Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Metal Mining - Pipeline Transportation of PhosphateBy J. A. Barr, R. B. Burt, I. S. Tillotson
THE pumping of solids in water suspension is an important part of many metallurgical and mining operations. In most cases, it is still in the rule of thumb category for which no universal formula has been developed, and much research is needed. Because of the limited and incomplete data available, this article may be classed as an experience paper, which is presented with the hope that some contribution will be made toward the development of the so-called universal formula. This formula, if and when developed, may be evolved from several factors, many of which are not now available for general application. The designing engineer is interested in obtaining accurate forecasts on: 1—the minimum velocities needed to prevent choke-ups in the pipeline, which in turn dictates pipe sizes, 2—power required for pumping, 3—pump selection. The basic factors for a given problem will include: 1—weight per unit of time of solids to be handled, 2—specific gravity of solids, for calculation of volume, friction and power, 3—screen analysis of solids with the colloidal acting, i.e., the slime fraction, a very important factor, 4— shape of particle or some means of determining a friction constant, 5—effects of percentage of solids, 6—development of a viscosity factor to be used in the overall calculations, 7—calculation of the lower limits of pipeline velocities permissible, 8—calculation of total head, pump horsepower, and 9—setting up of pump specifications. In certain limited cases horsepower and total heads and minimum velocities may be computed and a suitable pump selected from basic data, but in many cases, as in mining of Florida pebble phosphate, experience rather than a hydraulic formula still should be used as a basis of selection. Pumping Florida Pebble Matrix Pumping at the Noralyn mine of International Minerals and Chemical Corp. will be used as an example. Other areas will vary as to the characteristics of the matrix, especially the slime content. A typical screen analysis of this matrix is: +14 mesh, pebble size,* 2.1 pct; —14 +35 mesh, 11.4 pct; -35 +I50 mesh, 60.5 pct; -150 mesh, 25.0; total, 100 pct; moisture in bank, 20.0 pct; weight per cu ft in bank, 120 lb. The —150 mesh fraction may increase to as much as 35 pct in adjacent areas. When thoroughly elutriated, the matrix has a relatively slow settling rate, which is an important factor in permitting lower pipeline velocities without choke-ups. Exact data is not available to evaluate settling rates. For a factor of 100 a suspension of clean building sand in water is suggested. When pumping long distances, a quick settling matrix allows the coarser solids to settle out along the bottom of the pipeline, causing drag, turbulence, and increased friction. With a slow settling matrix as at Noralyn, turbulence acts to keep the solids in suspension at a lower friction head, regardless of the pumping distance. When the pebble content of the matrix, i.e., the + 14 mesh fraction, is in excess of 10 pct of the total solids, trouble may be expected from settling out even in normal pumping distances. To prevent choke-ups and maintain tonnage, an additional pump must be added in the long runs, where one pump would otherwise be satisfactory. A typical pulp handled is: total volume, 7800 gpm; water, 4500; solids pumped per hr, 4200 lb; sp gr pulp, 1.4; percent solids in pulp, 46.; pipe size, 16-in. ID; pulp velocity, 12.85 fps; probable critical velocity, 10 fps, as below this minimum velocity choke-ups would be numerous. In calculating friction heads the Armco handbook is used where a roughness factor based on 15-year-old pipe is set up. Because the pipe used in pumping matrix is smooth and polished because of the scouring action of the phosphate and its silica content, the head losses in the Armco table for water are practically the same as in pumping the Noralyn matrix through smooth pipe, plus the fact that conditions vary widely over short periods, making accurate determinations difficult to obtain. New pumps and pump changes are being tested continuously and a wealth of data built up. This has resulted in a substantial improvement and lower relative costs in pumping matrix. The Florida phosphate industry is constantly seeking to offset higher wage and material costs with improved technique. Until a few years ago a 12-in. discharge pump was commonly used, with heads as low as 80 ft. Sizes have gradually increased and heads more than doubled. For example, the following pump was placed under test at the Noralyn mine: make, Georgia Iron Works; size, suction 16 in., discharge 14 in.; impeller, 39-in. diam; motor, 600 hp, slip ring; full load speed, 514 rpm. The results were increased head, higher capacity than the older design, with fewer pumps in the line from mine to washer.
Jan 1, 1953
-
Pipeline Transportation Of PhosphateBy R. B. Burt, James A. Barr, I. S. Tillotson
THE pumping of solids in water suspension is an important part of many metallurgical and mining operations. In most cases, it is still in the rule of thumb category for which no universal formula has been developed, and much research is needed. Because of the limited and incomplete data available, this article may be classed as an experience paper, which is presented with the hope that some contribution will be made toward the development of the so-called universal formula. This formula, if and when developed, may be evolved from several factors, many of which are not now available for general application. The designing engineer is interested in obtaining accurate forecasts on: 1-the minimum velocities needed to prevent choke-ups in the pipeline, which in turn dictates pipe sizes, 2-power required for pumping, 3-pump selection. The basic factors for a given problem will include: 1-weight per unit of time of solids to be handled, 2-specific gravity of solids, for calculation of volume, friction and power, 3-screen analysis of solids with the colloidal acting, i.e., the slime fraction, a very important factor, 4-shape of particle or some means of determining a friction constant, 5-effects of percentage of solids, 6-development of a viscosity factor to be used in the overall calculations, 7-calculation of the lower limits of pipeline velocities permissible, 8-calculation of total head, pump horsepower, and 9-setting up of pump specifications. In certain limited cases horsepower and total heads and minimum velocities may be computed and a suitable pump selected from basic data, but in many cases, as in mining of Florida pebble, phosphate, experience rather than a hydraulic formula still should be used as a basis of selection. Pumping Florida Pebble Matrix Pumping at the Noralyn mine of International Minerals and Chemical Corp. will be used as an example. Other areas will vary as to the characteristics of the matrix, especially the slime content. A typical screen analysis of this matrix is: +14 mesh, pebble size,* 2.1 pct; -14 +35 mesh, 11.4 pct; -35 +150 mesh, 60.5 pct; -150 mesh, 25.0; total, 100 pct; moisture in bank, 20.0 pct; weight per cu ft in bank, 120 lb. The -150 mesh fraction may increase to as much as 35 pct in adjacent areas. When thoroughly elutriated, the matrix has a relatively slow settling rate, which is an important factor in permitting lower pipeline velocities without choke-ups. Exact data is not available to evaluate settling rates. For a factor of 100 a suspension of clean building sand in water is suggested. When pumping long distances, a quick settling matrix allows the coarser solids to settle out along the bottom of the pipeline, causing drag, turbulence, and increased friction. With a slow settling matrix as at Noralyn, turbulence acts to keep the solids in suspension at a lower friction head, regardless of the pumping distance. When the pebble, content of the matrix, i.e., the +14 mesh fraction, is in excess of 10 pct of the total solids, trouble may be expected from settling out even in normal pumping distances. To prevent choke-ups and maintain tonnage, an additional pump must be added in the long runs, where one pump would otherwise be satisfactory. A typical pulp handled is: total volume, 7800 gpm; water, 4500; solids pumped per hr, 4200 lb; sp gr pulp, 1.4; percent solids in pulp, 46.; pipe size, 16-in. ID; pulp velocity, 12.85 fps; probable critical velocity, 10 fps, as below this minimum -velocity choke-ups would be numerous. In calculating friction heads the Armco handbook is used where a roughness factor based on 15-year-old pipe is set up. Because the pipe used in pumping matrix is, smooth and- polished because of the scouring, action of the phosphate and its silica content, the head losses in the Armco table for water are practically the same as in pumping the Noralyn matrix through smooth pipe, plus the fact that conditions vary widely over short periods, making accurate determinations difficult to obtain. New pumps and pump, changes are being tested continuously and a wealth of data built up. This has resulted in a substantial improvement and lower relative costs in pumping matrix. The Florida phosphate industry is constantly seeking to offset higher wage and material costs with improved technique. Until a few years ago a 12-in. discharge pump was commonly used, with heads as low as 80 ft. Sizes have gradually increased and heads more than doubled. For example, the following pump was placed under test at the Noralyn mine: make, Georgia Iron Works; size, suction 16 in., discharge 14 in.; impeller, 39-in. diam; motor, 600 hp, slip ring; full load speed, 514 rpm. The results were increased head, higher capacity than the older design, with fewer pumps in the line from mine to washer.
