Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Reservoir Engineering-General - A Viscosity-Temperature Correlation at Atmospheric Pressure for Gas-Free OilsBy W. B. Braden
This paper presents a suitable method for predicting gas-free oil viscosities at temperatures up to 500F knowing only the API gravity of the oil at 60F and the viscosity of the oil measured at any relatively low temperature. The API pravity and the one viscosity value are used as parameters to determine the slope of a straight line on the ASTM slanaord viscosity-temperature chart. Then, knowing the slope of the line and one point on the line, the vrscosities at higher temperatures can be determined. The line slope correlations were developed at I00 and 210F since viscosity data are frequently measured at these temperatures. A procedure is given for predicting line slopes from measurements at other tetnperatures. A nomogram is furnished for solving the relationship. The correlation has been evaluated at temperatures up to 5OOF for oils varyzng in gravity from 10 to 33 " API. The correiution is applicable only to Newtonian fluids. Comparison at 500F of true viscosities and those predicted from values at 100F shows an average deviation of 3.0 per cent (maximum deviation of 6.0 per cent). Predictions from the values at 21 0F for the same oils how an average deviation of 1.5 per cent (maximum deviation of 3.4 per cent). INTRODUCTION Correlations have been developed by Beal' and by Chew and Connally' for predicting viscosities of gas-saturated oils at reservoir conditions. Each of these correlations requires a knowledge of the solution gas-oil ratio and the viscosity of the gas-free oil at the reservoir temperature. For temperatures below 350F, measurements of the gas-free oil viscosities can be made easily using commercially available equipment. In thermal recovery processes, however, reservoir temperatures well in excess of 350F are encountered. Viscosity measurements at such conditions are more difficult and time consuming and require modification of existing equipment or the construction of new equipment. Measurements are further complicated by the difficulty of handling highly viscous oils associated with thermal recovery processes. Therefore, it is desirable to have a correlation which allows accurate prediction of viscosities at high temperatures. A commonly used technique for predicting viscosities at high temperatures is to measure the viscosities at two lower temperatures, plot the values on ASTM standard viscosity-temperature charts and extrapolate to the temperatures desired. If either of the values is slightly in error, the extrapolated value can be significantly in error. To justify an extrapolation, three points are actually necessary. This procedure can consume much time, particularly with heavy oils. Considering the cost of viscosity measurements, it would be desirable to eliminate the need for direct measurements by having correlations which would allow viscosity predictions from other physical or chemical properties. Beal1 investigated the possibility of correlating viscosity with oil gravity at temperatures from 100 to 220F. While showing that a general relationship exists, he also found significant deviations. It is possible that correlations will be developed based on oil composition as more information becomes available. While not eliminating the need for viscosity rneasurements, the method presented herein requires that only one viscosity measurement be made. The API gravity must also be known. The theory is based on the fact that the viscosity of paraffins (high gravity) changes less with temperature than does the viscosity of naph-thenes or aromatics (low gravity). The gravity. therefore, is used as a parameter to determine the slope of a straight line on the ASTM standard viscosity-temperature charts. The correlation is applicable only to Newtonian oils, and deviations due to thermal decomposition and nonhomo-geneity cannot be predicted. Oils containing additives have not been evaluated. PROCEDURE Fifteen oils were used in developing the correlation; eight were crudes and seven were processed oils. Oil gravities varied from 9.9" API (naphthene base) to 32.7' API (paraffin base). The temperature range studied was 81 to 516F. Each oil used had a minimum of three viscosity measurements and each plotted essentially as a straight line on the ASTM charts. In all, 91 viscosity measurements were used in the correlation. Saybolt, rolling ball and capillary tube viscometers were used for the measurements. Viscosity data for Samples 1, 2, 4, 7, 10, 11 and 14 were obtained in Texaco, Inc. laboratories. The data for Samples 3, 5, 6, 8, 9, 12 and 15 were from Fortsch and Wilson,3 and data for Sample 13 were from Dean and Lane.' All data points used in the correlation are plotted in Fig. 1. It is seen that some of the viscosity values deviated slightly from the straight-line plots at the higher temperatures. Properties of the oils after exposure to the
