmed the validity of Jacob's assumption using a mathematical model. Another assumption was that a permeable source layer overlies the caprock (Fig. 1) and is able to maintain a constant hydraulic head at the upper boundary of the caprock. By neglecting the effects of compressibility within the caprock, Jacob1* developed a solution for a bounded circular aquifer. Later, Hantush and Jacobx5 used the same assumptions to solve the case of an infinite radial aquifer that is pumped at a constant rate. Their solution may be expressed in di-mensionless parameters by
-
Institute of Metals Division - Semiconductor HeterojunctionsBy D. L. Feucht, R. L. Longini
The semiconductor heterojunction is considered in terms of simple models which may lead to an understanding of move complex heterojunctions. Metallurgical and electrical properties of hetero-junctions aye discussed including the interface structure, energy -band diagram, and carrier transbovt across the interface. It is found that in a heterojunction all mechanisms such as injection, tunneling, and junction recombination found in simple junctions play modified voles. INTERFACES between materials (grain boundaries, the electrical junction between two differently doped materials in a single crystal, the oxide-metal interface, or metal-metal junctions) are of considerable importance in many situations. These various interfaces all have one very fundamental thing in common. Quantum mechanically speaking, the wave functions of the electrons in one material may penetrate the other material but, in general, only to the extent of angstroms. From an electrical point of view the conduction mechanism changes as a current passes through such junctions. In some cases the change is tremendous, in others almost negligible. The interface, then, is the locus of a change of conduction mechanisms. Some of these, particularly in semiconductors, are well-understood. The ordinary p-n junction in a single crystal can be the locus of an injection mechanism or a tunneling process, depending on conditions. The mechanisms are probably best understood in semiconductors because of the possible simplified view of particlelike conduction. The bands are either nearly filled or nearly empty and band overlap is seldom involved. The same fundamentals are probably important in other situations too but they are very difficult to look at naively. Although the simple look at the semiconductor case only gives us a relatively rough picture which must then be refined, the other systems, which involve a more complex situation, immediately are in many ways too difficult. There are too many initial choices of complex systems and therefore it is not possible to be even reasonably certain of any one model. Because of the relative simplicity of semiconductors, their good and controllable structure, and because of the ability to make many measurements on them not normally available to either metals or insulators! they are probably the best understood materials. It is therefore desirable to use them as a tool to further the understanding of interfaces in general. Semiconductor-heterojunction concepts were first proposed by kroemer1 in 1957. This was followed several years later by reports on the fabrication and experimental characteristics of heterojunction structures by Anderson2 and Diedrich and jotten.3 I) THE HETEROJUNCTION STRUCTURE To get down to hardware, when we refer to a semiconductor heterojunction we imply that there exists an intimate contact between different semiconductor materials. We could put two pieces of material together, complete with oxide layers, we could remove the oxides, or we could even melt the interface and hopefully get wetting and a good "bond" on solidifying. In fact we could by some means grow a crystal of one material using the other as a seed. Essentially we are interested only in the last two because they are the simplest to look at analytically. The degree of perfection of fit varies greatly and is reflected somewhat in the arc welder's joint strength. The lattice match of the two materials, their orientation, and so forth. is obviously necessary for a good bond but so is the continuity of any polar bonds which are involved such as in the III-V semiconductors. The mechanical misfit between two similar lattices can be described in terms of edge dislocations. The edge-type dislocations must be very close together for the usual misfit and there must be dislocations for each of several different Burger's vectors in order to produce a lattice match. The .'dangling bonds'' resulting will be involved in producing interface charge. Order of magnitude estimates of the charge density extrapolated from low densities of dislocations in homogeneous materials give 5 x 1013 cm-2 Ge-Si and 1 X 1012 cm-2 Ge-GaAs electronic charges. Edge dislocations also act as very active recombination centers between holes and electrons. One lattice "matching" difficulty usually exists even if two structures have essentially the same lattice constants as they will have different coefficients of therma1 expansion. Thus, on cooling from the usually high temperature of fabrication to room temperature, dislocations are produced, a good fit not existing at both temperatures. In brittle materials this shrinkage may even result in cracking. For the Ge-Si interface the mismatch is about 2 x 10 -6 per degree whereas it is less than 10"7 per degree between germanium and GaAs. The exact effect of the misfit is dependent on the thickness of the materials involved. For a very
Jan 1, 1965
-
Logging and Log Interpretation - Neutron Lifetime, a New Nuclear LogBy E. C. Hopkinson, A. H. Youmans, R. A. Bergan, H. I. Oshry
A new log has been developed for quantitative formation evaluation which is based on a measurement of the length of time slow neutrons survive before they are captured in the rocks and fluids. The logging instrument employs a cyclically pulsed neutron generator and a gated scintillation counter which is synchronized with the source. The source emits short, intense bursts of 14 mev neutrons once every 1,000 microsec and is quiescent between bursts. During the period the source is quiescent, the detector is electronically actuated for two independent preselected intervals. A comparison of the counting rates during these two intervals gives a measure of the rate of decay of the slow neutrons and of the associated gamma radiation. The average neutron lifetime in most earth formations is in the range from 50 to 500 microsec. It can be measured during a continuous logging operation at conventional logging speeds. The design of the logging instrument is described and the results of tests are compared with theoretical predictiom. Formulas are developed which give the relationship between log response and formation properties. It is shown that the method is particularly sensitive to formation fluid salinity, and that salt water saturation can be measured accurately in either cased or open hole. The measurement can be made independent of borehole size, fluid type, casing and tool position in the hole by properly selecting the intervals during which the measurements are made. The results of tests with a prototype logging tool are given. INTRODUCTION A new nuclear logging system has been developed which employs the Accelatron,* an accelerator-type neutron source, and accurately measures formation brine saturation in an entirely new way. It has produced a type of formation log with better sensitivity, greater sampling depth and simpler quantitative interpretation than any other nuclear log thus far suggested. The new Neutron Lifetime Log* employs a pulsed electromechanical neutron source and a synchronously gated radiation detector. A prototype instrument has been field tested during recent months to demonstrate the operability of the apparatus and the feasibility of the method. Tests in wells and simulated boreholes have confirmed theoretical predictions and have shown that formation param ters can be measured independent of casing and other borehole parameters. Preliminary results of field tests have indicated that the log may have important and widespread applications. BASIC PRINCIPLE OF NEUTRON LIFETIME LOG The Neutron Lifetime Log is based on the fact that neutrons emitted by a source in a well are rapidly but not instantly captured by the material around the source. Their capture is a matter of statistical probability; the greater the number of capturing nuclei and the greater the "capture cross section", the greater is the probability that a neutron will be captured quickly. The average life of a thermal neutron in vacuum is about 13 minutes, but in common earth materials, the average neutron life ranges between extremes of about 5 rnicrosec for rock salt and perhaps 900 microsec for quartzite. The Neutron Lifetime Log responds to variations in this average neutron life. The theoretical basis for a log of this general type has been well understood by nuclear logging experts in many laboratories both in America and in Russia, and develop mental work along these lines has been in progress for many years. The Russian literature has reported both theoretical and experimental work1,2 but in this country there have been no published reports of progress toward a practical logging instrument. The logging instrument is designed to measure radiation produced by slow neutrons during selected intervals when no neutrons are being emitted by the source. The source is arranged to emit neutrons in bursts or pulses. During the quiescent interval between the pulses, it is possible to observe the exponential "decay" of the neutrons and the neutron-induced radiation as the individual neutrons progressively disappear due to capture by atoms in the formation or the borehole. When a short pulse of 14 mev neutrons is emitted by a source in a borehole, the individual neutrons are slowed to thermal energy within a few microsec. Thus, a cloud of "slow" neutrons is formed around the source within 10 to 50 microsec after the pulse. This cloud is most dense within a few inches of the source, and is progressively less dense out to a radius of about 3 ft, where radiation from the source is practically undetectable.