Jan 1, 1952
-
Metal Mining - Pipeline Transportation of PhosphateBy R. B. Burt, J. A. Barr, I. S. Tillotson
THE pumping of solids in water suspension is an important part of many metallurgical and mining operations. In most cases, it is still in the rule of thumb category for which no universal formula has been developed, and much research is needed. Because of the limited and incomplete data available, this article may be classed as an experience paper, which is presented with the hope that some contribution will be made toward the development of the so-called universal formula. This formula, if and when developed, may be evolved from several factors, many of which are not now available for general application. The designing engineer is interested in obtaining accurate forecasts on: 1—the minimum velocities needed to prevent choke-ups in the pipeline, which in turn dictates pipe sizes, 2—power required for pumping, 3—pump selection. The basic factors for a given problem will include: 1—weight per unit of time of solids to be handled, 2—specific gravity of solids, for calculation of volume, friction and power, 3—screen analysis of solids with the colloidal acting, i.e., the slime fraction, a very important factor, 4— shape of particle or some means of determining a friction constant, 5—effects of percentage of solids, 6—development of a viscosity factor to be used in the overall calculations, 7—calculation of the lower limits of pipeline velocities permissible, 8—calculation of total head, pump horsepower, and 9—setting up of pump specifications. In certain limited cases horsepower and total heads and minimum velocities may be computed and a suitable pump selected from basic data, but in many cases, as in mining of Florida pebble phosphate, experience rather than a hydraulic formula still should be used as a basis of selection. Pumping Florida Pebble Matrix Pumping at the Noralyn mine of International Minerals and Chemical Corp. will be used as an example. Other areas will vary as to the characteristics of the matrix, especially the slime content. A typical screen analysis of this matrix is: +14 mesh, pebble size,* 2.1 pct; —14 +35 mesh, 11.4 pct; -35 +I50 mesh, 60.5 pct; -150 mesh, 25.0; total, 100 pct; moisture in bank, 20.0 pct; weight per cu ft in bank, 120 lb. The —150 mesh fraction may increase to as much as 35 pct in adjacent areas. When thoroughly elutriated, the matrix has a relatively slow settling rate, which is an important factor in permitting lower pipeline velocities without choke-ups. Exact data is not available to evaluate settling rates. For a factor of 100 a suspension of clean building sand in water is suggested. When pumping long distances, a quick settling matrix allows the coarser solids to settle out along the bottom of the pipeline, causing drag, turbulence, and increased friction. With a slow settling matrix as at Noralyn, turbulence acts to keep the solids in suspension at a lower friction head, regardless of the pumping distance. When the pebble content of the matrix, i.e., the + 14 mesh fraction, is in excess of 10 pct of the total solids, trouble may be expected from settling out even in normal pumping distances. To prevent choke-ups and maintain tonnage, an additional pump must be added in the long runs, where one pump would otherwise be satisfactory. A typical pulp handled is: total volume, 7800 gpm; water, 4500; solids pumped per hr, 4200 lb; sp gr pulp, 1.4; percent solids in pulp, 46.; pipe size, 16-in. ID; pulp velocity, 12.85 fps; probable critical velocity, 10 fps, as below this minimum velocity choke-ups would be numerous. In calculating friction heads the Armco handbook is used where a roughness factor based on 15-year-old pipe is set up. Because the pipe used in pumping matrix is smooth and polished because of the scouring action of the phosphate and its silica content, the head losses in the Armco table for water are practically the same as in pumping the Noralyn matrix through smooth pipe, plus the fact that conditions vary widely over short periods, making accurate determinations difficult to obtain. New pumps and pump changes are being tested continuously and a wealth of data built up. This has resulted in a substantial improvement and lower relative costs in pumping matrix. The Florida phosphate industry is constantly seeking to offset higher wage and material costs with improved technique. Until a few years ago a 12-in. discharge pump was commonly used, with heads as low as 80 ft. Sizes have gradually increased and heads more than doubled. For example, the following pump was placed under test at the Noralyn mine: make, Georgia Iron Works; size, suction 16 in., discharge 14 in.; impeller, 39-in. diam; motor, 600 hp, slip ring; full load speed, 514 rpm. The results were increased head, higher capacity than the older design, with fewer pumps in the line from mine to washer.
Jan 1, 1953
-
Institute of Metals Division - The Origin of Lineage Substructure in AluminumBy P. E. Doherty, B. Chalmers
Subboundaries may be revealed in aluminum by the formation of pits on the surface during cooling from elevated temperatures. The pits do not form in the vicinity of high- or low-angle boundaries. They are attributed to the condensation of vacancies from a super saturation produced during coolirzg. Using the vacancy pit and Schulz X-ray techniques for observing low-angle boundaries, a study was made of the transition from the nearly perfect seed to the striated structuke characterist-ic of aluminum crystals grown from the melt. It was found that the individual striation boundaries develop by the coalescence of very small-angle boundaries, as well as by the addition of individual dislocations. Several mechanisms for the formation of striations are discussed. Evidence was found suggesting that a super-saturation of vacancies exists near a growing interface, and it is proposed that the resulting climb of existing dislocalions produces "half'-loops" at the interface, which combine to form the low-angle striation boundaries. LINEAGE, or "striation" boundaries, have been studied in detail by Teghtsoonian and Chalmers 1,2 in crystals of tin grown from the melt, and by Atwater and Chalmers3 in lead. They found that single crystals grown from the melt consist of regions which are separated by subboundaries that lie roughly parallel to the growth direction. A difference in orientation of 0.5 to 3 deg exists between the striated regions; the misorientation is such that the lattice of one region could be brought into coincidence with the lattice of its neighbor by a rotation about an axis approximately parallel to the direction of growth of the crystal. They observed an incubation distance for the formation of striations which increased with decreasing growth rate. They also found that in any crystal, the sum of all rotations of the lattice in one sense, in going from one striation to the next, is very nearly equal to the sum of all the rotations in the opposite sense. A striation boundary, which is a low-angle grain boundary, can be described as an array of dislocations. If it is assumed that suitable dislocations are introduced into the crystal during solidification, the formation of striation boundaries can be explained as a result of the migration of the disloca- tions into arrays. The formation of arrays is energetically favorable since the energy of an assembly of dislocations can be reduced by the interaction of the stress fields when a suitable array is formed. This investigation presents and interprets new information concerning the nature and origin of striation boundaries in aluminum. EXPERIMENTAL TECHNIQUE Single crystals of high-purity aluminum (Alcoa 99.992 pct) were prepared by horizontal growth from the melt.'' The specimens were subsequently electropolished in a solution of 5 parts methanol to 1 part perchloric acid kept between -10° and 0°C in a bath of dry ice and alcohol. The current density was approximately 6 amps per sq in. Doherty and Davis9 have shown that in aluminum sub-boundaries with misorientations of not less than several seconds of arc may be revealed by the vacancy pit technique. During cooling from elevated temperatures pits form on electropolished surfaces of aluminum crystals as a result of the condensation of vacancies.11 Pits do not form in the vicinity of small- or large-angle grain boundaries, presumably because such boundaries act as sinks for vacancies. Boundaries of misorientations down to 3 sec of arc are revealed as pit-free regions, see Fig. 1. The Schulz X-ray technique12 was used to determine the angular misorientations of subboundaries. In this method, white radiation from a micro-focus X-ray tube is used to produce an image of a fairly large area of a single crystal surface. Subboundaries cause splitting in the diffracted image, see Fig. 2. Misorientations down to about 15 sec of arc may be observed with this technique. OBSERVATIONS AND DISCUSSION Figure 1 shows a striated aluminum crystal grown at 10 cm per hr etched by the vacancy pit technique. An incubation distance of about 1 cm is observed before the initiation of striation boundaries. Fig. 2 is a Schulz X-ray photograph of a striated crystal similar to that shown in Fig. 1. A large area of the crystal was studied by means of a series of photographs. Fig. 2, which is a reflection from the (100) plane, included about the first 4 cm of crystal to freeze. There is an incubation distance of about 1 cm, and a distance of about 2 cm over which the angle of misorientation builds up to its final value of approximately one degree. Some twist component can be seen in Fig. 2 at the right side of the photograph. From Fig. 2 it can be seen that the sum of all rotations of the lattice in one
Jan 1, 1962
-
Industrial Minerals - Pipeline Transportation of PhosphateBy J. A. Barr, R. B. Burt, I. S. Tillotson
THE pumping of solids in water suspension is an important part of many metallurgical and mining operations. In most cases, it is still in the rule of thumb category for which no universal formula has been developed, and much research is needed. Because of the limited and incomplete data available, this article may be classed as an experience paper, which is presented with the hope that some contribution will be made toward the development of the so-called universal formula. This formula, if and when developed, may be evolved from several factors, many of which are not now available for general application. The designing engineer is interested in obtaining accurate forecasts on: 1—the minimum velocities needed to prevent choke-ups in the pipeline, which in turn dictates pipe sizes, 2—power required for pumping, 3—pump selection. The basic factors for a given problem will include: 1—weight per unit of time of solids to be handled, 2—specific gravity of solids, for calculation of volume, friction and power, 3—screen analysis of solids with the colloidal acting, i.e., the slime fraction, a very important factor, 4— shape of particle or some means of determining a friction constant, 5—effects of percentage of solids, 6—development of a viscosity factor to be used in the overall calculations, 7—calculation of the lower limits of pipeline velocities permissible, 8—calculation of total head, pump horsepower, and 9—setting up of pump specifications. In certain limited cases horsepower and total heads and minimum velocities may be computed and a suitable pump selected from basic data, but in many cases, as in mining of Florida pebble phosphate, experience rather than a hydraulic formula still should be used as a basis of selection. Pumping Florida Pebble Matrix Pumping at the Noralyn mine of International Minerals and Chemical Corp. will be used as an example. Other areas will vary as to the characteristics of the matrix, especially the slime content. A typical screen analysis of this matrix is: +14 mesh, pebble size,* 2.1 pct; —14 +35 mesh, 11.4 pct; -35 +I50 mesh, 60.5 pct; -150 mesh, 25.0; total, 100 pct; moisture in bank, 20.0 pct; weight per cu ft in bank, 120 lb. The —150 mesh fraction may increase to as much as 35 pct in adjacent areas. When thoroughly elutriated, the matrix has a relatively slow settling rate, which is an important factor in permitting lower pipeline velocities without choke-ups. Exact data is not available to evaluate settling rates. For a factor of 100 a suspension of clean building sand in water is suggested. When pumping long * Pebble is a commercial designation for the coarser fraction of finished phosphate from a washer, usually +14 mesh. distances, a quick settling matrix allows the coarser solids to settle out along the bottom of the pipeline, causing drag, turbulence, and increased friction. With a slow settling matrix as at Noralyn, turbulence acts to keep the solids in suspension at a lower friction head, regardless of the pumping distance. When the pebble content of the matrix, i.e., the + 14 mesh fraction, is in excess of 10 pct of the total solids, trouble may be expected from settling out even in normal pumping distances. To prevent choke-ups and maintain tonnage, an additional pump must be added in the long runs, where one pump would otherwise be satisfactory. A typical pulp handled is: total volume, 7800 gpm; water, 4500; solids pumped per hr, 4200 lb; sp gr pulp, 1.4; percent solids in pulp, 46.; pipe size, 16-in. ID; pulp velocity, 12.85 fps; probable critical velocity, 10 fps, as below this minimum velocity choke-ups would be numerous. In calculating friction heads the Armco handbook is used where a roughness factor based on 15-year-old pipe is set up. Because the pipe used in pumping matrix is smooth and polished because of the scouring action of the phosphate and its silica content, the head losses in the Armco table for water are practically the same as in pumping the Noralyn matrix through smooth pipe, plus the fact that conditions vary widely over short periods, making accurate determinations difficult to obtain. New pumps and pump changes are being tested continuously and a wealth of data built up. This has resulted in a substantial improvement and lower relative costs in pumping matrix. The Florida phosphate industry is constantly seeking to offset higher wage and material costs with improved technique. Until a few years ago a 12-in. discharge pump was commonly used, with heads as low as 80 ft. Sizes have gradually increased and heads more than doubled. For example, the following pump was placed under test at the Noralyn mine: make, Georgia Iron Works; size, suction 16 in., discharge 14 in.; impeller, 39-in. diam; motor, 600 hp, slip ring; full load speed, 514 rpm. The results were increased head, higher capacity than the older design, with fewer pumps in the line from mine to washer.