Jan 1, 1967
-
Iron and Steel Division - Stress and Strain States in Elliptical BulgeBy G. Sachs, A. W. Dana, C. C. Chow
A great number of the investigations on the plastic flow of metals have been concerned with the establishment of a "universal" stress-strain relation. In such a relation some stress function when plotted against a strain function should yield identical curves for the various stress states. In the first investigation of this type, Ludwik and Scheu1 plotted the maximum shearing stress as a function of the maximum principal strain. Later Ros and Eichinger2 introduced two universal stress-strain relations, the one relating the maximum shearing stress to the maximum shearing strain, and the other relating a stress invariant, suggested by von Mises and Haigh, to the corresponding strain invariant. (In more recent investigations the stress and strain invariants are frequently supplemented with some factor to render their meaning more lucid.) A further suggestion which has not attracted appreciable attention is that by Baranski³ who used stress and strain deviators. The most common means of experimentation to determine the relation between stress and strain consists in subjecting thin walled tubes to combined internal pressure and axial tension.4a,4b,4c This method allows the study of plastic flow under stresses which are variable in two directions. However, the plastic flow which can be obtained in this manner is comparatively small, being limited by either tension failure or instability. For copper,'. only the relation between maximum shearing stress and maximum shearing strain yielded good agreement. On the other hand, tests on a stee14b and on an aluminum alloy4c. resulted in systematic deviations if any of the discussed universal stress-strain relations were used. It would seem, therefore, that the agreement mentioned above for copper is only incidental and explained by its high rate of strain hardening compared to that of other metals. Much larger strains than experienced in the tube tests can be obtained by subjecting a thin membrane of a ductile metal, which is restrained at its periphery, to a uniform hydraulic pressure. The thin sheet forms a deep bulge before it fails. The stresses and strains in such a bulge increase with increasing distance from the edge of the clamping "die," the maximum stresses and strains occurring at the pole (crown) of the bulge. While the stress and strain states are determined by the contour of the bulge, the absolute magnitude of the stresses and strains depends upon the hydraulic pressure. The bulge contour is in turn correlated with the geometry of the die opening. The deformation and fracture characteristics of circular bulges, that is, bulges formed with circular clamping dies, have been the subject of numerous experimental and analytical investi-gations.5,6,7 It has been shown that plastically deformed circular bulges develop large and comparatively uniform strains before failure by instability"6b,6c,6d and closely assume a spherical shape.6d Also the distribution of strains across the contour of the bulge is dependent on the metal being investigated and is correlated with, but cannot be predicted from, the metal's stress-strain characteristics. On the other hand, oblong or elliptical bulges, that is, bulges formed with elliptical clamping dies, are not as susceptible to analytical analysis and have not been investigated to the extent that circular bulges have. The few available data6c,7c indicate that stress states are obtained at the poles of the bulges, varying between plane strain and balanced biaxial tension, depending upon the geometry of the die opening. In this paper, the strain state and curvatures exhibited by three bulge shapes, a circular and two elliptical bulges, Fig 1, are analyzed experimentally using methods described in previous publications.6a,6c An attempt is made to derive the stress-strain relations for these bulges, which represent strain states in which the ratio of the two positive principal strains varied between 1.0 and 0.35. In addition, tension tests yielded data for a value of —0.5 for this strain ratio. Such an analysis should indicate the applicability of the various laws correlating stress with strain to the stress and strain states occurring in bulged shapes. Definitions and Nomenclature The definitions of the major stress and strain quantities used in this paper are as follows: s1, s2, s3 = principal normal stresses Sl > s2 > S3 t = shear stress e = conventional (unit) strain e = In (1 + e) El, E2, E3 = principal natural strains 7 = shear strain The maximum shear stress: , _ S1 — S3 lmax = 2 Frequently, the flow stress, s1 — s3 = 2lmax rather than the maximum shear stress is used.