Jan 1, 1965
-
Institute of Metals Division - Concentration Dependence of Diffusion Coefficients in Metallic Solid SolutionBy D. E. Thomas, C. E. Birchenall
ALTHOUGH Eoltzmann gave a mathematical solution for the diffusion equation (for planar diffusion in infinite 01. semi-infinite systems only) in 1894 allowing for variation of the diffusion coefficient with a change in concentration, it was not until 1933 that this solution was applied to an experimentally investigated metallic system. The calculation was carried out by Matano' on the data obtained by Grube and Jedele3 for the Cu-Ni system. Since that time concentration dependence of the diffusion coefficient has been demonstrated for many pairs of metals. However, the nature of this dependence has never been fully elucidated. Many investigators have suspected that these variations could be related to the thermodynamic properties of the solutions, one of the earliest explicit statements being contained in a discussion of irreversible transport processes by Onsager' in 1931. Development along these lines has been greatly retarded by the lack of reliable data on the variation of tliffusivity with concentration, the paucity of the thermodynamic data for the same systems at the same temperatures and compositions, and an incomplete understanding of the relation of the thermodynamic properties of the activated state for diffusion to the bulk thermodynamic properties. The last factor has been discussed by Fisher, Hollomon, and Turnbull.5 In many instances where data exist, it is difficult to know which are acceptable. This problem probably applies more strongly to diffusion data than to activity measurements. For instance, four sets of observers"-" have reported self-diffusion coefficients for copper. The average spread between extreme results is a factor of about four, though the individual sets of data are self-consistent to about 20 pct. Thus one or more factors are out of control, at least in these experiments, making estimates of internal error unreliable. The most reliable diffusion data in most systems have resulted from the use of welded couples with a plane interface from which layers for analysis are machined parallel to the interface after diffusion. The layers are analyzed, and the result is a graphical relation between distance and concentration, usually called the penetration curve. Given the same set of analytical data and distances and following the same procedure in computation, different observers will generally produce diffusion coefficients which vary appreciably, especially at the extremes of the concentration range. Experiments must be carefully designed so that the precision is good enough to answer a particular question unequivocally. In the first calculation of the dependence of the diffusion coefficient on concentration in the metallic solid solution Cu-Ni, Matano found that the coefficient was insensitive to concentration from 0 to 70 pct Cu, after which it rose more and more steeply to some undetermined value as pure copper was approached.' The same behavior was reported for Au-Ni, Au-Pd, and Au-Pt.* The data used were those of Grube and Jedele which were very good at the time, but are not considered particularly good by present standards. Furthermore, the method of calculation makes the ends of the diffusion coefficient-concentration curve unreliable. For better reliability, the high copper end of the curve has been checked by incremental couples, where the concentration spread is 67.7 to 100 atomic pct Cu. The implication of the curves calculated by Matano was that diffusion is very concentration sensitive in one dilute range of this completely isomorphous system and hardly at all in the other. Matano's result is confirmed. Later Wells and Mehll0 published data on diffusion in Fe-Ni at 1300°C, which represent a thorough test of the shape of the concentration dependence curve. They ran couples with the following ranges of nickel concentration: 0-25 pct, 1.9-20.1 pct, 0-20.1 pct, 20.1-41.8 pct, 0-99.4 pct, and 79.3-99.4 pct. Although the trend of the data indicates an S-shaped concentration dependence, their curve was drawn to the pattern set by Matano. Their original data have been recalculated for the 0-99.4 and 79.3-99.4 pct couples. Wells and Mehl's points and two independent recalculations from the raw data are plotted in Fig. 1. What appears to be the best curve is drawn through them. This curve shows little sensitivity to composition in both dilute ranges with a strong dependence at intermediate composi-tions.? Similar experiments on the Cu-Pd system are reported here at temperatures where solubility is unlimited. These lead to the same type of concentration dependence for the diffusion coefficients as was found upon recalculation of the data for the Fe-Ni system. Experimental Procedure Cu-Pd: The concentration dependence of the diffusion coefficient may be determined by the use of
Jan 1, 1953
-
Institute of Metals Division - Phase Diagram and Thermodynamic Properties of the Yttrium-Zinc SystemBy K. J. Gill, P. Chiotti, J. T. Mason
Thermal, metallographic, and vapor pressure data were obtained to establish the pkase boundaries and the standard free energy, enthalpy, and entropy of formation for the compounds in the Y-Zn system. Three coinpounds with stoichiometric formulas of YZn, YZn2, and Y2Zn17 melt congruently at 1105", 1080°, and 890°C, respectively. Four compounds with stoiclziometric formulas of YZn3, YZn4, YZn5, and YZn,, undergo perztectic reactions at 905", 895", 870º, and 685ºC, respectively. Three eutec-tics exisl in this system with the .following eutectic temperatures and zinc contents in wtpct: 875ºC, 23.2 Zn; 1015ºC, 51 Zn; 865ºC, 82 Zn. The YZn, pkase undergoes an allotropic transformation. In the two phase YZn2 -YZn alloys the trans.formation gives a weak thermal arrest at 750°C, whereas in the two phase YZn2-YZn3 alloys no thermal arrest is observed and the transformation occurs over a temperature range below 750°C. At 500°C the free mzergies of formation per lnole vavy from —18,090 for YZn to —53,430 fov YZr11 and corresponding enthalpies vary from -24,050 to -92,080. The free energies and enthalpies per g atom as a function of composition show a maximum for the YZn2 phase; the 500°C values are -9580 and -13,180, vespectively. 1 HE only information found in the literature on Y-Zn alloys was the observation reported by Carlson, Schmidt. and speddingl that Y-20 wt pct Zn forms a low melting alloy. The alloy was produced by the bomb-reduction of YF3 and ZnF2 with calcium in an investigation of methods for producing yttrium metal. The solubility of yttrium in zinc has been determined by P. F. woerner2 and reported by Chiotti, Woerner, and Parry.3 In the temperature range 495" to 685°C the solubility may be represented by the relation In these equations N represents atom fraction of yttrium and T is the temperature in degrees Kelvin. The purpose of the present investigation was to establish the phase diagram for the Y-Zn system and to determine the standard free energy, enthalpy, and entropy of formation for the compounds formed. MATERIALS AND EXPERIMENTAL PROCEDURES The metals used in the preparation of alloys were Bunker Hill slab zinc, 99.99 pct pure, and Ames Laboratory yttrium sponge. Arc-melted yttrium buttons contained the following impurities in parts per million: C-129, N-12, 0-307, Fe-209, Ni-126, Mg-13, Ca < 10, F-105, and Ti < 50. Some of the alloys containing 70 wt pct or more of Zn were prepared from yttrium containing 5000 ppm Ti as a major impurity. Tantalum containers were found to be suitable for all alloys studied and were used throughout the investigation. The pure metals, total weight about 30 g, were sealed in 1 in. diam tantalum crucibles by welding on preformed tantalum covers. A 1/8 in. diam tantalum tube was welded in the base of each crucible for use as a thermocouple well. Welding was done with a heli-arc in a glove box which was initially evacuated and filled with argon. The sealed crucibles were enclosed in stainless steel jackets and heated in an oscillating furnace at temperatures up to 1150°C. Homogeneous liquid alloys were obtained within a half hr at these temperatures except for alloys containing less than 20 pct zinc. The latter alloys were held at 1000º to 1100°C for 2 to 3 days in order to obtain equilibrium. After the initial equilibrations the tantalum crucibles containing the alloys were removed from the steel containers and used directly for differential thermal analyses. Further annealing heat treatments for alloys in which peritectic reactions were involved were carried out in the thermal analyses furnace. After thermal analyses the tantalum crucibles were opened and the alloys sectioned and polished for metallographic examination. In the following discussion alloys referred to as "quenched" were obtained by quenching the sealed stainless steel jacket containing the tantalum crucible and alloy in water. The differential thermal analyses apparatus used was a modified version of the one described in an earlier paper., The graphite crucible was replaced by an inconel crucible, the nickel standard and sampie container were separated by a 1/8 in. MgO plate, no getter was used, and provisions were made to
Jan 1, 1963
-