Jan 1, 1953
-
Industrial Minerals - Pipeline Transportation of PhosphateBy R. B. Burt, J. A. Barr, I. S. Tillotson
THE pumping of solids in water suspension is an important part of many metallurgical and mining operations. In most cases, it is still in the rule of thumb category for which no universal formula has been developed, and much research is needed. Because of the limited and incomplete data available, this article may be classed as an experience paper, which is presented with the hope that some contribution will be made toward the development of the so-called universal formula. This formula, if and when developed, may be evolved from several factors, many of which are not now available for general application. The designing engineer is interested in obtaining accurate forecasts on: 1—the minimum velocities needed to prevent choke-ups in the pipeline, which in turn dictates pipe sizes, 2—power required for pumping, 3—pump selection. The basic factors for a given problem will include: 1—weight per unit of time of solids to be handled, 2—specific gravity of solids, for calculation of volume, friction and power, 3—screen analysis of solids with the colloidal acting, i.e., the slime fraction, a very important factor, 4— shape of particle or some means of determining a friction constant, 5—effects of percentage of solids, 6—development of a viscosity factor to be used in the overall calculations, 7—calculation of the lower limits of pipeline velocities permissible, 8—calculation of total head, pump horsepower, and 9—setting up of pump specifications. In certain limited cases horsepower and total heads and minimum velocities may be computed and a suitable pump selected from basic data, but in many cases, as in mining of Florida pebble phosphate, experience rather than a hydraulic formula still should be used as a basis of selection. Pumping Florida Pebble Matrix Pumping at the Noralyn mine of International Minerals and Chemical Corp. will be used as an example. Other areas will vary as to the characteristics of the matrix, especially the slime content. A typical screen analysis of this matrix is: +14 mesh, pebble size,* 2.1 pct; —14 +35 mesh, 11.4 pct; -35 +I50 mesh, 60.5 pct; -150 mesh, 25.0; total, 100 pct; moisture in bank, 20.0 pct; weight per cu ft in bank, 120 lb. The —150 mesh fraction may increase to as much as 35 pct in adjacent areas. When thoroughly elutriated, the matrix has a relatively slow settling rate, which is an important factor in permitting lower pipeline velocities without choke-ups. Exact data is not available to evaluate settling rates. For a factor of 100 a suspension of clean building sand in water is suggested. When pumping long * Pebble is a commercial designation for the coarser fraction of finished phosphate from a washer, usually +14 mesh. distances, a quick settling matrix allows the coarser solids to settle out along the bottom of the pipeline, causing drag, turbulence, and increased friction. With a slow settling matrix as at Noralyn, turbulence acts to keep the solids in suspension at a lower friction head, regardless of the pumping distance. When the pebble content of the matrix, i.e., the + 14 mesh fraction, is in excess of 10 pct of the total solids, trouble may be expected from settling out even in normal pumping distances. To prevent choke-ups and maintain tonnage, an additional pump must be added in the long runs, where one pump would otherwise be satisfactory. A typical pulp handled is: total volume, 7800 gpm; water, 4500; solids pumped per hr, 4200 lb; sp gr pulp, 1.4; percent solids in pulp, 46.; pipe size, 16-in. ID; pulp velocity, 12.85 fps; probable critical velocity, 10 fps, as below this minimum velocity choke-ups would be numerous. In calculating friction heads the Armco handbook is used where a roughness factor based on 15-year-old pipe is set up. Because the pipe used in pumping matrix is smooth and polished because of the scouring action of the phosphate and its silica content, the head losses in the Armco table for water are practically the same as in pumping the Noralyn matrix through smooth pipe, plus the fact that conditions vary widely over short periods, making accurate determinations difficult to obtain. New pumps and pump changes are being tested continuously and a wealth of data built up. This has resulted in a substantial improvement and lower relative costs in pumping matrix. The Florida phosphate industry is constantly seeking to offset higher wage and material costs with improved technique. Until a few years ago a 12-in. discharge pump was commonly used, with heads as low as 80 ft. Sizes have gradually increased and heads more than doubled. For example, the following pump was placed under test at the Noralyn mine: make, Georgia Iron Works; size, suction 16 in., discharge 14 in.; impeller, 39-in. diam; motor, 600 hp, slip ring; full load speed, 514 rpm. The results were increased head, higher capacity than the older design, with fewer pumps in the line from mine to washer.
Jan 1, 1953
-
Producing - Equipment, Methods and Materials - Behavior of Casing Subjected to Salt LoadingBy J. B. Cheatham, J. W. McEver
A laboratory investigation of the behavior of casing subjected to salt loading indicates that it is not economically feasible to design casing for the most severe situations of nonuniform loading. When the annulus is completely filled with cement, casing is subjected to a nearly uniform loading approximately equal to the overburden pressure, and, although the modes of failure may be different, the design of casing to withstand uniform salt pressure can be computed on the same basis as the design of casing to withstand fluid pressure. Failure of casing by nonuniform loading in inadequately cemented washed-out salt sections should be considered a cementing problem rather than a casing design problem. INTRODUCTION Casing failures in salt zones have created an interest in understanding the behavior of casing subjected to salt loading. The designer must know the magnitudes and types of loading to be expected from salt flow and he must be able to calculate the reaction of the casing to these loads. In the laboratory study reported in this paper, short-time experimental measurements of the load required to force steel cylinders into rock salt are used as a basis for computing the salt loading on casing. These results must be considered to be qualitative only since rock salt behaves differently under down-hole and atmospheric conditions and also may vary in strength at different locations. The beneficial effects of (1) cement around casing, (2) a liner cemented inside of casing, and (3) fluid pressure inside of casing in resisting casing failure are considered. ROCK SALT BEHAVIOR UNDER STRESS The effects of such factors as overburden loading, internal fluid pressure, and temperature on the flow of salt around cavities have been studied extensively at The U. of Texas. Brown, et al.1 have concluded that an opening in rock salt can reach a stable equilibrium if the formation stress is less than 3,000 psi and the temperature is less than 300°F. At higher temperatures and pressures an opening in salt can close completely. These results indicate that calculations based upon elastic and plastic equilibrium for an open hole in salt should be applied only at depths less than 3,000 ft. In most oil wells the tem- perature will be less than 300F in the salt sections, therefore no appreciable temperature effects are anticipated. Serata and Gloyna2 have reported an investigation of the structural stability of salt. .They assume that the major principal stress is due to the overburden. Other stresses can be superimposed if additional lateral pressures are known to be acting in a particular region. In the present analysis an isotropic state of stress is assumed to exist in the salt before the hole is drilled, since salt regions are generally at rest. This assumption is partially verified from formation breakdown pressure data taken during squeeze-cementing operations in salt. Experimental measurements of the elastic properties of rock salt indicate a value of 150,000 psi for Young's modulus and a value of approximately 0.5 for Poisson's ratio. A value of % for Poison's ratio with finite Young's modulus would indicate that the material was incompressible. Values ranging from 2,300 to 5,000 psi have been reporteda for the unconfined compressive strength of salt. These variations may be due to differences in the properties of the salt from different locations or at least partially to differences in testing techniques. Salt is very ductile, even under relatively low confining pressures. For example, in triaxial tests reported by Handin3 strains in excess of 20 to 30 per cent were obtained without fracture. When casing is cemented in a hole through a salt section, the casing must withstand a load from the formation if plastic flow of the salt is prevented. To determine the forces which salt can impose on casing, circular steel rods were forced into Hockley rocksalt with the longitudinal axis of the rods parallel to the surface of the salt. The force required to embed rods 0.2 to I in. in diameter and 1/2 to 1 in. long to a depth equal to the radius of the rods was found to be F/DL =28,700 psi (± 3,700 psi) , .... (1) where D is the diameter, and L is the length of the rod. CASING STRESSES Since an open borehole through salt at depths greater than 3,000 ft will tend to close, cemented casing which prevents closure of the hole will be subjected to a pressure approximately equal to the horizontal formation stress after a sufficiently long time. As a first approximation the horizontal stress can be assumed to be equal to the overburden pressure. This is in agreement with the suggestion by Texter4 that an adequate cement job can prevent plastic flow of salt and result in a pressure on the casing approximately equal to the overburden pressure. He also advocated drilling with fully saturated salt mud
Jan 1, 1965
-
Part II – February 1968 - Papers - Kinetics of Austenite Formation from a Spheroidized Ferrite-Carbide AggregateBy R. R. Judd, H. W. Paxton
The rate of dissolution of cementite was studied in three low-carbon materials: a zone-refined Fe-C alloy, an Fe-0.5pct Mn-C alloy, and a commercial low-carbon steel. The materials were spheroidized, ad then held isothermally at temperatures above the Al. The isothermal anneal was interrupted periodically by a water quench and the specimens were analyzed by quantitative metallography for the amount of aus-tenite formed during the anneal. The results of this study were compared with an analytical model for the process, which assumes that carbon diffusion in aus-tenite is the rate-controlling step for the cementite dissolution process. The correlation between the model and the experimental data is excellent for the zone-refined Fe-C alloys; however, the Fe-0.5 pct Mn-C alloys and the commercial steel deviate from the calculated model. This deviation is thought to be a result of manganese segregation between the carbide and the matrix. The rate of nucleation of austenite at carbide interfaces was reduced by the manganese addition and enhanced by the presence of ferrite-ferrite grain boundaries. PREVIOUS investigations of the nucleation and growth of austenite from ferrite-carbide aggregates are not entirely satisfying for at least one of several reasons. The most prevalent of these is a lack of quantitative data. Engineering studies have been run on many steels with little control over important parameters such as composition and initial aggregate structure. The data obtained are valid only for material with identical chemistry and thermal history. A more informative approach to the problem of aus-tenitization would be to determine the mechanism that controls the rate of solution of carbide in austenite and how it is modified by alloying elements. This information could then be used to calculate an austeniti-zation rate for any material, provided its composition and structure are known. The object of the present work is to establish the rate-controlling step for cementite dissolution in Fe-C austenite and to investigate the modification of this rate by small manganese additions. The composition and structure of the material used were carefully controlled and all measurements were designed to allow a quantitative analysis of the kinetic process that controls the austenitization rate. A MODEL FOR DISSOLUTION OF CEMENTITE Cementite dissolution has been analyzed mathematically by a model that approximates the material used in the experiments. This model postulates a regular ar-array of identical cementite spheroids with 4 C( diam, embedded in a grain boundary- free ferrite matrix. The analysis provides a detailed description of the dissolution of one carbide spheroid and a generalization of the solution by summation over all the carbides in the material. The carbides may be isolated by defining identical, space-filling cells of ferrite around them. If the cell dimensions are greater than the diameter of the austenite sphere resulting from complete dissolution of the carbide, and no interaction (through diffusion in ferrite) takes place between cells during the dissolution process, the model need concern only one cell, since the solution in each cell is identical. In the experimental material, the dimensions of the cell, the carbide, and the final austenite sphere are approximately 24, 4, and 8 p, respectively; use of the single cell is therefore justified. The experimental observations are made on the austenite nodules that form around each carbide during the dissolution process. The model concerns the growth of these austenite nodules. The attendant shrinking of the carbide can be obtained from the same analysis by an extension of the calculations. Several a priori assumptions are necessary to make the analysis of the growth problem tractable. They are: 1) carbon diffusion through the austenite nodule is the rate-controlling process; 2) local equilibrium exists at all interfaces, 3) the austenite nucleus that forms on each carbide instantaneously envelops the carbide; 4) during the austenite growth process, the diffusion flux of carbon in ferrite is insignificant; 5) a quasi-steady state exists in the austenite concentration field; that is, at any instant during the dissolution process, the austenite carbon concentration gradient closely approximates that for a steady-state solution; and 6) the effects of capillarity on the dissolution rate of the carbides can be neglected. Referring to Fig. 1, a mass balance at the y-a interface for an infinitesimal boundary movement gives: Where rb is the outer radius of the austenite shell, C1 and C are carbon concentrations at the interface in austenite and ferrite, respectively, see Fig. 2, is the diffusion coefficient of carbon in austenite for the concentration of carbon at the interface, and t is time. The fifth assumption permits the austenite carbon concentration to be approximated by the Laplace solution for the spherical case. Therefore, where C(Y) is the carbon concentration at r, and A and B are constants. Local interfacial equilibrium fixes the boundary conditions for the diffusion problem. They are:
Jan 1, 1969
-
Institute of Metals Division - Nature of the Ni-Cr SystemBy Robin O. Williams
AN investigation has been made of the Ni-Cr system for the purpose of elucidating certain points, namely the nature of aging in both terminal solid solutions and the nature of the phase diagram. Information pertaining to solubilities and precipitation has been obtained. Experimentation Five alloys, Table I, were arc melted in a cold copper crucible using electrolytic chromium and car-bony1 nickel, both dry hydrogen treated. These 100 g buttons were homogenized 24 hr at 1300°C in dry hydrogen and air cooled. Powders were prepared by filing or pulverizing and subsequent heat treatment was done in vacuum or helium using titanium chips as a getter. Powder of —80 mesh was filed from the 60 pct Ni alloy quenched from 1000°C and was sealed in silica under vacuum using a 250 °C outgassing. After aging as indicated in Table I1 the lattice parameters were measured on the quenched samples using the standard cos" 6 extrapolation. These parameters are considered accurate to roughly 0.0001A. In all cases chromium lines of 2.8812 ± 0.0005Å at 30°C were found. Drastic quenching from sufficiently high temperatures produced very sharp body-centered-cubic lines in the first four alloys without indications of transformations. Temperatures to 1250°C were used. Solid samples less than 1/16 in. thick were quenched in water without transformation and the powders could be adequately quenched in small helium filled thin wall silica tubing using a water quench. For those powder samples which were quenched from the two phase field the relative intensity of the body-centered-cubic lines and the face-centered-cubic lines were estimated and extrapolated to give the indicated solubility data in Fig. 1. The data for the two higher alloys were somewhat limited, the plotted points being the lowest temperature where no nickel phase was found. Neither filing, abrading, pulverizing, nor cooling to —190°C produced any new diffraction lines for solid samples quenched from the single phase region, nor did the character of the body-centered-cubic lines change Single phase body-centered-cubic powders likewise did not change on cooling to —190°C. Also, samples which had some precipitation due to inadequate quenching showed no additional changes under these conditions. The first change apparent by X-ray diffraction form samples quenched almost fast enough to prevent precipitation was the diffuseness of the body-centered-cubic lines, particularly on the low angle side, For slower cooling rates the diffuse face-centered-cubic lines appeared. Work on the large grained castings showed profuse streaking through some of the Laue spots while oscillating patterns showed broad body-centered-cubic and face-cen-tered-cubic lines as well as some new lines. For the 23.6 pct Ni alloy the new lines corresponded to 2.16, 1.96, and 1.86A and were more similar in character to the face-centered-cubic lines than the body-centered-cubic lines. Samples which were air cooled gave only face-centered-cubic and body-centered-cubic lines which were still broad. One pattern indicated that face-centered-cubic (111) plane was parallel to a body-centered-cubic (110) plane. For those samples which were examined by light microscopy there were details which were not resolved. However, varied and beautiful structures were obtained. Fig. 2 is of an alloy quenched in a helium filled silica tube from the single phase region and shows particles associated apparently with dislocations which are arranged in low angle boundaries. Finer, general precipitation has also taken place within the grains. Figs. 3 to 5 show the variety of structures produced in these alloys on continuous cooling. It appears that there are four distinct modes of precipitation as evidenced by these, figures. Annealing these structures at higher tem-peratures in the two phase field gives structures as shown in Fig. 6, which shows nickel plates in the chromium matrix which reprecipitated nickel on a much finer scale of the final quench. Lower annealing temperatures and shorter times naturally give finer plates of the nickel-rich phase. Samples of the first four alloys were annealed for appreciable times between 900º and 1250°C and gave structures like Fig. 6. The relative amounts of the two phases were measured and extrapolated to give solubility data as indicated in Fig. 1. The point at 1250°C was deduced from data of Oxx.1 These and most of the other samples were checked for ferromagnetism but none was apparent. In fact, it appeared that the magnetic susceptibilities were not more than three times that for paramagnetic chromium. Discussion In Fig. 1 it is seen that the solubility of nickel in chromium can be represented by a slightly curved line on the usual log X vs 1/T plot, These data are believed to be accurate to roughly 5 to 10º. There is only fair agreement with the data of Taylor and
Jan 1, 1958
-
Part I – January 1968 - Papers - The Plastic Deformation of Niobium (Columbium) – Molybdenum Alloy Single CrystalsBy R. E. Smallman, I. Milne
The deformation behavior of single crystals of Nb-Mo alloys has been investigated with particular reference to the influence of composition, orientation, and temperature. Strong solid-solution hardening was observed reaching a maximum at the equiatomic cotrlposition and can be attributed to the difference in atomic size between niobium and molybdenutrz. Changes in the form of stress-strain curve, as shown by a high work-hardening rate and restricted elongation to fracture, were observed at a composition of Nb-85 pct Mo and are attributed to the presence of MozC DreciDitate. Conjugate slip was only extensive in dilute alloy samples; at the 50/50 composition deformation rnainly occurred by primary slip, and the onset of conjugate slip gave rise to failure by cleavage on (100). The variation of yield stress of Nb-50 pet Mo with orientation was consistent with slip on (011)(111) slip systems. The temperature deperndence of the yield stress between -196" and 250°C was similar to that of pure bcc metals, but at a much higher stress level; no evidence for twinning %as found. IN recent years the deformation behavior of various pure metals in groups VA and VIA has received considerable attention, but surprisingly little work has been carried out on binary alloys made by mixing metals from the two groups. Such an investigation would be of interest since single crystals of metals of group VA have been shown to deform characteristically with a multistage deformation curve1"3 while a parabolic type of deformation curve has been reported for most of the group VIA metals.4'5 It has been suggested by Law ley and Gaigher~ that the difficulty encountered in obtaining multistage deformation curves for molybdenum in group VIA was possibly because of the presence of a microprecipitate of MozC which they observed even at carbon contents as low as 11 ppm. Recently a multistage deformation curve has been reported for molybdenum ," although the stages are not so definitive as those for group VA metals. The binary alloys of the particular refractory metals which have been investigated in single-crystal form include Ta-w,' Ta- Mo,' and Nb- Na." While a large amount of hardening was observed for alloys of the Ta-W and Ta-Mo systems, associated with room-temperature brittleness for alloys approaching the equiatomic composition, Ta-Nb remained ductile over the complete composition range with little or no solution hardening. Other systems have been investigated by hardness measurements on polycrystalline material and a discussion of the hardening of these alloys has been presented by ~udman." The purpose of the present investigation was to examine the deformation behavior of Nb-Mo alloys in detail, with particular reference to alloy composition and single-crystal orientation. In this way it was hoped to shed some light upon the restricted ductility of these alloy specimens. 1) EXPERIMENTAL PROCEDURE The starting materials were obtained in the form of beam-melted niobium rod and sintered molybdenum rod of suitable dimensions. Since niobium and molybdenum form a complete solid-solution series at all temperatures, alloy single crystals were produced by melting the two constituents together in an electron bombardment furnace (EBM). To produce specimens free from segregation a molten zone was passed over the length of each rod six times in alternate directions at a speed of 10 in. per hr. Typical specimens were analyzed for interstitial impurities by gas analysis and for metallic impurities by spectrographic analysis. The results of this analysis are shown in Table I. Many of the tensile specimens were also analyzed (after testing) by scanning the gage length in an electron beam microanalyzer, from which it was found possible to predict the approximate composition of a specimen from the original proportions of each element in the EBM. The tensile specimens were made with a gage length of 0.5 in. and diameter of 0.075 in., using a Servomet Spark machine. By careful machining on the finest range for the final i hr of this technique, surface cracks could be reduced to the level where they were easily removed by electropolishing in a solution of nitric and hydrofluoric acids. The specimens were strained at a rate of 10 4 sec-' using friction grips designed to prevent accidental straining and maintain a good alignment before straining. The orientations of the individual specimens tested are shown in Fig. 1 and the corresponding compositions listed in Table I1 together with collated experimental data. 2)RESULTS a) General Deformation Behavior. The effect of composition on the room-temperature deformation curves of similarly oriented specimens is shown in Fig. 2. The yield stresses of the pure constituents, while not the lowest reported to date, were at least comparable with existing data. Although the solution hardening was large for alloys at either end of the phase diagram, and comparable with the Ta-W solution-hardening data of Ferris et a1.,8 the low work-hardening rate characteristic of niobium was sustained until a composition of Nb-85 pct MO had been reached. Associated with the peak yield stress ob-
Jan 1, 1969
-
Part IX – September 1969 – Papers - The Shape and Strain-Field Associated with Random Matrix Precipitate Particles in Austenitic Stainless SteelBy F. H. Froes, D. H. Warrington