Jan 1, 1950
-
Institute of Metals Division - Hardness Anisotropy and Slip in WC CrystalsBy David A. Thomas, David N. French
The lrnrdness of WC crystals has been measured with the Knoop indenter at loads of 100 and 500 g on the (0001) and (1070) planes. The hardness as tneasitred on the basal plane is 2400 kg per sq mm and shows little anisotropy. The hardness on the prism plane, however, shows a marked orientation dependence, with a low value of 1000 kg -per sq mm when the long axis of the Knoop indenter is oriented parallel to the c axis and a high value of 2400 kg per sq mm when the indenter is perpendicular to the c axis. Slip lines (Ire observed surrounding the microhardness indentations and they show slip on (1010) planes, probably in [0001] and (1120) directions. This slip behavior can be explained by the crystal structure of TVC, which is simple hexagonal with a c/a ralio of 0.976. The hardness anisotropy call be explained by [0001]{1010} and (1130) {10l0] slii) and the resolved shear-stress analysis of Daniels and Dunn. HARDNESS anisotropy is a well-known phenomenon and has been reported for many metals, with both cubic and hexagonal structure.1-6 For hexagonal tungsten carbide, WC, a wide range of hardness values is reported in the literature. For example, Schwarzkopf and Kieffer7 give a hardness of 2400 kg per sq mm and report a value of 2500 kg per sq mm by Hinnüber. Foster and coworkerss give the average Knoop microhardness as 1307 kg per sq mm with a maximum value of 2105 kg per sq mm. Although these values and the structure of WC suggest the likelihood of hardness anisotropy, no such measurements have been made. We first detected a large apparent hardness anisotropy in WC crystals about 75 p large, in over-sintered cemented tungsten carbide. Prominent slip lines also occurred around many indentations. This report presents further observations and interpretations of hardness anisotropy and slip in WC crystals obtained from Kennametal, Inc. Both Knoop and diamond pyramid indenters were used on a Wilson microhardness tester with loads of 100 and 500 g. EXPERIMENTAL RESULTS The carbide crystals tended to be triangular plates parallel to the (0001) basal plane of the hexagonal structure. The side faces were parallel to the ( 1010) prism planes. Specimens were mounted approximately parallel to these two types of faces and metallographically polished. Laue back-reflection X-ray patterns were used to orient the specimens, which werethen ground to within ±1 deg of the (0001) and (1010) planes. The Knoop hardness values measured on the basal plane are plotted in Fig. 1. There is only a small anisotropy, with a hardness range of 2240 to 2510 kg per sq mm. The additional points at angles from 52.5 to 67.5 deg confirm the sharp minimum hardness at 60-deg intervals, consistent with the sixfold hexagonal symmetry. The average hardness of all values obtained on the basal plane is 2400 kg per sq mm. While the basal plane shows only slight anisotropy, the (1010) plane exhibits marked hardness anisotropy, from 1000 to 2400 kg per sq mm. Fig. 2 shows the hardness as a function of the angle between the long axis of the indenter and the hexagonal c axis, the [0001] direction. The minimum and maximum occur when the indenter is oriented parallel and perpendicular to the [0001] direction, respectively. The anisotropy of the prism plane is contrary to that reported for hexagonal zinc and hard- However, the basal-plane anisotropy is similar to these two metals.1'2 To check the accuracy and reproducibility of the measurements, a series of fifteen impressions was made at 100-g load in the same orientation in the same area of the specimen surface. The average for all was 2040 kg per sq mm, with a range of 1950 to 2130 kg per sq mm, giving an accuracy of about ± 5 pct. Thus the slight anisotropy on the basal plane is almost within experimental error. Fig. 3 shows slip lines around the Knoop indentations on the basal plane. The slip traces are in directions of the type (1130). The presence of slip steps on the basal plane indicates that the slip direction lies out of the (0001) plane. Because WC has a c/a ratio of 0.976,' the shortest slip vector is [0001], which suggests slip systems of the type [0001] (1010). Fig. 4 shows slip lines around the Knoop intentations on the (1010) plane. These slip lines are inconsistent with [0001] slip but can be
Jan 1, 1965
-
Part VIII – August 1969 – Papers - The Undercooling of Cu-20 Wt Pct Ag AlloyBy G. L. F. Powell