PART VI - The Heat Effects Accompanying the Solution in Liquid Bismuth of Tellurium with Cadmium, Indium, Tin, or LeadBy P. M. Robinson, J. S. LI. Leach
The heats of solution oj' indiurrr, tin, lend, nrzd tellurium have been calculated from the measured heat effects when mechanical mixtres of indium and telLuium tin and tellurium, and lead and tellurium were added to liquid bismuth. The results are in good agreement xith publislzed values.s for the separate sollction of each eleltzent in bismuth. The heats oj solution of cadmium and tellurium calculated from the rneasuved heat effects on adding trechanical mixtures of these elements do not ugree zc,itl the published values jbv the separate solution of each element. It is shown that at 623°K Ile interaction between cadmium and tellurium dissolved in liquid bismuth is strong enough to led lo preciPitation of solid CdTc. The heats oj- jor-mation of CdTe at 273" nd 623°K (1)-c crilculated fi-or the measured heat ejlfecls. The calcnlaled az'erage deviation from the Kopp-l\'ez?,zunrz rule fov solid CdTe is less than 0.06 cat per g-atom- C over this lertzperalure range. Tlze importance 0.f these oDserl.ations to the determination of heals of formation hy metal solution calorimetry is considered. LIQUID metal solution calorimetry is a convenient method for determining the heats of formation of solid compounds. In this technique the heat of formation is the difference between the measured heat effects on dissolution of the compounds and of mechanical mixtures of the components in the liquid metal.' The heat of solution of the mechanical mixture may be calculated from the measured heat effect. At infinite dilution of the solutes, this heat of solution is equal to the sum of the heats of solution of the separate components. If the heat of solution of one of the components is known, the value for the other can be derived; if both are known, they may be used to check the accuracy of the calorimetric technique. The heats of formation of the tellurides of cadmium, indium, tin, and lead have recently been measured by metal solution alorimetr. The heats of solution of indium, tin, lead, and tellurium at infinite dilution in liquid bismuth at 623"K, calculated from the measured heat effects on solution of the mechanical mixtures, are in good agreement with the published values. The heats of solution of cadmium and of tellurium calculated from the measured heat effect on solution in bismuth at 623'K of mechanical mixtures of cadmium and tellurium, however, do not agree with values estimated from the literature. 1) EXPERIMENTAL PROCEDURE AND RESULTS The Heats of Solution of Indium, Tin, Lead, and Tellurium in Bismuth. The heat effects were measured when mechanical mixtures corresponding to the compounds In,Te, InTe, In2Te3, In2Te5, SnTe, and PbTe were dissolved in bismuth. The calorimetric procedure and the method of calculation have been described elsewhere.' The heats of solution of the mechanical mixtures were obtained by subtracting the change in heat content per gram-atom of the sample between the addition temperature (273°K) and the bath temperature (623"K), (H623°K - H273°K)S, from the measured heat effects. The calorimeter was calibrated with pure bismuth. The reported values of the measured heat effects are based on (HGoK - ^273oK)Bi = 4.96 kcal per g-atom.3 The measured heat effects are found to be linear functions of the solute concentrations of the bath in the dilute solution range. The values, extrapolated to infinite dilution, are listed in Table I, together with the heats of solution of the mechanical mixtures calculated using the published values of (H 623°K - H273°k)s for indium, tin, lead,3 and tellrium. All the error limits quoted in this work represent the spread of values obtained. The heats of solution in liquid bismuth at 623°K of mechanical mixtures of indium and tellurium in four different proportions were determined. Values of the heats of solution of the two components were then calculated from the resulting four simultaneous equations: The heats of solution at infinite dilution of tin and lead in liquid bismuth at 623°K were calculated from the heats of solution of the mechanical mixtures of tin and tellurium and of lead and tellurium using the heat of solution of tellurium calculated above. These values of the heats of solution are listed in Table I1 together with some published values for comparison.
Jan 1, 1967
-
Institute of Metals Division - The Orientation Distribution of Surface-Energy-Induced {100} Secondary Grains in 3 Pct Si-Fe SheetsBy J. J. Kramer, K. Foster
The orientation distribution of surface-energy -induced secondary recrystallized grains was determined. This work was conducted on thin sheets of a 3 pct Si-Fe alloy annealed under environmental conditions that furor grouth of grains with a (100) plane in the surface of the sheet. The texture was found to be extremely sharp and almost independent of sheet thickness. The distribution varied exponentially with the angular deviation from the {100} plane. It was possible to relate the distribution to the nu-cleation rate of the secondary rains as influenced by the surface-energy difference. THE role of surface energy in the secondary grain growth of cube-oriented grains (grains with a (100) plane in the plane of the sheet) in thin Si-Fe sheets has been previously discussed.1-4 In high-purity sheet material normal grain growth usually occurs until the grains have extended through the sheet. Further grain growth is inhibited by the thermal grooving of the boundaries at the sheet surface. However, additional growth of cube grains can occur by a secondary grain growth process under conditions where the (100) plane has a lower surface energy than other orientations. Apparently for these alloys, cusps exist in the polar plot5 of surface free energy with the lowest cusp energy occurring at the (100) orientations. This has been reported to be the result of preferential adsorption of sulfur on the (100) planes.6 As a result of this process, a distribution of orientations could arise from two possible mechanisms. First, when a cusp is present in the polar plot of surface free energy, there are orientations inside the cusp that have a lower surface energy than elsewhere on the polar plot. Also, at sufficiently high temperatures, flat surfaces whose orientations are inside or just outside the cusp (depending on its shape) can often thermally etch, yielding a microscopically stepped surface of even lower surface energy. As a result, grains oriented close to cube would also have a lower surface free energy, either because of the cusp shape or by thermal etching, and could possibly grow as secondary grains by the surface-energy phenomenon. One should thus observe a distribution in the surface orientation of the cube grains comprising the secondary structure. It is the purpose of this paper to investigate this orientation distribution experimentally and to discuss the factors involved in its formation. For this purpose, the surface orientations of a large number of secondary grains in various sheet thickness were determined by means of the Laue back-reflection X-ray technique. PROCEDURE A vacuum-melted 3 pct Si-Fe alloy containing a nominal impurity content of 0.005 wt pct was processed into strip. A single cold-rolling step of 90 pct reduction was used for each strip regardless of the final sheet thickness. Final strip thicknesses of 0.60, 0.30, 0.15, and 0.075 mm were used. Care was taken to insure that the final strip surface was smooth and flat. All strips of a given thickness were annealed together at 1200°C in dry hydrogen (dew point -70°C) to develop the desired secondary structure and to insure identical environmental annealing conditions. The annealing time was selected to develop a complete secondary structure in the thinner sheets but to permit the thicker sheets (0.60 mm) to have residual primary grains remaining. This was necessary to determine whether growth impingement could lead to one secondary grain consuming another at a greater angular deviation. For the X-ray determination of the surface orientation of the secondary grains, a special specimen holder was used. The camera and holder arrangement could be aligned by X-raying a grain in three positions rotated 180 deg to each other. Thus, with a small beam X-ray focus (1 mm), the surface orientation of any grain could be determined to within one-half a degree. The surface orientations of one hundred cube secondary grains were determined for each sheet thickness. The criteria of a secondary grain were its size relative to the sheet thickness and the number of sides of the grain observed in the sheet surface. (A primary recrystallized grain extending through a sheet will generally have six edges visible in the plane of the sheet, whereas a secondary grain will have many more when growing entirely into primary grains.) Grains were selected as randomly as possible by X-raying every secondary grain found along a line drawn on the strip. No attempt was made to determine the exact orientation of the planes of the surface, as many strips from randomly selected sheets were used. On1y the angular deviation of the surface plane from {100} was measured. In order to assess the volume distribution in the
Jan 1, 1965
-