Electron microscope evidence which indicates that TaC may precipitate at random sites in the matrix is presented. Initially the particles are almost spherical and coherent with the matrix. However, as they grow in conditions in which there are insufficient vacancies to relieve lattice strain, the particles rapidly lose coherency in two directions and continue to grow as plates with approximately the full lattice mismatch strain present perpendicular to the plane of the plate. The necessary relief of strain comes from dislocations loops which do not become visible until the later stages of aging. The rapid decrease of apparent strain to low values of appoximately 1 pct at small particle sizes arises not from a complete incoherency but from applying a model wrong for the particle shape and strain distribution. PREVIOUS work has shown that MC-type carbides may precipitate intragranularly in austenitic stainless steel on dislocations,1'2 in association with stacking faults,3'4 and randomly through the matrix,5-7 In investigations of the matrix precipitate by thin-foil electron microscopy, considerable lattice strain has been found to occur around the precipitating phase.7'8 Attempts have been made to evaluate the amount of lattice strain by using the methods developed by Ashby and brown.9,10 Values of the linear strain, much less than the 17 pct theoretical mismatch (for TaC), have been reported; it has been suggested that this is due to either a loss of coherency1' or vacancy absorption which occurs during either the initial nucleation or growth of the precipitate." This report is an extension of earlier work7 that dealt with the precipitation of TaC from an 18Cr/12Ni/ 2Ta/O.lC alloy after it had been quenched from 1300°C and aged between 600" and 840°C. In particular, the shape of the precipitate particles and the amount of strain in the matrix, due to the precipitate, have been studied. The work described here is part of a wider investigation of factors that affect carbide precipitation in austenitic stainless steel," details of which are to appear elsewhere. RESULTS The present investigation can be conveniently split into two aspects of the strain-fields surrounding the matrix particles: 1) information derived from the strain-field which indicates the shape and habit plane of the precipitate particles and 2) the magnitude and sign of the strain-field. The Shape and Habit Plane of the TaC Precipitate. In the early stages of aging twin lobes (normally black F. H. FROES, formerly at the University of Sheffield, Sheffield, England, is Staff Scientist, Colt Industries, Crucible Materials Research Center, Pittsburgh, Pa. D. H. WARRINGTON is Lecturer, Department of Metallurgy, University of Sheffield. Manuscript submitted November 1, 1968. IMD on white background, i.e., for the deviation parameter, S > 0) that indicate the strained region of the matrix define the position of the particles by bright field transmission electron microscopy. The actual particles were not detected until they were approximately 120Å diam; below this size they were too small to be imaged in the electron microscope. This meant that particle growth that had occurred before this stage had to be inferred from the matrix strain-field contrast. In all cases when diffraction effects were observed from the precipitate particles, a cube-cube orientation relationship (i.e., (llO)ppt Il<llO>matrix and {1ll }ppt {III} matrix) existed between the precipitate and the matrix. From the matrix precipitate particles lying along edge-on {111} planes (e.g., at A, Fig. I), the precipitates are seen to be plate-like with their diameter being roughly 18 times their thickness after 5000 hr at 650°C. However, the exact shape of the particles cannot be determined because of the masking effect of the strain-field contrast. If a dark-field micrograph, using a precipitate reflection, is studied, Fig. 2, a number of the projected images of the TaC particles [on the (110) foil surface] apear to have straight edges parallel to projected f111) planes. Thus, it appears that in the later stages of aging the TaC particles are plate-like with some tendency for the edges of the plate to be bounded by the matrix close-packed {ill} planes (though the general shape of the particles in the plane of the plate is circular and thus the "diameter" of the particles has a real physical significance). It should be noted that the bands of fine discrete particles observed in Figs. 1 and 2 are not the matrix precipitate discussed in this paper but are precipitates associated with extrinsic stacking faults3j4 occurring on (111) matrix planes. **£** ****** \ *x 23 Fig. 1—18/12/2~a/0.1~ alloy. Solution treated at 1300°C for 1 hr, water quenched, and aged 5000 hr at 650°C. The (112) directions shown are the traces of the e&e-on (111) planes. Foil normal [110]; operating reflection (331); bright field micrograph.
Jan 1, 1970
-
Institute of Metals Division - Effect of Quenching on the Grain Boundary Relaxation in Solid SolutionBy A. S. Nowick, C. Y. Li
It is deMonstrated that quenching from an elevated temperataupe accelerates the grain boundary relaxation in two solid solutions (aAg-Zn and a Cu-Al). This result is consistent with the proposal that, in solid solutions, grain boundary relaxation occurs by a mechanism of' self diffusion. Nevertheless, an alternative possibilitg, that quenching introduces vacancies into the boundary itself, must also be considered. THE phcnomenon of grain boundary relaxation has been well known for many years,1,2 yet the mechanism of this process is very poorly understood. One of the most interesting suggestions which relates to the mechanism of grain boundary relaxation was that of Ke,3 who claimed that the activation energy for grain boundary relaxation and for lattice self diffusion were essentially the same. The implication is therefore that the elementary step in the two processes is the same. This suggestion is particularly startling in view of the fact that activation energy for self diffusion along a grain boundary is very significantly lower than that for volume self-diffusion. Later evidence5-7 showed that there really are two grain boundary peaks, one which appears in high-purity metals, and the other (which develops at a higher temperature than the first) which appears in solid solutions beginning at solute concentrations in the range of 0.1 pct. Data for silver6 show that Kg's hypothesis is surely incorrect for the grain boundary peak in the high-purity metal, since it has an activation energy of only 22 kcal per mole, but that the hypothesis may still be correct for the grain boundary peak in various silver solid solutions, for which activation energies in the range 40 to 50 kcal per mole are observed. If the elementary step in the grain boundary relaxation process were the same as that for self-diffusion, it would be expected that the relaxation process could be hastened by quenching, 2.c. by introducing a non-equilibrium excess of lattice vacancies. Such a quenching effect has already been demonstrated in the case of another anelastic relaxation process, viz., the Zener relaxation effect. The Zener effect, which occurs in essentially all solid solutions, may be attributed to the reorientation of pairs of solute atoms in the presence of an applied shear stress,' and therefore must take place by means of a volume diffusion mechanism. The hastening of this process through quenching9 has been one way of demonstrating that atom movements in the lattice take place through a defect mechanism, presumably single vacancies. In order to see if the grain boundary relaxation is affected by quenching, it is particularly convenient to compare the grain boundary relaxation with the Zener effect, by choosing a specimen for which both relaxation effects appear. Specifically, a fine-grained sample of a solid solution shows in the curve of internal friction vs temperature, first a peak due to the Zener effect, then a second rise (and eventually a peak at substantially higher temperatures) due to the grain boundary relaxation. The same phenomena are also observable in static anelastic measurements, such as creep at very low stress levels. Thus, for the same fine-grained solid solution, the creepstrain, when plotted against log time, falls on a sigmodial curve with a sharp inflection point, due to the Zener effect, which is followed by a second rise and inflection resulting from the grain boundary relaxation. To look for a quenching effect, static measurements are preferable to the dynamic internal friction measurements, due to the fact that quenching effects tend to anneal out too rapidly at the temperatures at which the internal friction is measured.9 RESULTS AND DISCUSSION Creep experiments in torsion were carried out in an apparatus similar to that described by Ke1, whereby a wire is held under constant torque and its angular displacement is observed as a function of time. The alloy Ag-30 at. pct Znwas selected because of the large Zener relaxation that it displays. The two samples used were a "coarse grained" wire with a mean grain size about twice the diameter of the wire (diam = 0.032 in.), and a "fine-grained" wire which had several grains across the diameter. In Fig. 1 a comparison is made of the creep curves at 160°C of these two samples after they had been cooled slowly from 400°C. Curve A, which represents the coarsegrained sample, shows a unique relaxation process due to the Zener relaxation, with a relaxation time, T , in the vicinity of 100 sec. Curve B, which represents the behavior of the fine-grained sample, on the other hand, shows first the same relaxation process as that in A, followed by a turning up of the curve which corresponds to the onset of a second overlap-
Jan 1, 1962
-
Shaft Sinking Using The V-Mole - Description Of The TMCI Operation In AlabamaBy Klaus-Peter M. Hanke
INTRODUCTION In early 1979 Jim Walter Resources, Inc. (JWR) of Brookwood, Alabama approached TMCI Construction, Inc (TMCI) to make a proposal on a program that involved the sinking of up to 10 ventilation shafts of approximately 6.7 m (22 ft) diameter and ranging in depth from 500 to 700 m (1650 to 2300 ft) for the JWR coal mines in Alabama. At this time TMCI was already constructing the first spiral underground bunker (capacity 2000 tons) in North America for the JWR organization at their No. 4 mine in Alabama. The TMCI proposal was based on the use of the mos modern large diameter shaft boring machine rather than sinking the shafts using the conventional drill blast-muck technique. The proposal was made based o: the experiences by the parent company, Thyssen Schachtbau, which has been using this type of machin in Germany for shaft boring since 1971. As a result of the TMCI proposal JWR issued a purchase order to TMCI for the construction of four 6.7 m (22 ft) diameter, concrete lined, unfurnished ventilation shafts ranging in depth from 500 to 700 (1650 to 2300 ft). An order was thus placed with WIRTH Machinen- and Bohrgeraete Fabrik GmbH, in Germany for the manufacture of a model 650/850 E/Sch "Schachtbohrmaschine" (Vertical Shaft Borer = V-mole which arrived on site in Alabama in early 1981. The first V-mole GSB 450/500 was introduced in Germany in 1971 and was capable of enlarging in one step a pre-drilled 1.2 m (4 ft) pilot hole to 4.5 - 5.0 m (14.7 - 16.4 ft). This machine has sunk 9 staple shafts and deepened one surface shaft for a total of 2360 m (7740 ft) of shafts. On the last shaft boring operation in 1978 the machine was converted as an experiment to drill without a pilot hol using a hydraulic pumping system to remove the cutting debris. A second generation machine, the SB VI 500/650, was introduced in 1977 for enlarging the pilot hole to a range of 5.0 - 6.5 m (16.4 - 21.3 ft) diameter. This machine is still in operation and has already drilled well over 2000 m (6500 ft) of shaft. The third generation of V-mole, the SB VII 650/85( for diameters from 6.5 to 8.5 m (21.3 to 27.9 ft) was: commissioned in May 1980 and has been used for two surface shaft deepenings totalling 606 m (1990 ft) with another scheduled for 1982. The main advantages favouring the use of such V-moles were identified as: 1) A reduction in manpower to the crew required in a conventional shaft sinking operation. 2) A considerable reduction in time to complete a shaft compared to conventional techniques. 3) The use of the V-mole eliminates many of the hazards encountered in conventional sinking. Based on the successful performance of the first three V-moles in Germany, Thyssen Schachtbau decided to employ this principle abroad. In 1980 a second machine of the third generation was built and is now operated by TMCI Construction, Inc. in Alabama. The first shaft was completed at the end of 1981 and this paper describes the method of operation including some unique aspects not attempted on prior V-mole operations and some of the statistics arising out of the experiences during the first shaft boring operation. THE NO. 7 MINE FAN SHAFT SITE Jim Walter Resources, Inc. was formed in 1970 to exploit the coal field in Alabama on the southern tip of the Appalachian coal field. The coal reserves amount to around 650 million tons of mainly good quality coking coal of which about 350 million tons are to be extracted over the next 30 years. Shaft sinking and preparatory work began in 1972, and at present 6 mines are producing around 5.4 million t.p.a. Annual production is to expand to 10 million t.p.a. as soon as possible, and the ventilation shafts to be sunk by TMCI play a vital role towards attaining this goal. The first shaft site is located at the No.7 mine, near Brookwood, Alabama. The actual location of the shaft relative to the production shafts is shown on the mine plan (Fig. 1), which also shows the room-and-pillar extraction system used at present. The mine plan further shows the conveyor route used for the muck removal. The geological survey showed that the strata consisted of horizontal layers of mainly sandstone, sandy shale and shale interspersed with several coal seams. The seam being extracted at the No. 7 mine is a combined seam made up of the Blue Creek and Mary Lee seams at a depth of 513 m (1682 ft) and having an average seam thickness of about 2 m (6 ft). At the beginning of September 1980 the surface site preparation and pre-grouting work was completed by JWR, and TMCI was able to commence with Stage I of the shaft sinking program - the drilling of the pilot hole.