g samples of Cu-20 wt pct Ag alloy have been mdercooled to a maximum of 197°C by melting under a slag of commercial soda-lime glass in a vitreous silica crucible. No grain refinement of the primary copper was observed in samples undercooled to the maximum of 197°C. When the samples contained a small amount of oxygen, the copper dendrites were partially recrystallized at undercoolings greater than 97°C. In previous papers'-3 reporting the grain structure of undercooled silver and copper, it was observed that grain refinement was dependent on both undercooling and oxygen content. Grain refinement occurred in undercooled silver when the degree of undercooling exceeded the range 153" to 175"C, while in Ag-0 alloys (0.12 wt pct) fine equiaxed grains were exhibited when undercooling was greater than 50°C. Similarly, copper samples undercooled as much as 208°C displayed fan-shaped growth from a single nucleation site, while the grain structure of Cu-O alloys (0.08 wt pct) was fine and equiaxed at undercoolings larger than 150°C. Thus the presence of oxygen greatly reduced the undercooling at which grain refinement occurred. It was also observed that the change in grain size resulted from recrystallization and was not due to an enhanced nucleation rate in the liquid-solid transformation. It is possible that the influence of oxygen on recrystallization is due primarily to its presence as a solute element. walker4,' reported that, although a grain size change did not occur in pure nickel until the undercooling exceeded 150°C, small grains were observed in samples of Ni-Cu alloy solidified at small and large degrees of undercooling. Jackson et al.6 suggested that the fine grained structure of the Ni-Cu alloy resulted from the melting off of dendrite arms during recalescence. This remelting process may occur in alloys as a result of segregation during freezing which causes a variation in liquidus temperature from point to point within a dendrite. It was therefore decided to undercool copper with a metallic alloying element to ascertain whether the presence of a metallic solute would have a similar effect to oxygen in inducing grain refinement. A Cu-Ag alloy was chosen, since both metals had been shown to behave similarly on undercooling. The alloy Cu-20 wt pct Ag was selected since the eutectic constituent outlines the initial growth form of the primary copper, so that the as-frozen grain structure is not obscured if subsequent recrystallization occurs. This paper describes the results of undercooling experiments carried out with Cu-20 pct Ag samples undercooled to a maximum of 197°C and the effect of oxygen content on the grain structure of the undercooled samples. EXPERIMENTAL Melting was carried out in a small cylindrical resistance furnace using "fine" silver granulate and oxygen-free high conductivity copper. The procedure adopted was to melt the required quantity of silver in air in a clean vitreous silica crucible for approximately 15 min, freeze, and add granulated commercial soda-lime glass to form a complete surface slag cover, after which the sample was melted and frozen several times to reduce the oxygen content. The glass slag cover was approximately 3 in. thick. Pieces of copper (=50 g) were added to the crucible until the required quantity to make 350-g samples of alloy had been charged. Each piece was added quickly to the crucible which was held at a temperature slightly above the melting point of silver. The piece was quickly pushed beneath the glass to minimize oxidation and any oxide coating usually decomposed before the piece had settled down into the silver. After the full quantity of copper had been added, the melt was stirred with a silica rod to hasten homogenization and a Pt/Pt 13 pct Rh thermocouple enclosed in a vitreous silica sheath inserted for temperature measurement. Heating and cooling curves were recorded on a potentiometric chart recorder fitted with a zero suppression unit. The milli-voltage range of the recorder was adjusted so that temperatures could be read to 1°C. Heating and cooling curves were taken every hour until three consecutive readings gave the same solidus-liquidus range, consistent with the solidus-liquidus range for this alloy composition by reference to Hansen and Anderko.7 Metallographic examination of samples frozen at this stage, failed to show any variation in composition from bottom to top of the ingot. Consequently, it was considered that the melt was homogeneous at this stage and undercooling experiments were then car-
Jan 1, 1970
-
Producing-Equipment, Methods and Materials - Two Bottom-Hole Pressure Instruments Providing Automatic Surface RecordingBy R. H. Kolb
A long term project at Shell Development Co.'s Exploration and Production Research Laboratory has been the improvement of the accuracy and the ease of BHP measurements. As a result of these efforts, two complete and separate systems have now been built for the automatic logging of BHP variations. The first of these is a small-diameter instrument suitable for running through production tubing on a single-conductor well cable. During the development of this instrument, as much emphasis was placed on providing a high degree of usable sensitivity and repeatable accuracy as on obtaining the advantages of surface recording. The second system combines the benefits of automatic, unattended recording with the convenience of a permanently installed Maihak BHP transmitter.' THE CABLE INSTRUMENT For many years the standard instrument for BHP determination has been the wireline-operated Amerada recording pressure gauge or one of several other similar devices. This gauge records on a small clock-driven chart carried within the instrument, and although relatively precise readings from the chart are possible, they are difficult to ob-tain. a Both the maximum recording time and the resolution of the time measurements are limited by chart size, and when a slow clock is required for long tests, the precision of the time