Producing-Equipment, Methods and Materials - Two Bottom-Hole Pressure Instruments Providing Automatic Surface RecordingBy R. H. Kolb
A long term project at Shell Development Co.'s Exploration and Production Research Laboratory has been the improvement of the accuracy and the ease of BHP measurements. As a result of these efforts, two complete and separate systems have now been built for the automatic logging of BHP variations. The first of these is a small-diameter instrument suitable for running through production tubing on a single-conductor well cable. During the development of this instrument, as much emphasis was placed on providing a high degree of usable sensitivity and repeatable accuracy as on obtaining the advantages of surface recording. The second system combines the benefits of automatic, unattended recording with the convenience of a permanently installed Maihak BHP transmitter.' THE CABLE INSTRUMENT For many years the standard instrument for BHP determination has been the wireline-operated Amerada recording pressure gauge or one of several other similar devices. This gauge records on a small clock-driven chart carried within the instrument, and although relatively precise readings from the chart are possible, they are difficult to ob-tain. a Both the maximum recording time and the resolution of the time measurements are limited by chart size, and when a slow clock is required for long tests, the precision of the time measurement is often inadequate. Since it is impossible to determine the data being recorded until the gauge has been returned to the surface, wasted time often results when a test is protracted beyond the necessary time or when it is terminated too soon and must be re-run. Clock stoppage or other malfunctions which would be immediately apparent with surface recording remains undetected with down-hole recording; the test is continued for its full term with a consequent loss in production time. As new uses for subsurface pressure data evolved, the shortcomings of the wireline instrument became increasingly apparent, and the concurrent development of a surface-recording pressure gauge and the associated high-pressure well cable service unit' was undertaken. Description of the Instrument Because of its ready availability and advanced degree of development, the Amerada bourdon-tube element was chosen as the basic pressure-sensing device. This element converts a given pressure into a proportional angular displacement of its output shaft, and a suitable telemetering system was designed to measure accurately the extent of this displacement and to transmit the measurement to the surface and record it. The telemetering system furnishes a digital record printed on paper tape by an adding machine-type printer. The present arrangement provides a resolution of one part in 42,000 over the angular equivalent of full-scale deflection, giving a usable sensitivity of better than 0.0025 per cent of full scale. An additional refinement simultaneously records on the tape the time or the depth of the measurement, also in digital form. When the instrument is placed in operation, an adjustable programer can be set to initiate a read-out cycle automatically at selected time intervals. When subsurface pressures are changing rapidly, readings may be recorded as frequently as once every 10 seconds; when pressures are more nearly stabilized, the period between readings may be extended to as much as 30 minutes. Because the instrument is surface-powered as well as surface-recording, the maximum period of continuous logging is (for all prac. tical purposes) unlimited. The subsurface instrument is a tubular tool, 1 1/4-in. in diameter and 6.5 ft in length, operating on 12,000 ft of conventional 3/16-in. IHO logging cable. The transmitting section, mounted above the bourdon-tube element in place of the regular recording mechanism, contains no fragile vacuum tubes or temperature-sensitive transistors. This unit has been laboratory-tested to 1 0,000 psi and 300°F and has performed dependably during a number of field operations. The down-hole transmitting arrangement can be fitted to any standard Amerada pressure element, regardless of range and with no modification of the element itself. Calibration To obtain a repeatability commensurate with the sensitivity and resolution of the instrument, it was necessary to develop a special calibrating technique. The manufacturers of the Amerada recording pressure gauge claim an accuracy of only 0.25 per cent of full scale, which is a realistic figure for normal calibrating and operating procedures. An exhaustive investigation was made of the errors inherent in the bourdon-tube element, itself, independent
-
Producing-Equipment, Methods and Materials - Permeability Reduction Through Changes in pH and SalinityBy N. Mungan
Formation damage, i.e.. reduclion in permeability, has been generally attribuled to clay minerals which expand or disperse upon contact with water that is less saline than the connate water. Luboratory, studies show that penneahility reduction can also occur in formalions containing only nonexpandable clays such as illite or kaolinite, and can be caused also by changes in pH. Furthermore, pH changes can damage even formations that are essentially free of clays. It is suggested that permeability reduction is due to the small passages being blocked by particles, which may be dispersed clays, cemenlion material or other fine parricles. These particles are dislodged by dispersion of clays due to changes in salinity or by dissolution of calcareous cement by acids, or of silicaceous cement by alkaline solutions. In working with reservoir cores, it was found that extracted cores damaged more easily and extensively than nonextracted cores. The extent of damage depended also on tenlperatltre. INTRODUCTION Permeability is an important property of porous media and has been the subject of many studies by engineers and geologists. Many of these studies are conccrned with formation damage, i.e., reduction in permeability, resulting from exposure of oil-producing formations to water substantially less saline than the connate water. This effect causes understandable concern since during drilling, completion and production phases formations are often exposed to fresh water. The damage resulting from contact with relatively fresh water has been attributed to expansion and dispersion oF clay minerals. During laboratory investigation of the use of NaOH as a wettability reversal agent to increase oil recovery from oil-wet reservoirs, several cores used in the displacement studies suffered loss in permeability. Despite the traditional usage of NaOH for conditioning aqueous mud systems, the role of the caustic filtrate in wellbore damage seems to have been overlooked. Browning2 as recently reported on the effects of NaOH in dispersing clay minerals but he was concerned only with complications that may arise in drilling massive shale beds. The following study was made to examine the role of pH and salinity changes in core damage. Where cores from reservoirs were used, tests were performed with extracted and nonextracted cores both at room and reser- voir temperatures, since it was felt that the test environment and core condition may affect the results. Because of its limited coverage and exploratory nature, this study is not intended to provide answers to field formation damage problems. It is hoped that it will encourage research into new aspects of the permeability reduction problems, particularly those allied to new recovery and production processes. PROCEDURE In all permeability tests, fluids were pumped through the cores at a constant volumetric rate. Only deaerated fluids and reagent grade chemicals were used. The fluids were passed through two ultrafine filters before injection to remove any entrained particles. The cores, with the exception of the unconsolidated cores, were mounted in Hassler holders. Water was used to transmit pressure to the sleeve. The inlet endpiece had two entry ports which permitted scavenging one fluid with another to avoid any mixing in the small holdup volume. The cores were flushed with CO2 gas, evacuated for 5 to 6 hours and saturated with the first liquid at a pressure of 1,000 psi for 24 hours to eliminate any free gas from the cores. Pressure differences up to 20 psi were measured by transducers, calibrated in inches of water and continuously recorded. For greater pressure drops, gauges were used. All reservoir cores were cleaned with a light refined mineral oil, then with heptane, and finally dried with CO2. Compatibility tests showed that no precipitates formed when mineral oil and the crudes were mixed. Some cores were extracted in Dean-Stark-type solvent extractors using xylene and trichloroethane and dried in a vacuum oven at 450F. Each test consisted of a sequence of water, test solution, and again water flow. RESULTS AND DISCUSSION STUDIES IN BEREA CORES Salinity Contrast Berea cores 2-in. in diameter and 12-in. long were cut from sandstone quarried in Cleveland, Ohio. The clay minerals were identified by X-ray diffraction to be chlorite, kaolinite, illite and incerlayered illite. Flow of fresh water or 30,000 ppm brinc does not cause any permeability reduction (Fig. 1). However, after injection of brine the core is readily damaged by fresh water. Damage starts almost instantly as the fresh water injection is begun, and at a cumulative injection of 1.2 PV fresh water, the permeability has dropped from 190 to 0.9 md. Upon continued injection, the effluent contains clay minerals dislodged from the core. The final core per-