Jan 1, 1982
-
Iron and Steel Division - Relation between Chromium and Carbon in Chromium Steel RefiningBy D. C. Hilty
It has long been known that in melting high-chromium steels, some of the carbon might be oxidized out of the melt without excessive simultaneous oxidation of chromium, and that higher temperatures favor retention of chromium. The advent of oxygen injection as a tool for rapid decarburization of a steel bath permits significantly higher bath temperatures, and it was quickly recognized that the use of oxygen injection facilitated the oxidation of carbon to low levels in the presence of relatively high residual chromium contents. Up to the present time, however, specific data pertaining to the chro-mium-carbon-temperature relations in chromium steel refining have not been available. Individual steelmakers have evolved practices more or less empirically, but there has been very little real basis for predicting how effective any given practice can be in permitting maximum oxidation of carbon with minimum loss of chromium. The current investigation, therefore, was undertaken in an effort to establish the fundamental carbon-chromium relationship in molten iron under oxidizing conditions. As reported below, the equilibrium constant and the influence of temperature on that constant have been derived for the iron-chromium-carbon-oxygen reaction in the range of chromium steel compositions with what appears to be a fair degree of precision. The practical application of the result will be obvious. Experimental Procedure The laboratory investigation was carried out on chromium steel heats melted in a magnesia crucible in a 100-lb capacity induction furnace at the Union Carbide and Carbon Re- search Laboratories. The charges for the heats consisted of Armco iron, low-carbon chromium metal, and high-carbon chromium metal, the relative proportions of which were calculated so that the various heats would contain from approximately 0.06 pct carbon and 8 pct chromium to 0.40 pct carbon and 30 pct chromium at melt-down. When the charges were melted, the bath temperatures were raised to the desired level, and the heats were then decarburized by successive injections of oxygen at the slag-metal interface through a ½-in. diam silica tube at a pressure of 30 psi. The duration of the oxygen injections was from 30 sec to 2 min. at intervals of approximately 5 to 30 min. It did not appear that length or frequency of the injection periods had any significant effect on the results; cansequently, no effort was made to hold them constant and they were controlled only as was expedient to the general working of the heats. Between successive injections, the heats were sampled by means of a copper suction-tube sampler that yields a sound, rapidly-solidified sample representative of the composition of the molten metal at the temperature of sampling. This sampling device is a modification of the one described by Taylor and Chipman.1 An attempt was made to vary bath temperatures between samples, but it quickly became evident that, unless the variations were small or unless the new temperature was maintained for a minimum of 15 min. during which an injection of oxygen was made in order to accelerate the reactions, a very wide departure from equilibrium resulted. For most of the runs, therefore, temperature was maintained relatively constant at approximately 1750 or 1820°C. A few reliable observations at other temperatures, however, were obtained. Temperature Measurement The high temperatures involved in this investigation were measured by the radiation method, utilizing a Ray-O-Tube focused on the closed end of a refractory tube immersed in the metal bath. The immersion tubes employed were high-purity alumina tubes specially prepared by the Tona-wanda Laboratory of The Linde Air Products Co. These tubes were quite sturdy under reasonable mechanical stress at high temperature. They were unusually resistant to thermal shock, and chemical attack on them by the melts was slow. With care, it was found possible to keep these tubes continuously immersed in a heat for as long as 5 hr at temperatures up to 1850°C, before failure by fluxing occurred. The Ray-O-Tube—alumina tube assemblage was similar to those supplied commercially for lower temperature applications. In operation, the alumina tube was slowly immersed in the molten metal to a depth of approximately 5 in., and the device was then clamped solidly to a supporting jig where it remained for the duration of the run. A photograph of the equipment, in operation with Ray-O-Tube in place and oxygen injection in progress, is shown in Fig 1. When in position in a heat, the instrument was calibrated by means of an immersion thermocouple and an optical pyrometer. For calibration through the range of temperatures from 1500 to 1650°C, a platinum -platinum + 10 pct rhodium thermocouple in a silica tube was immersed alongside the alumina tube. Output of the Ray-O-Tube in millivolts and the
Jan 1, 1950
-
Extractive Metallurgy Division - The Influence of Solid State Point Defects upon Flotation ProcessesBy George Simkovich
It was hypothesized that solid-state point defects should alter the flotation properties of solids. Tests conducted on pure AgCl and AgCl doped with CdC12 show that atomic point defects exhibit an important role in the floatability of AgC1. Tests conducted on PbS doped with Ag2s or Bi2S3, also show that the defect structures resulting from these dope additions, i.e., a combination of electronic and atomic point defects, contribute significantly to the flotation of PbS. IT has been established that flotation occurs only when a finite contact angle exists between a solid and a gaseous bubble.' This angle, measured through the liquid phase, is expressed by the equation where the are inter facial free energies and the subscripts S, G, and L represent solid, gas, and liquid phases, respectively. As is seen in Eq. [I] three interface free energies, sG, sl, and GL, enter into the contact angle equation. Therefore, any variation in these energies which sufficiently varies the contact angle will, in turn, vary flotation processes. Changes made in any of the phases concerned, i.e., gas, liquid, or solid phase, are reflected through the changes occurring in two of the surface energy terms. Thus, a change in the liquid composition would be noted in sL and GL, and it is this phase, the liquid, which is most frequently altered in flotation studies., Changes in the solid phase must be reflected through the changes occurring in the sG and sL terms. In particular, it is hypothesized that changes in the surface concentrations of point defects in the solid-phase will alter the sG and sL terms which, in turn, will be reflected by flotation results. As an illustration of this hypothesis one may consider the defect structure and the flotation of AgC1. The bulk defect structure of AgCl is essentially one involving equal number of cation vacancies and interstitial cations.3 Upon adding CdC1, to AgC1, a greater number of silver ion vacancies are created in the bulk of the crystal.4 On the surface of the crystal the smaller binding forces and the free space accomodations may also allow for the creation of "surface interstitial anions", which will be designated as ad-anions. Thus, the point defect structure of the surface of AgCl doped with CdCl, will consist of cation vacancies and/or adanions. If the molecular forces responsible for the surface energies, ?SG and ?sL, are significantly altered by the presence of these surface point defects, then differences in flotation results will be noted as the concentration of these defects is varied. The defects present in AgCl are predominantly atomic in nature. In the case of PbS both electronic and atomic defects are present.5 This compound conducts electrically by either electrons or electron holes depending upon whether excess lead or excess sulfur is present. Upon disolving BiS3 in stoichio-metric PbS, one increases the concentration of cation vacancies and the number of electron carriers in the bulk of the crystal.5" At the surface, the possibility of ad-anions must also be considered. Conversely, upon dissolving AgS in stoichiometric PbS one increases the concentration of interstitial cations and the number of electronhole carriers in the bulk of the crystal.5,6' At the surface the interstitial cations will be designated as ad-cations. Thus, the point defect structure of the surface of a PbS crystal doped with Bi2S3 will consist of a number of cation vacancies and/or ad-anions and an excess of electrons. Conversely the point defects on the surface of a PbS crystal doped with Ag2S will consist of a number of ad-cations and an excess of electron holes. Again, as in the case of AgC1, should the molecular forces responsible for the magnitude of the interface free energies, ?sG and ?sL, be significantly altered by the presence of these surface defects then significant differences in flotation results will be noted as the concentration of these defects is varied. EXPERIMENTAL To test this hypothesis flotation tests were conducted on pure and doped AgCl and on PbS doped with either Bi2S3 or Ag2S. Preparation of the AgCl samples was performed as follows: AgCl and weighed amounts of CdC1, were melted in a porcelain crucible. The melt was then forced through a capillary tube and the particles emitted solidified in air as they fell about 1.5 meters. Spherical particles, -0.50 + 0.25 mm, were separated from the remaining solidified material
Jan 1, 1963
-
Part XI – November 1968 - Papers - Stress-Enhanced Growth of Ag3 Sb in Silver-Antimony CouplesBy L. C. Brown, S. K. Behera
The diffusion rate in Ag-Sb couples is sensitive to con~pressive load with the width of Ag3Sb, the only phase present in the diffusion zone, increasing with stress up to 800 psi and remaining constant above this. Kirkendall marker experiments show silver to diffuse much faster than antimony in Ag3Sb and incipient porosity may therefore develop at the Ag/Ag3Sb interfnce restricting the transfer of atoms from the silver into the diflusion zone. Application of compressive stress reduces the tendency for porosity to develop and so increases the growth rate. In a recent paper Brown et al.1 observed a significant increase in the thickness of Cu2Te in Cu-Te diffusion couples on application of a compressive stress as low as 20 psi. Similar stress effects have also been observed in the Fe-A1,2 Al-u,3 arid cu-sb4,5 systems. It has been suggested that the increase in growth rates of intermetallic phases in these systems is due to a decrease in the amount of Kirkendall porosity with applied stress. In the present paper, results are presented of the effect of compressive stress on diffusion in Ag-Sb, together with a detailed examination of the Kirkendall effect. The Ag-Sb phase diagram6 shows that antimony has a moderate degree of solid solubility in silver, 5.7 at. pct at 350°C, but that there is essentially no solubility of silver in antimony. There are two intermediate phases— (hcp7) from 8.8 to 15.7 at. pct Sb and Ag3Sb (orthorhombic8) from 21.8 to 25.9 at. pct Sb. EXPERIMENTAL Diffusion couples were prepared from fine silver of 99.95 pct purity and from antimony of 99.7 pct purity. Both the silver and antimony were produced in the form of discs 1/2 in. in diam by approximately $ in. thick, with surfaces ground flat to 3/0 emery paper. Diffusion anneals were carried