measurement is often inadequate. Since it is impossible to determine the data being recorded until the gauge has been returned to the surface, wasted time often results when a test is protracted beyond the necessary time or when it is terminated too soon and must be re-run. Clock stoppage or other malfunctions which would be immediately apparent with surface recording remains undetected with down-hole recording; the test is continued for its full term with a consequent loss in production time. As new uses for subsurface pressure data evolved, the shortcomings of the wireline instrument became increasingly apparent, and the concurrent development of a surface-recording pressure gauge and the associated high-pressure well cable service unit' was undertaken. Description of the Instrument Because of its ready availability and advanced degree of development, the Amerada bourdon-tube element was chosen as the basic pressure-sensing device. This element converts a given pressure into a proportional angular displacement of its output shaft, and a suitable telemetering system was designed to measure accurately the extent of this displacement and to transmit the measurement to the surface and record it. The telemetering system furnishes a digital record printed on paper tape by an adding machine-type printer. The present arrangement provides a resolution of one part in 42,000 over the angular equivalent of full-scale deflection, giving a usable sensitivity of better than 0.0025 per cent of full scale. An additional refinement simultaneously records on the tape the time or the depth of the measurement, also in digital form. When the instrument is placed in operation, an adjustable programer can be set to initiate a read-out cycle automatically at selected time intervals. When subsurface pressures are changing rapidly, readings may be recorded as frequently as once every 10 seconds; when pressures are more nearly stabilized, the period between readings may be extended to as much as 30 minutes. Because the instrument is surface-powered as well as surface-recording, the maximum period of continuous logging is (for all prac. tical purposes) unlimited. The subsurface instrument is a tubular tool, 1 1/4-in. in diameter and 6.5 ft in length, operating on 12,000 ft of conventional 3/16-in. IHO logging cable. The transmitting section, mounted above the bourdon-tube element in place of the regular recording mechanism, contains no fragile vacuum tubes or temperature-sensitive transistors. This unit has been laboratory-tested to 1 0,000 psi and 300°F and has performed dependably during a number of field operations. The down-hole transmitting arrangement can be fitted to any standard Amerada pressure element, regardless of range and with no modification of the element itself. Calibration To obtain a repeatability commensurate with the sensitivity and resolution of the instrument, it was necessary to develop a special calibrating technique. The manufacturers of the Amerada recording pressure gauge claim an accuracy of only 0.25 per cent of full scale, which is a realistic figure for normal calibrating and operating procedures. An exhaustive investigation was made of the errors inherent in the bourdon-tube element, itself, independent
-
Institute of Metals Division - Principles of Zone-MeltingBy W. G. Pfann
In zone-melting, a small molten zone or zones traverse a long charge of alloy or impure metal. Consequences of this manner of freezing are examined with impurerespect to solute distribution in the ingot, with particular reference to purification and to prevention of segregation. Results are expressed in terms of the number, size, and direction of travel of the zones, the initial intermsofsolute distribution, and the distribution coefficient. IF a charge of binary solid-solution alloy is melted and then frozen slowly from one end, as for example in the Bridgman method of making single crystals,' coring usually occurs, with a resulting end-to-end variation in concentration. Such coring, or normal segregation, is undesirable where uniformity is an object. On the other hand, for certain systems, it can be utilized to refine a material by concentrating impurities at one end of the ingot.'. ' In the present paper a different manner of freezing will be examined with respect to the distribution of solute in the ingot. A number of procedures will be indicated which have in common the traversal of a relatively long charge of solid alloy by a small molten zone. Such methods will be denoted by the general term zone-,melting, while the process described in the preceding paragraph will be called normal freezing. It will be shown that, in contrast to normal freezing, zone-melting affords wide latitude in possible distributions of solute. Segregation can either be almost entirely eliminated or it can be enhanced so as to provide a high degree of sttparation of solute and solvent. A number of simplifying assumptions will be invoked which, while not entirely realizable in practice, nevertheless provide a suitable point of departure for more refined treatments. Moreover, our own experience with zone-melting has shown that, for certain systems at least, the analysis holds quite well. The present paper will be confined