Jan 1, 1966
-
Institute of Metals Division - Studies on the Metallurgy of Silicon Iron, IV Kinetics of Selective OxidationBy A. U. Seybolt
In part 111' of this series it was shown that during the selective oxidation of a 3 1/4 pct Si-Fe alloy in damp hydrogen, only silica, (observed at room temperature) as low cristobalite or low tridy-mite or both, was formed as an oxidation product. In some in- „ stances where the film was fairly thin (probably well under 100A) there was some suggestion of an amorphous form of SiO2. The present investigation of oxidation rate showed that the selective oxidation of silicon-iron can be rather complicated, and apparently impossible to rationalize in an unequivocal manner. In some temperature regions, notably near 800" and 1000°C, the data seem to obey the familiar parabolic rate law. However, at intermediate temperatures complications were noted, some of which are possibly due to the order-disorder reaction in the silicon-iron solid solution. IN an earlier report' it was shown that during the oxidation of 3 1/4 pct Si-Fe alloys in H2O-H2 atmospheres only silica films were formed in the temperature range from 400° to 1000°C in hydrogen nearly saturated with water at room temperatures, or at dew points as low as -45°C. In the work to be reported here, some observations are made on the rate of oxide film formation. As in the earlier investigation, electron diffraction patterns generally showed either low tridymite or low cristobalite or both, except for some very thin films. These sometimes showed diffuse rings, presumably due to a very small crystallite size, or in a few cases, diffuse bands probably caused by an amorphous film. EXPERIMENTAL PROCEDURE Vacuum-melted silicon iron made of high-purity materials was rolled into strips 0.014 in. thick, and cut into samples 1/2 in. wide by 1 in. long. Chemical analysis showed 3.2 pct Si and 0.002 pct C. All samples were surface abraded with 600-grit paper, were solvent cleaned, and then placed in an paper,apparatus containing a "Gulbransen type"2 micro-balance. Here the gain in weight of the samples of about 5 sq cm area could be followed as a function of time during the oxidation caused by the water in atmospheres of various controlled water-hydrogen ratios. The water-hydrogen ratios can most easily be described as varying from a dew point of 0°C (PH2O-p^2 = 6.2 x 10-3 , to K (P j -40°C (PH2O/PH^= 1.3 X 10-* Most of the experiments were conducted at the 0°C dew-point atmosphere because drier atmospheres caused so little gain in weight that the accuracy of measurement was poor. Because of this, only the data obtained at PH2O,/P,,,= 6.2 x X3 will be reported. The temperature range extended from 800" to 1000°C; and most of the oxidation runs lasted for about 24 hr. The reproducibility of any reading was about ± 1 ?, but the sensitivity of the balance was about 0.2 ?. The atmosphere, flowing at 200 cm per-min, was preheated to the furnace temperature before contacting the specimen. While the gas flow caused a measurable lift on the sample, it was ordinarily sufficiently constant so that it was not an appreciable source of error. X-ray and electron diffraction checks of the samples before and after oxidation showed no evidence of preferred orientation, either on the metal samples or on the silica films formed. EXPERIMENTAL RESULTS The data obtained are summarized in Table I, and some are given in detail in Figs. 1 to 4. In the fourth column of Table I, kp refers to the parabolic rate constant in the expression (?/cm2)2 = kpt + c [1] where ? = micrograms gain in weight kp = parabolic rate constant in units r2 /cm4 t = time in minutes c = constant It will be noted that in many cases no value for kp is given; this is because in these instances the data did not obey the parabolic rate law. The silica film thicknesses given in the last columns are values calculated from the weight gain, an average tridy-mite-crystobalite density, and by assuming a perfectly plane surface. Fig. 1 shows the data plotted in the form of Eq. [I], hence a linear plot indicates parabolic behavior. It has been frequently observed in the literature that
Jan 1, 1960
-
Part VII - Papers - C. Norman CochranBy S. Nakajima, H. Okazaki
Quantitatiue studies of the deformation texture in drawn tungsten wives were made by the X-vay dif-fractottletetr. Experimental results show that the diffraction Intensities are equal to tilose pvedicted from the (1 10). fiber lexlure but the angxla), spreads of. diffraction peaks in the pole distribution curres are different for different diffraction planes and directions. For this reason a modified (110) fiber lextuve model, in which a kind of anisotropy is assumed, is proposed to explain the results. According to this model the poles lying on a line directing front the (110) to the (110) poles in the (1 10) standard stereograpllic projection should show spreads which are different from those lyitlg on a line directing from the (001) to the (001) poles, which is confirmed by the experiments. The anisolvopy and the spveads of the pole positions are large at the outer part of the wires and decrease gradually lowards the inside of the wire. The possibilily of occurrence of such anisolropy in irrelals with fcc stvuctures is discltssed. THE deformation texture of drawn tungsten wires has been assumed by different investigators to be the simple ( 110) fiber texture.' Recently, however, Leber2,3 has shown that a swaged tungsten rod has a cylindrical texture. It changes gradually to the (110) fiber texture by drawing through dies. However, even after drawing to 0.25 mm in diam, the cylindrical texture can still be found in wires together with the (110) fiber texture. This was deduced from the pole figures obtained from the longitudinal section of these wires. Use was made also of quantitative measurements of the pole distribution curves. Leber stated that the angular spread of the pole distribution curves (henceforward called dispersions) are quite different for (400) 45 deg and (400) 90 deg: the former is always larger than the latter. This inequality is accompanied by deviations of the diffraction intensities from the theoretical values for the ( 110) fiber texture. Bhandary and cullity4 have reported similar results on iron wire and explained them by assuming a cylindrical texture. Both Leber3 and Bhandary4 used only the results of the (400) reflection for the determination of the dispersion. The pole figures found by Leber3 and by Rieck5 are largely different. The model given by Leber to explain the effects is in the authors' opinion in some respects unsatisfactory, especially if one looks at other than the (400) reflections. Intensities and dispersions of diffraction peaks are conclusive factors for the determination of the fine structure in wire textures. For this reason we studied them extensively to come to a model which is more suitable to fit the facts. In the following, after giving the experimental set-up, we report about measurements of X-ray diffraction on drawn tungsten wires. Different models to describe the experimental results will be discussed. EXPERIMENTAL GO-SiO2-A12O3 doped tungsten wires drawn to 0.18 mm in diam were used for the measurements. The wires were chemically etched to various diameters down to 0.03 mm. Measurements were carried out for the different wires in order to determine the dependence of the texture on the radius. The wires were cut to pieces of 10 mm length and fixed with paste closely against each other on a flat, polished glass plate. Parallelism of the wires with the surface of the glass plate should be adequate. For the diffraction studies three different X-ray sources were applied, respectively, giving the CuK,, FeK,, and FeKp emission. The measurements were carried out with a diffrac-tometer with a GM counter. The latter was fixed to a certain diffraction angle 20hkl and the diffraction intensity was recorded as a function of the angle of rotation of the specimen around the axis, lying in the specimen surface and perpendicular to the wire axis, as shown in Fig. 1. Measurements were also done with the detector at angles slightly deviating from the diffraction maxima The measured intensities in this case were taken to be equal to the background level. The deviations were chosen as small as possible but large enough to eliminate the influence of the diffraction maxima. The useful range of the rotation angle x of the specimen is generally limited by the wavelength of the X-rays. We have: where and cp is the angle between the wire axis and the normal of the diffraction plane. Intensity measurements were made to find the necessary corrections for counting loss of the GM counter and for distortion resulting from such effects as absorption of X-rays and from inclination of the reflection plane under study with respect to the surface of the specimen. The counting loss was esti-
Jan 1, 1968
-
Institute of Metals Division - Variation in Orientation Texture of Ultra-Thin Molybdenum Permalloy TapeBy P. K. Koh, H. A. Lewis, H. F. Graff