out in the apparatus previously described.1 A compressive load was applied to the diffusion couple through a lever arm system, with a reproducibility estimated to be ±10 psi. All runs were carried out in a protective hydrogen atmosphere. Following the diffusion anneal specimens were sectioned and polished and the width of the diffusion zone was measured metallographically. Composition profiles were measured using an electrostatically focused electron probe with a spot size of 10 , counting on Sb L radiation. Corrections for matrix absorptiori and fluorescent enhancement9 were not required. S. K. BEHERA, formerly Graducate Student, Department of Metallurgy, University of British Columbia, is now Postdoctoral Fellow, Whiteshell Nuclear Laboratories, Atomic Energy of Canada Ltd., Pinawa, Manitoba. L. C. BROWN, Junior Member AIME, is Associate Professor, Department of Metallurgy, University of British Columbia, Vancouver, B.C., Canada. Manuscript submitted June 14, 1968. IMD RESULTS Fig. 1 shows an electron probe traverse of a typical diffusion zone. In all couples examined only one intermediate phase was observed and the composition of this phase, 23 wt pct Sb, was in good agreement with the composition of Ag3Sb, 23 to 28 wt pct Sb. The presence of this phase was confirmed by X-ray diffraction of filings taken from the diffusion zone. The probe traverses showed no detectable solid solubility in either the silver or the antimony although the phase diagram indicates that some antimony, up to 6.5 wt pct pct Sb, should be in solid solution in the silver. However the width of this portion of the diffusion zone would be expected to be very small in view of the low diffusion coefficient in the silver, 4 x 10-l6 sq cm per sec at 350°C, 10 compared with that in the Ag,Sb, estimated as 3 x 10-8 sq cm per sec in the present work, and this region would therefore not be expected to be seen in the probe traverse. Application of stress resulted in a significant increase in the width of the diffusion zone, Fig. 2. At 350°C, the thickness of Ag3Sb increased from 250 at 0 psi to 400 p at the limiting stress of 800 psi, indicating an apparent 150 pct increase in the diffusion coefficient. Similar behavior was also observed at 400°C, indicating that the stress effect is not characteristic of just one temperature. The growth of Ag3Sb at 350°C and at various stresses is shown in Fig. 3. In every case the growth rate was parabolic indicating diffusion control. The kinetic curves all passed through the origin showing that delayed nucleation of Ag3Sb was not responsible for the stress effect and that it was a real growth effect. A series of tests were carried out in which diffusion was allowed to take place at a lower stress following an initial high stress diffusion anneal. Speci-
Jan 1, 1969
-
Coal - Thermal Metamorphism and Ground Water Alteration of Coking Coal Near Paonia, ColoradoBy Vard H. Johnson
IN 1943 the U. S. Bureau of Mines undertook drilling in an effort to develop new reserves of coking coal in an area near Paonia, Colo., as a part of an attempt to alleviate the shortage of known coking coal of good quality in the western United States. Geologic mapping of the area was undertaken by the U. S. Geological Survey with the purpose of first furnishing guidance in location of drillholes and later aiding in interpreting the results of the drilling. The drilling program was under the general supervision of A. L. Toenges of the U. S. Bureau of Mines. J. J. Dowd and R. G. Travis were in charge of the work in the field. Geologic mapping was started by D. A. Andrews of the Geological Survey in the summer of 1943 and was continued from the spring of 1944 to 1949 by the writer. The first few holes drilled failed to locate coking coal, but in the summer of 1944 coking coal was discovered by drilling 6 miles east of Somerset, Colo., the site of present mining. In the succeeding years, 1945 to 1948, 100 to 150 million tons of coal suitable for coking were blocked out by drilling. The ensuing discussion of the geologic controls on the distribution of coking coal in the area is based on the geologic mapping as well as the drilling done in the Paonia area, more complete descriptions of which have appeared or are in process of publication."' In order that the possible geologic controls affecting the present distribution of coking coal may be considered, it is necessary to discuss briefly the indicators of coking quality coals. Coking Coal Coal that cokes has the property of softening to form a pastelike mass at high temperatures under reducing conditions in the coke oven. This softening is accompanied by the release of the volatile constituents as bubbles of gas. After release of the contained gases and upon cooling, a hard gray coherent but spongelike mass remains that is referred to as coke. This substance varies greatly in physical properties and, to be suitable for industrial use, must be sufficiently dense and strong to withstand the crushing pressure of heavy furnace loads. Western coals have a generally high volatile content and therefore form a satisfactory coke only when they attain a rather high fluidity during the process of heating arid distillation in the coke oven. When this high degree of fluidity is developed, the volatile constituents escape and leave a finely porous coke. On the other hand, when the degree of fluidity is low the product is an excessively porous and therefore physically weak mass that is called char." Small quantities of oxygen present in coal are believed to decrease the fluidity of the material during the coking process and to favor the development of char rather than coke. In consequence, coal chemists have for some time considered the possibility of developing an index to coking qualities by inspection of chemical analyses of coals.' A formula has now been developed that does permit a rough preliminary estimate of the cokability of coal on the basis of the analysis on an ash and moisture-free basis. Coals may be eliminated as possible coking fuels if the oxygen content is greater than 11 pct. Similarly the ratio of hydrogen to oxygen must be greater than 0.5 and the ratio of fixed carbon to volatile constituents must be greater than 1.3. If the coal, on the basis of these limiting factors, appears to have possible coking qualities, the following formula permits determination of the coking index: a+b+c+d Coking index = -------- 5 a equals 22/oxygen content on ash and moisture-free basis, b equals two times the hydrogen content divided by oxygen content on moisture and ash-free basis, c equals fixed carbon/l.3 x volatile matter, and d equals the heating value on moist, ash-free basis/13,600. Coking indices higher than 1.0 suggest that the coal will coke, and indices above' 1.1 indicate good coking tendencies. Although generally usable, this formula 'is not completely satisfactory because the percentage of oxygen shown in ultimate analyses is derived only by difference; i.e., by subtracting the sum of the percentages of the constituents determined analytically from 100 pct. Although the coking index indicates the coking tendencies of coal, it is necessary to make physical tests of coke before its industrial value can be determined. The U. S. Bureau of Mines has developed a standard procedure for determining the approximate strength of coke that would be formed from a given coal. In this test one part of ground coal, mixed with 15 parts of carborundum, is baked to form a standard briquette. The weight, in kilograms, necessary to crush the briquette is termed the agglutinating index. This test determines the relative fluidity attained in the coking process by measuring the cementing strength of the coal in the briquette. A
Jan 1, 1953
-
Institute of Metals Division - Equilibrium Relations in Magnesium-Aluminum-Manganese AlloysBy Benny J. Nelson
AS a part of the fundamental research program of Aluminum Research Laboratories, some data were obtained on the ternary system Mg-Al-Mn. As very little information on the magnesium corner of this diagram has heretofore been published, it seems desirable to make available the values found for the liquidus and solidus surfaces of this system. Procedure The settling procedure was used for the determination of the liquidus compositions. Metallo-graphic examination of quenched samples, and stress-rupture upon incipient melting, were used for the solidus determinations. The settling procedure has been described in a previous paper.' Briefly, this method involved saturating the alloy with manganese at a temperature substantially above that at which the sohbility was to be determined, then cooling the melt to the latter temperature, and holding it at that temperature for a substantial period of time. Samples for analysis .were carefully ladled from the upper portion of the melt at hourly intervals during the holding period. After the ladling of each sample, the melt was stirred to redistribute some of the manganese that had already settled, because it appeared that when the latter particles of manganese again settled, they aided in carrying down more of the manganese and thus hastened the attainment of equilibrium. The melts were prepared and held in a No. 8 Tercod crucible holding approximately 4 lb of metal. The manganese was added either in the form of a prealloyed ingot (Dow M) containing about 1.5 pct Mn or by the use of a flux (Dow 250) containing manganese chloride. In calculating the flux additions, it was assumed that the manganese introduced would be equal to 22 pct of the total weight of the flux. Temperatures were measured with an iron-constantan thermocouple enclosed in a seamless steel tube, the lower end of which was welded shut. This protection tube also served as a stirring rod. The samples ladled from the upper portions of the melts at the various intervals were analyzed for aluminum, manganese, and iron. When making the alloys which were to be used for the determination of the solidus, 2½ in. diam tilt mold ingots were cast, scalped to 2.0 in. in diam, and extruded into ? in. diam wire. The principal impurities in the melts for this investigation were iron and silicon; their total not exceeding 0.03 pct. Portions of the wire, approximately 2 in. in length, were enclosed in stainless steel capsules for protection from the atmosphere. Bundles of these capsules, with a dummy capsule containing an iron-constantan thermocouple, were heated inside a large steel block (acting as a heat reservoir) in a closed circulating-air type electric furnace. At ap- propriate times, the capsules were removed and quenched in water. The wires were examined metallographically to determine the temperature of initial melting. Short times at temperature were used at the beginning for wire specimens of all alloys to obtain quickly the approximate temperatures at which melting could be first observed. When approximate solidus temperatures had thus been determined, equilibrium heating was attempted. This equilibrium heating consisted of an 8 or 16 hr period at a temperature, about 50 °F below the lowest temperature at which melting occurred when short heating cycles were used, followed by further heating for 1 hr periods at consecutive 10" higher temperatures. The theory for the method of stress-rupture at incipient melting has been well covereda and its limitations are recognized. Thus, if the interfacial tensions are such that the first minute quantity of liquid is "bunched up" at the grain boundary junctions instead of spreading out along the grain boundaries,³ temperatures higher than the solidus are required before melting will be manifested by rupture of the specimen. This point will be elaborated later. Specimens of the wires with a reduced section (approximately 1/16 in. diam) were suspended vertically in a tubular furnace. The setup used is shown in Fig. 1. The clamp holding the specimen was made from alumel thermocouple wire and the thermocouple was thus completed across the specimen by attaching a chrome1 wire to its lower end. Temperatures were read from a Speedomax recorder used in conjunction with a calibrated thermocouple. The small weight attached to the specimen and a vibrator attached to the furnace tube, to aid in distributing the molten constituent along the grain boundaries, were used to bring about rupture at a temperature closely approximating the solidus. The specimens were heated at a rate of about 5°C per min. The rupture of the specimens was indicated both by sound and by the action of the recorder. An argon atmosphere containing a small amount of SO² was used for protection of the specimen. The assembly was taken out of the furnace immediately following rupture and the specimen removed. Some of the broken specimens were examined metallographically and will be referred to later. Results and Discussion Fig. 2 shows a set of typical time-composition curves for liquid samples of the Mg-Al-Mn alloys used for the settling tests. The data as presented