to a discussion of principles and a general description of procedures. Comparison with experiment is planned for later publication. Normal Freezing Before considering zone-melting, segregation during normal freezing will be reviewed briefly. If a cylinder of molten binary alloy is made to freeze from one end as in Fig. 1, there usually will be a segregating action which will concentrate the solute in one or the other end of the ingot. If the constitutional diagram for the system is like that of Fig. 2, then the distribution coefficient k, defined as the ratio of the concentration in the solid to that in the liquid at equilibrium, will be less than one and the solute will be concentrated in the last regions to freeze. If the solute raises the freezing point, then k will be greater than one and the solute will be concentrated in the first regions to freeze. The concentration in the solid as a function of g, the fraction which has solidified, can be expressed by the relation: C = kC0 (1-g)k-1 [I] where C, is the initial solute concentration in the melt. Eq 1 is based on the following assumptions: 1—Diffusion in the solid is negligible. 2—Diffusion in the liquid is complete (i.e., concentration in the liquid is uniform). 3—k is constant. Concentration curves representing eq 1 for k's from 0.01 to 5.0 are plotted in Fig. 3. This equation, in one form or another, has been treated by Gulliver,³ Scheuer,4 Hayes and Chipman5 for alloys and by McFee2 for NaCl crystals. It is derived in Appendix I. It should be pointed out that the k which is calculated from the phase diagram will be valid only in the ideal case for which the stated assumptions are correct. In all actual cases, the effective k will be larger than this value for solutes which lower the melting point, smaller for solutes which raise the melting point, and will probably vary during the beginning of the freezing process. For simplification it will be assumed that the ideal k is valid. Zone-Leveling Processes The processes of this part are designed to produce a uniform, or level, distribution of solute in the ingot. Single Pass: Consider a rod or charge of alloy whose cross-section is constant and whose composition, C2, is constant, although permissibly varying on a microscopic scale." Such a charge might be a rapidly frozen casting or a mixture of crushed or powdered constituents. Cause a molten zone of
Jan 1, 1953
-
Institute of Metals Division - The Study of Grain Boundaries with the Electron MicroscopeBy J. F. Radavich
Many heats of steel of low carbon value have been known to produce brittle pieces of steel. The brittleness is believed to be due to the impurities located within the grain boundaries. Such brittle steels have been examined with an optical microscope to ascertain the nature and the amount of the impurities present at the grain boundaries. Due to the relatively low resolving power of the optical microscope, the impurities are not visible in fine detail. The writer obtained some sheet steel and proceeded to determine the location of the impurities and to show the application of the electron microscope to the study of grain boundaries. One sample was known to be capable of becoming embrittled, whereas another sample was believed to be much less susceptible to embrittlement. Treatment of Specimens The specimens were embrittled by annealing above the A3 point under mildly oxidizing conditions. One piece of ingot iron could not withstand a 90" bend, whereas another piece of ingot iron was not affected and could withstand a 90" bend. The brittle piece was then annealed at a high temperature in a hydrogen atmosphere. The annealed ingot iron was termed cured and could withstand a 90" bend very easily. The three specimens examined will be designated as brittle, good. and cured in the discussion that follows. Procedure The sizes of the specimens were as follows: one piece of brittle ingot iron-3/8 by 35 in.; one piece of good ingot iron-96 by 1/8 in.; one piece of cured ingot iron-36 by 54 in. The specimens were too small to be polished by hand and therefore were mounted in bakelite. The polishing procedure was carried out in the conventional manner with the use of 1/0 through 3/0 papers, and the final polish was done with alumina on a billiard cloth. The specimens were then etched in a 4 pct solution of picral in alcohol, and then they were examined through an optical microscope. An area was chosen that showed distinct grain boundaries, and an effort was made to keep near this area when pulling the replicas REPLICA TECHNIQIJE The replica technique used in the preparation of the replicas for examination under the electron microscope is described in Electron Metallography.' It consists essentially of the following steps: 1. Obtaining a suitably etched specimen. 2. Applying a swab of ethylene di-chloride on the surface. 3. Applying a formvar solution on the surface. 4. Placing a screen on any desired spot. 5. Breathing on the fornivar layer. 