New data on the distribution of silicon between slag and carbon-saturated iron at 1600Oand 1700OC are presented which, in combination with previously published data, permit the determination of silica activities over a broad range of compositions in the CaO-Al2O3-SiO2 system. The distribution of silicon between graphite-saturated Fe-Si-C alloys and blast furnace-type slags in equilibrium with CO has been described in previous publications.1"3 In this past work the silica-silicon relation was established at temperatures of 1425" to 1'700°C for slags containing up to 20 pct A12O3. This paper presents the results of additional studies at 1600" and 1700° C which extend the silicon distribution data at these temperatures for CaO-A12O3-SiO, slags over a range from zero pct Al2O3 to saturation with Al2O3, or CaO.2Al2O3. The upper limit of SiO2 is set by the occurrence of Sic as a stable phase when the metal contains 23.0 or 23.7 pct Si at 1600" or 1700°C, respectively. The activity of silica over the expanded range is determined directly from the distribution data.3 Recently4-7 other investigators have studied the activities of SiO, and CaO, principally in the binary system, using different methods and obtaining somewhat different results. EXPERIMENTAL STUDY The experimental apparatus and procedure have been fully described in previous publications.1, 3 Six new series of experimental heats have been made, four at 1600° and two at 1700°C. Master slags of several fixed CaO/Al203 ratios were pre-melted in graphite crucibles, and these were used with additions of silica to prepare the initial slag for each experiment. Slag and metal were stirred at 100 rpm and CO was passed through the furnace at 150 cc per min. The initial sample was taken 1 hr after addition of slag at 1600°C or 1/2 hr after addition at 1700°C. The run was normally continued for 8 hr at 1600°C or 7 hr at 1700°C, and the final sample was taken at the end of this period. Changes in Si and SiO2 content indicate the direction of approach to equilibrium, and in a series of runs where the approach is from both sides this permits approximate location of the equilibrium line. Fig. 1 shows the results of such a series of 15 runs at 1600°C for slags of CaO/Al,O3 = 1.50 by weight. Figs. 2 and 3 record other series at 1600°C and Fig. 5 a series at 1700°C with fixed CaO/Al0 ratios. The results of the experiments at 162003°C have been reported in part in a preliminary note.3 In the experiments recorded in Figs. 4 and 6, the slags were saturated with A12O3 (or with CaO.2A12O3 within its field of stability) by suspending a pure alumina tube in the melt during the course of the run. The final slag analyses were used to establish the liquidus boundaries8 in the stability fields of CaO.2Al2O3 and of Al20,. ACTIVITY OF SILICA The free-energy change in the reaction has been calculated by Fulton and chipman2 from recent and trustworthy data including heats of formation, entropies, and heat capacities. The more recent determination by Olette of the high-temperature enthalpy of liquid silicon is in satisfactory agreement with the values used and therefore requires no revision of the result which is expressed in the equation: SiO2 (crist) + 2C (graph) = Si + 2CO(g.) [1] &F° = + 161,500 - 87.4T The standard state for silica is taken as pure cristobalite and that of Si as the pure liquid metal. Since the melts were made under 1 atm of CO and were graphite-saturated, the equilibrium constant for Eq. [I] reduces to K1 = asi /asio2. The value of this constant is 1.77 at 1600°C and 16.2 at 1700°C. Through K1, the activity of silica in the slag is directly related to the activity of silicon in the equilibrium metal.
Jan 1, 1960
-
Institute of Metals Division - The Hot Ductility of NickelBy D. A. Kraai, S. Floreen
The effect of 1 to 50 ppm S on the ductility of nickel at 800° to 1400°F was studied. Results at each temperature showed a decrease in the reduction of area from approximately 95 to 5 pet over the sulfur range studied. Ductility varied with grain size, but only to a minor extent relative to the sulfiw effect. The effects of sulfur were completely offset by the addition of small amounts of magnesium. The results indicate that the "hot-short" loss in ductility is not an inherent property of nickel. Some possible mechanisms which cause the loss in ductility are described. MANY metals or alloys that normally possess high ductility exhibit a ductility loss at intermediate temperatures. This loss in ductility is often called "hot-shortness". Numerous examples of this phenomenon have been reported in the literature. Much of this work has been reviewed by McLean1 and by Rhines and Wray.2 To date there is no fully satisfactory explanation of the cause of this intermediate-temperature hot-shortness. It is generally recognized that impurities, and particularly impurities that form low-melting phases, can cause embrittlement. Examples of hot-shortness have been reported, however, where there were no obvious impurities present which would lower the ductility. Thus there has been some basis for believing that hot-shortness is an inherent property, and that even the purest metal would display a hot-short loss in ductility. This latter hypothesis was recently put forward by Rhines and wray2 based on studies of nickel and nickel alloys. In the discussion of this paper, however, Guard noted that high-purity nickel showed no hot-shortness.3 Thus there is reason to doubt whether pure nickel, or by inference any other pure metal, will inherently exhibit hot-shortness. The present work was initiated to determine the extent to which hot ductility was sensitive to very small amounts of an impurity element. If it could be demonstrated that hot-shortness could be induced by only minor amounts of an impurity, then it might be argued that hot-shortness in general is an impurity effect, and not a fundamental property of pure metals. The particular impurity studied was sulfur in nickel. The deleterious effects of sulfur are well- known. It is also well-known, and will be shown below, that additions of magnesium will render sulfur innocuous. When no such refining agents are added, however, the Ni-S system is a very useful one for studying the influence of small amounts of impurities. EXPERIMENTAL PROCEDURE Two heats containing -24 ppm S were vacuum-melted and small amounts of magnesium were then added under an argon atmosphere. These alloys were used to show the effectiveness of the normal magnesium treatment in overcoming the influence of sulfur. A second series of alloys with a sulfur range of 1 to 50 ppm was then prepared by vacuum melting nickel in alumina crucibles. No elements, such as magnesium, which tend to combine with sulfur were added. The higher sulfur contents were attained by adding nickel sulfide. Lower sulfur contents were prepared using a method in which the melt was oxidized under vacuum to produce the reaction S + 2O = SO2 These heats were subsequently deoxidized with carbon. Ten- to twenty-pound ingots were cast of all of the alloys studied. The compositions are given in Table I. The ingots were forged and hot-rolled to 3/4-in. bar. They were then annealed at either 2000" or 1600°F to produce different grain sizes. One-quarter-in.-diam tensile specimens were machined from the bars. These were tested at 800°, 1000o, 1200°, and 1400°F. The specimens were held at temperature approximately 45 min before testing. The strain rates were 0.005 min-1 to yielding, and 0.05 min-' after yielding. No extensometers or gage marks were placed on the specimens because the higher sulfur heats tended to fracture at the knife-edge indentations or gage marks. The properties measured were ultimate tensile strength and reduction of area. The analytical technique for determining sulfur at low levels was that developed by Burke and Davis.4 They reported a standard deviation of 1 ppm at an average sulfur level of 4 ppm in NBS standards. A standard deviation of 3 ppm is probably more realistic for the alloys used in this investigation considering the possibility of some segregation in the ingots. RESULTS A summary of the tensile results is given in Table I. As shown in the table, both heats to which
Jan 1, 1964
-
Institute of Metals Division - The Influence of Hydrogen on the Tensile Properties of ColumbiumBy R. D. Daniels, T. W. Wood