Jan 1, 1952
-
Coal - Thermal Metamorphism and Ground Water Alteration of Coking Coal Near Paonia, ColoradoBy Vard H. Johnson
IN 1943 the U. S. Bureau of Mines undertook drilling in an effort to develop new reserves of coking coal in an area near Paonia, Colo., as a part of an attempt to alleviate the shortage of known coking coal of good quality in the western United States. Geologic mapping of the area was undertaken by the U. S. Geological Survey with the purpose of first furnishing guidance in location of drillholes and later aiding in interpreting the results of the drilling. The drilling program was under the general supervision of A. L. Toenges of the U. S. Bureau of Mines. J. J. Dowd and R. G. Travis were in charge of the work in the field. Geologic mapping was started by D. A. Andrews of the Geological Survey in the summer of 1943 and was continued from the spring of 1944 to 1949 by the writer. The first few holes drilled failed to locate coking coal, but in the summer of 1944 coking coal was discovered by drilling 6 miles east of Somerset, Colo., the site of present mining. In the succeeding years, 1945 to 1948, 100 to 150 million tons of coal suitable for coking were blocked out by drilling. The ensuing discussion of the geologic controls on the distribution of coking coal in the area is based on the geologic mapping as well as the drilling done in the Paonia area, more complete descriptions of which have appeared or are in process of publication."' In order that the possible geologic controls affecting the present distribution of coking coal may be considered, it is necessary to discuss briefly the indicators of coking quality coals. Coking Coal Coal that cokes has the property of softening to form a pastelike mass at high temperatures under reducing conditions in the coke oven. This softening is accompanied by the release of the volatile constituents as bubbles of gas. After release of the contained gases and upon cooling, a hard gray coherent but spongelike mass remains that is referred to as coke. This substance varies greatly in physical properties and, to be suitable for industrial use, must be sufficiently dense and strong to withstand the crushing pressure of heavy furnace loads. Western coals have a generally high volatile content and therefore form a satisfactory coke only when they attain a rather high fluidity during the process of heating arid distillation in the coke oven. When this high degree of fluidity is developed, the volatile constituents escape and leave a finely porous coke. On the other hand, when the degree of fluidity is low the product is an excessively porous and therefore physically weak mass that is called char." Small quantities of oxygen present in coal are believed to decrease the fluidity of the material during the coking process and to favor the development of char rather than coke. In consequence, coal chemists have for some time considered the possibility of developing an index to coking qualities by inspection of chemical analyses of coals.' A formula has now been developed that does permit a rough preliminary estimate of the cokability of coal on the basis of the analysis on an ash and moisture-free basis. Coals may be eliminated as possible coking fuels if the oxygen content is greater than 11 pct. Similarly the ratio of hydrogen to oxygen must be greater than 0.5 and the ratio of fixed carbon to volatile constituents must be greater than 1.3. If the coal, on the basis of these limiting factors, appears to have possible coking qualities, the following formula permits determination of the coking index: a+b+c+d Coking index = -------- 5 a equals 22/oxygen content on ash and moisture-free basis, b equals two times the hydrogen content divided by oxygen content on moisture and ash-free basis, c equals fixed carbon/l.3 x volatile matter, and d equals the heating value on moist, ash-free basis/13,600. Coking indices higher than 1.0 suggest that the coal will coke, and indices above' 1.1 indicate good coking tendencies. Although generally usable, this formula 'is not completely satisfactory because the percentage of oxygen shown in ultimate analyses is derived only by difference; i.e., by subtracting the sum of the percentages of the constituents determined analytically from 100 pct. Although the coking index indicates the coking tendencies of coal, it is necessary to make physical tests of coke before its industrial value can be determined. The U. S. Bureau of Mines has developed a standard procedure for determining the approximate strength of coke that would be formed from a given coal. In this test one part of ground coal, mixed with 15 parts of carborundum, is baked to form a standard briquette. The weight, in kilograms, necessary to crush the briquette is termed the agglutinating index. This test determines the relative fluidity attained in the coking process by measuring the cementing strength of the coal in the briquette. A
Jan 1, 1953
-
Technical Notes - Melting of Undoped Silicon IngotsBy H. E. Stauss, J. Hino
INTEREST in silicon has arisen again in the past decade as a result of improvements in crystal rectifiers.' Although the preparation of silicon was first reported by Berzelius in 1880, the early product was of relatively low purity, and only the need for rectifiers in World War II led to the production of a 99.9+ pct pure powder. This material in crystalline form was consolidated into massive silicon for use, and the method developed was to melt it with selected added constituents as "doping" agents. Melting techniques, therefore, are of great importance. There are two basic problems in producing silicon ingots free of doping additions; one is the prevention of spitting and the other is prevention of cracking of the ingot during freezing. The most satisfactory arrangement yet developed for producing massive silicon is to melt and freeze in a cylindrical quartz crucible surrounded by a concentric heating element and concentric radiation shields or insulation. For example, use can be made of a tubular heater with a high frequency generator as the source of power and reflecting shields of alundum cylinders. The spitting of silicon is related to gas evolution, and the gas comes from two primary causes—adsorbed gas and the reaction products of silicon and the crucible. Gas is also released from bubbles contained in the quartz crucible walls. Improved removal of adsorbed gas can be achieved by means of controlled melting and freezing. The seriousness of the problem in vacuo is reduced with an electrically operated mechanical movement of the high frequency power coil. The upper portion of the powder charge is melted first and the high frequency coil lowered until the powder is completely molten. During cooling the high frequency coil is raised slowly. These means also reduce the final nonviolent extrusion of large beads of metal through the ingot top during freezing. Better control of spitting and bead extrusion is obtained when melting is done under helium at. atmospheric pressure instead of in vacuo. The problem of reaction between silicon charge and crucible in practice is confined to the reaction between silicon and quartz. This2 apparently is: Si + SiO2 + 2SiO The part that this reaction plays in spitting has not been isolated for separate study. SiO is a volatile vapor at the melting point; of silicon and is released freely during melting in vacuo, but hardly at all in helium at atmospheric pressure. The cracking of ingots is a major difficulty in melting silicon, and its prevention requires special melting techniques or the addition of "toughening" agents such as aluminum or beryllium.' The cracking of the ingots has been explained as being the result of the expansion that occurs upon freezing; although direct observation of freezing ingots reveals visible cracks on the surface only after a red heat has been reached, suggesting that cracking is the result of differential contraction of silicon and quartz. Silicon wets quartz, and the ingot adheres tightly to the crucible. Therefore as ingot and crucible cool, the two either have to pull apart, or at least one must crack. Surprisingly, in spite of the relative thinness of the quartz and the thickness of the ingot, the ingot and the crucible both crack. Microscopic and X-ray4 studies fail to show any plastic flow other than twinning in the ingots. Slow cooling fails to prevent cracking. Another possible solution to cracking is to weaken the crucible. Use of thin-walled crucibles finally led to success with fused quartz crucibles with a wall thickness of 0.25 to 0.50 mm. With such thin-walled fused quartz crucibles consistently uniform success is secured in producing sound ingots 30 mm in diam from the purest available grade of silicon (99.9+) without the use of any type of addition. Melts are made in the size range of 50 to 100 g. Omission of a deliberately added doping agent is not sufficient to insure pure ingots. The reaction of silicon with crucibles and the resultant solution of impurities in the silicon is well-established." In this laboratory, the presence of Al, Be, and Zr has been found spectroscopically in ingots melted in contact with alumina, beryllia, and zircon. The best crucible materials reported in the literature are MgO and SiO2. Use of MgO in this laboratory has resulted in a heavy deposit of magnesium on the furnace walls, showing that a reduction of the magnesia occurred and the resulting magnesium removed from the melt by volatilization. In the case of quartz, the silica is reduced and SiO liberated to deposit on the equipment walls. There probably is real danger that oxygen is dissolved in the ingot when either magnesia or silica is used as the crucible material. Preliminary analyses by Dean Walter in his vacuum unit in this laboratory6 indicate the presence of oxygen in undoped silicon melted in quartz.
Jan 1, 1953