The tensile properties of columbium and Cb-H alloys containing up to 455 ppm H were studied as a function of temperature and strain rate. Hydrogen, introduced into columbium at elevated temperatures, using a thermal -equilibrium technique, embrittled columbium most severely at about —77°C. This elnbrittle ment occurred even at hydrogen concentrations of an order of 20 ppm. At higher temperatures, the hydrogen tolerance of columbium increased in relation to the increased solubility of hydrogen in tile metal. Below this temperature hydrogen tolerance, as determined by ductility and fracture stress, increased slightly. Strain rate had little effect on the tensile results for cross-head speeds over the range 0.002 to 2.0 in. per min. Strain aging during the tensile test appears to explain the ductility mininmum at —77°C. The apparent increase in hydrogen tolerance at lower temperatures is attributed to the low mobility of hyhogen. Experiments were performed in which samples were prestrained in tension at room temperature and tested to failure at —196°C. Results suggest that hydrogetz segregation to preformed crack nuclei can cause subsequent embrittlement even at temperatures where hydrogen mobility is too low to cause embrittlement in a normal tensile test. COLUMBIUM is an example of the class of bcc metals with ductile-brittle transition temperatures sensitive to the presence of interstitial atom contaminants. Hydrogen is one of these embrittling contaminants. The embrittling effect of hydrogen is less potent, perhaps, in columbium than in some of the other bcc refractory metals, but it is still a problem of both theoretical and practical interest. Unlike hydrogen in iron and steels, hydrogen in columbium is exothermically rather than endo-thermically occluded. The embrittlement process in exothermic systems has not been studied as extensively as that in endothermic systems, especially at hydrogen concentrations below the limit of solubility. The purpose of this investigation was to evaluate the embrittlement process in initially pure columbium as a function of hydrogen content, temperature, and strain rate. The Cb-H phase diagram, according to Albrecht et al.,1 is shown in Fig. 1. Columbium reacts exothermically with hydrogen producing a solid solution at concentrations of less than about 250 ppm (parts per million by weight) H at room temperature. At concentrations above the highly temperature-dependent solvus a second phase is formed. Like many similar hydrogen-metal systems,2 his system exhibits a miscibility gap with respect to hydrogen solution. Albrecht found the critical temperature of the miscibility gap to be about 140°C, the critical concentration to be 0.23 atom fraction hydrogen, and the critical pressure to be 0.01 mm Hg. Above 140°C there is a solid solution of increasing lattice constant extending across the phase diagram. Hydrogen concentrations of particular interest in this investigation were those below the limit of solubility in columbium. At hydrogen concentrations above the limit of solubility, columbium will contain the hydrogen-rich second phase and will be brittle under most testing conditions because the hydride generally precipitates as platelets with coincident matrix lattice strains.1'3 At hydrogen concentrations below the limit of solubility, the tensile behavior of columbium is expected to be more sensitive to the interrelationships between hydrogen concentration and mobility and the testing variables such as temperature and strain rate. Literature references to the hydrogen embrittlement of metals, especially ferrous alloys and titanium alloys, are too voluminous to mention. It is only recently, however, that detailed studies of the hydrogen embrittlement of columbium have been undertaken. Wilcox et a1.4 studied the strain rate and temperature dependences of the low-temperature deformation behavior of fine-grained are-melted columbium (1 ppm H) and the effect of hydrogen content (1,9, and 30 ppm H) on the mechanical behavior of columbium at a series of temperatures for a single strain rate. A strain-aging peak was ob-served at about -50°C which was attributed to the presence of hydrogen in the metal. Eustice and carlson5 studied the effect of hydrogen on the ductility of V-Cb alloys at a series of temperatures over the range -196° to 25°C. Pure columbium was embrittled by 20 ppm H which produced a ductility transition at approximately -70°C. Ingram et al.6 studied the effect of oxygen and hydrogen on the tensile properties of columbium and tantalum. A minimum in the notched-to-unnotched tensile ratio of hydrogenated columbium was obtained at about -75°C, but because of the relatively large hydrogen content employed (200 and 390 ppm) the ductility
Jan 1, 1965
-
Geology-Its Application and Limitation in the Selection and Evaluation of Placer DepositsBy William H. Breeding
The remarks that follow are based substantially on experience covering 45 years, 80% of which has been in placer work, rather than on a review of available literature. Most commercial placers have been deposited by the action of water. The richer and more- difficult-to-mine placers are those in the headwater areas where gradients are steepest. The most lucrative placers are generally in inter- mediate areas where volumes are greater, fewer boulders are present, and gradients are from 3% to 1-1/2%. The higher volume, lower grade placers are in the lower reaches of river systems where gradients are lower. Where gold-bearing rivers have discharged into the sea, wave action can concentrate values on beaches, past and present. Most of the rich, readily accessible placers were mined by our forefathers. Current opportunities exist: (1) in remote areas where infrastructure has been absent in the past, or development has been prohibited by adverse ownership - political or commercial; (2) in deposits that could not be mined by equipment available to our forefathers; (3) in deposits unidentified by our forefathers; (4) where the-price-of-product/cost ratio is substantially better than in earlier years; or (5) a combination of those factors. When I entered the placer business in the late 1930s, and subsequently, a prevailing opinion believed that glacial deposits should be avoided as irregular in mineral content and composition, and unrewarding to explore and develop; yet an operator has been mining a fluvio-glacial deposit profitably for the past 17 years. Rich buried placer channels, of ten called paleo-channels were worked in the last century, generally by hand methods, and under conditions that would be unacceptable today. Exploration and mining equipment now available make some of these channels attractive targets. Well-known examples are in California and Australia. The formation of a commercial placer requires a source of valuable minerals. Above primary deposits, there may be eluvial deposits formed by the erosion of gangue minerals and the concentration "in situ" of valuable minerals. Down slope from these deposits are the hillside or colluvial deposits, and below them are the alluvial deposits of redeposited material. Most of the great placer fields of the world are the result of several generations of erosion and deposition. Well-known examples are in California and Colombia. Gold is a very resistant and malleable material, and gold placers may extend for 64 or 80 km (40 or 50 miles) along a river system. Platinum is less malleable, but is very resistant to disintegration. Diamonds are extremely hard, and (especially gem diamonds) may be found over great lengths of a river system. Cassiterite is less resistant to disintegration, and tin placers seldom extend over two miles without resupply from an additional source or sources of mineralizaton. Tungsten minerals are generally more friable, and within a few hundred yards of the source disintegrate to the point that they are uneconomical to recover. Rutile, ilmenite and zircon placers generally result from the weathering of massive deposits, and may be encountered over extensive areas; most are fine grained and durable. What does a geologist or mining engineer look for in placer exploration? The old adage to look for a mine near an existing mine is still valid. You need a source of valuable mineral. Then you require conditions for concentration, which means a satisfactory gradient and/or other conditions that will permit heavy minerals to settle. Nicely riffled gravel, often called a shingling of the bars, is conducive to placer formation. Coarser gravel is logically associated with coarser gold. Excessive clay and/or high stream velocities in narrow channels can carry gold far downstream and distribute it uncommercially over a large area. When material is extremely fine, in situ weathering and concentration become more important. Placers frequently occur distant from lode mines, and one must remember that in a larger watershed the exceptional floods that occur once in a hundred or a thousand years can move great quantities of material long distances. The carrying power of water is said to vary with the fifth or sixth power of its velocity. I am not ready to disagree with Waldemar Lindgren and accept that many commercial placers are substantially enriched by the chemical deposition of gold from solutions; however, I have seen crystalline gold in clayey material quite distant from known sources of primary gold that is dif-
Jan 1, 1985
-
Offshore Operation - Outline of Weather and Wave Forecasting Techniques.By J. E. Graham, A. H. Glenn
Oil operators engaged in drilling on the Continental Shelf of Louisiana and Texas are in agreement that adverse weather and wave action are two of the greatest hazards to the safety and efficiency of their work. It was ami-pated when the offshore operations commenced that such would be the case, and experience to date has verified this assumption. Because atmospheric conditions and wave action involve tremendous amounts of energy it is highly unlikely that it will be possible to control any but the most localized weather and wave phenomena within the foreseeable future. Thus. as long as the offshore operations involve the movement of small craft and barges over exposed waters, and the transfer of personnel and heavy equipment from these craft to either fixed structures or larger craft at close quarters, the weather and wave problem will remain. Taking into consideration the persistence of the wave and weather problem and the improbability of achieving a direct solution, the Humble Oil & Refining Company, in planning its offshore campaign investigated the possibility of forecasting wave and weather conditions in order to provide warnings of dangerous conditions and increase efficiency in day-to-day planning of work. It was recognized that predictions of wave and weather conditions based on meteorology and oceanography, both geophysical sciences, are not 100 per cent accurate and application of forecasts in the offshore work was dependent on whether they provided information which was sufficiently greater in accuracy than the layman's guess to be worth the expenditure involved. During World War 11. meteorology and oceanography were used with success in reducing danger resulting from environmental conditions and increasing efficiency of operations exposed to the elements. This success was partially the result. of improvement in the scientific techniques involved and the procurement and distribution of observational data, and partially due to the large scope of the military operations which meant that a reduction of losses of a relatively small percentage of the total cost amounted to a large figure expressed in terms of dollars. Since the offshore drilling involves an extremely large financial investment, it was considered that the experience of the Armed Services in successfully employing meteorology and oceanography might be duplicated in the oil industry. In addition. the oil industry's successful experience in utilizing seismology, geology, and terrestrial magnetism; all geophysical sciences, indicated that meteorology and oceanography, also of the family of geophysical sciences and sharing their scientific assets and liabilities, might be profitably put to use. Since the immediate problem involving the sciences of meteorology and oceanography in the offshore campaign is wave action, a program was inaugurated within the Humble Oil & Refining Company during June 1947. the purpose of which was to ascertain the applicability and limitations of wave forecasting in the offshore campaign. A summary of the effective wave forecasting techniques developed during the war was prepared in the form of a forecasting manual for the Continental Shelf off Grand Isle, Louisiana, by Bates and Glenn. After completion of this manual, experimental forecasts were prepared daily over a two-month period by Graham and Thompson to determine the accuracy of the forecasts. It was considered that the accuracy of the experimental forecasts justified a more extensive test under actual operating conditions in the offshore work and the firm of A. H. Glenn and Associates was set up under the sponsorship of the Humble Oil & Refining Company to work with the Humble Grand Isle District in providing forecasts of wave and weather conditions over a one-year period. This paper discusses the service now provided to the Grand Isle District, its applicability and limitations. TYPE OF FORECASTS REQUIRED It was apparent before the commence-mence of the forecasting service that a specialized type of forecast was required. Many of the weather elements of interest to the general public, such as rain and temperature, are of minor concern to offshore operators. On the other hand, such elements as wave height and wind speed and direction are of great concern in the offshore operations since variations in wave height of a few feet in the critical range divide safe from hazardous working conditions. To be of utility. a forecasting service for the offshore work must provide detailed forecasts of the elements which affect the operation. With this in mind, it was decided that forecasts would include the following information: average wave heights to the nearest foot, wind speeds within a range of approximately 5 miles per hour, and wind directions within 221 degrees. Since the procedure for forecasting these elements involves thorough analysis of weather data, it was decided to include a generalized forecast of weather conditions such as rain and cloud cover, although these are of secondary importance.
Jan 1, 1949
-
Offshore Operation - Outline of Weather and Wave Forecasting Techniques.By A. H. Glenn, J. E. Graham
Oil operators engaged in drilling on the Continental Shelf of Louisiana and Texas are in agreement that adverse weather and wave action are two of the greatest hazards to the safety and efficiency of their work. It was ami-pated when the offshore operations commenced that such would be the case, and experience to date has verified this assumption. Because atmospheric conditions and wave action involve tremendous amounts of energy it is highly unlikely that it will be possible to control any but the most localized weather and wave phenomena within the foreseeable future. Thus. as long as the offshore operations involve the movement of small craft and barges over exposed waters, and the transfer of personnel and heavy equipment from these craft to either fixed structures or larger craft at close quarters, the weather and wave problem will remain. Taking into consideration the persistence of the wave and weather problem and the improbability of achieving a direct solution, the Humble Oil & Refining Company, in planning its offshore campaign investigated the possibility of forecasting wave and weather conditions in order to provide warnings of dangerous conditions and increase efficiency in day-to-day planning of work. It was recognized that predictions of wave and weather conditions based on meteorology and oceanography, both geophysical sciences, are not 100 per cent accurate and application of forecasts in the offshore work was dependent on whether they provided information which was sufficiently greater in accuracy than the layman's guess to be worth the expenditure involved. During World War 11. meteorology and oceanography were used with success in reducing danger resulting from environmental conditions and increasing efficiency of operations exposed to the elements. This success was partially the result. of improvement in the scientific techniques involved and the procurement and distribution of observational data, and partially due to the large scope of the military operations which meant that a reduction of losses of a relatively small percentage of the total cost amounted to a large figure expressed in terms of dollars. Since the offshore drilling involves an extremely large financial investment, it was considered that the experience of the Armed Services in successfully employing meteorology and oceanography might be duplicated in the oil industry. In addition. the oil industry's successful experience in utilizing seismology, geology, and terrestrial magnetism; all geophysical sciences, indicated that meteorology and oceanography, also of the family of geophysical sciences and sharing their scientific assets and liabilities, might be profitably put to use. Since the immediate problem involving the sciences of meteorology and oceanography in the offshore campaign is wave action, a program was inaugurated within the Humble Oil & Refining Company during June 1947. the purpose of which was to ascertain the applicability and limitations of wave forecasting in the offshore campaign. A summary of the effective wave forecasting techniques developed during the war was prepared in the form of a forecasting manual for the Continental Shelf off Grand Isle, Louisiana, by Bates and Glenn. After completion of this manual, experimental forecasts were prepared daily over a two-month period by Graham and Thompson to determine the accuracy of the forecasts. It was considered that the accuracy of the experimental forecasts justified a more extensive test under actual operating conditions in the offshore work and the firm of A. H. Glenn and Associates was set up under the sponsorship of the Humble Oil & Refining Company to work with the Humble Grand Isle District in providing forecasts of wave and weather conditions over a one-year period. This paper discusses the service now provided to the Grand Isle District, its applicability and limitations. TYPE OF FORECASTS REQUIRED It was apparent before the commence-mence of the forecasting service that a specialized type of forecast was required. Many of the weather elements of interest to the general public, such as rain and temperature, are of minor concern to offshore operators. On the other hand, such elements as wave height and wind speed and direction are of great concern in the offshore operations since variations in wave height of a few feet in the critical range divide safe from hazardous working conditions. To be of utility. a forecasting service for the offshore work must provide detailed forecasts of the elements which affect the operation. With this in mind, it was decided that forecasts would include the following information: average wave heights to the nearest foot, wind speeds within a range of approximately 5 miles per hour, and wind directions within 221 degrees. Since the procedure for forecasting these elements involves thorough analysis of weather data, it was decided to include a generalized forecast of weather conditions such as rain and cloud cover, although these are of secondary importance.
Jan 1, 1949