6. Applying scotch tape on the screen and film. 7. Pulling the film and the screen up with the Scotch tape. 8. Separating the screen from the Scotch tape. This replica technique is very similar to the one described by Harker and Shaefer. However, with the added step, the percentage of replicas removed is very much higher regardless of the length of the time from the etching of the specimen to the actual pulling of the replica. The replicas were then shadow cast with manganese at a filament height to replica distance ratio of 1 1/2:7. This produced a very high contrast replica for use in the electron microscope. One of the dificulties encountered with this study was the restricted area of the specimen. The width of the specimens was the same as that of the 200 mesh nickel supporting screen. In order to increase the effective area, the screens were cut down as shown in Fig 1. The arrow indicates the direction in which the replica was pulled. This operation made it possible to obtain a large percentage of good replicas. Fig 3 shows an electron micrograph of a brittle piece of ingot iron and a grain boundary that was polished mechanically. The surface is very rough probably due to the incomplete removal of the flowed layer by the picral etchant. The grain boundary does show evidence of impurities. It was decided to electropolish the specimens to obtain a much smoother surface than the one obtained by mechanical polishing. ELECTROPOLISHING The specimens were cut in half to expose the metal on the back side. The exposed metal had sufficient area to make good electrical contact and electropolishing was carried out easily. The conditions for electropolishing were 0.9 amp, 35 volts, and 25 sec. in an electrolyte composed of 850 cc of ethyl alcohol, 100 cc distilled water, and 50 cc of perchloric acid. The polished specimens were then etched in the 4 pct picral solution for a shorter time than was necessary for
Jan 1, 1950
-
Institute of Metals Division - Effect of Nitrogen on Sigma Formation in Cr-Ni Steels at 1200°F (650°C)By C. H. Samans, G. F. Tisinai, J. K. Stanley
The addition of nitrogen (0.10 to 0.20 pct) to Fe-Cr-Ni alloys of simulated commercial purity results in a real displacement of the u phase boundaries to higher chromium contents. The effect is small for the (Y + s)? boundary, but is pronounced for the (y + a +s)/(y + a) boundary. Although there is an indication of an exceptionally large shift of the n boundaries to higher chromium contents, especially in steels with nitrogen over 0.2 pct, the major portion of this apparent shift results from the fact that carbide and nitride precipitation cause "chromium impoverishment" of the matrices. The effect of combined additions of nitrogen and silicon to the Fe-Cr-Ni phase diagram is demonstrated also. Nitrogen can nullify the effect of about 1 pct Si in shifting the (y + o)/? phase boundary to lower values of chromium at all nickel levels from 8 to 20 pct. NItrogen can nullify this U-forming effect of about 2 pct Si at the 8 pct Ni level, but not at the 20 pct Ni level. The alloys studied were in both the cast and the wrought conditions. There are indications that the u phase forms more slowly in the cast alloys than in the wrought alloys if both are in the completely austenitic state. The presence of 6 ferrite in the cast alloys accelerates the formation of U. Cold working increases the rate of o formation in both cast and wrought alloys. THE major improvement in Fe-Cr-Ni austenitic alloys in recent years has been in the addition or removal of minor alloying elements to facilitate better control of corrosion resistance, sensitization, and heat resistance. One shortcoming of the austenitic Fe-Cr-Ni alloys, which never has been completely circumvented, is their propensity toward u formation. In the AISI-type 310 (25 pct Cr-20 pct Ni) and type 309 (25 pct Cr-12 pct Ni) steels, sufficient amounts of u phase can form, if service or treatment is in a suitable temperature range, to cause severe embrittlement. Also, there is a growing conviction that this phase may be contributory to some unexpected decreases in the corrosion resistance of certain of the 18 pct Cr-8 pct Ni-type steels. The present paper discusses the effect of nitrogen additions on the location of the (r+u)/d and the (y+a+u)/(y+a) phase boundaries in the ternary Fe-Cr-Ni system, for cast and wrought alloys of simulated commercial purity, and in similar alloys containing up to about 2.5 pct Si. The objective is to define compositional limits for alloys which will not be susceptible to u formation when used near 1200°F (650°C). An excellent review of the early studies of the u phase in the Fe-Cr-Ni system has been compiled by Foley.1 Rees, Burns, and Cook2 have determined a high purity phase diagram for the ternary system, whereas Nicholson, Samans, and Shortsleeve3 are- stricted themselves to a portion of the simulated commercial-purity phase diagram. Both groups of investigators show almost an identical position for the commercially significant (y+u)/y phase boundary. Further comparison of the work of the two groups indicates that, below the 8 pct Ni level, the commercial alloys have a decidedly greater propensity toward u formation than the high purity alloys. The two groups of workers agreed that both the AISI-type 310 (25 pct Cr-20 pct Ni) and the type 309 (25 pct Cr-12 pct Ni) steels are well within the (y+~) region and that the 18 pct Cr-8 pct Ni-type alloys straddle the U-forming phase boundaries. Nicholson et al.3 showed, in addition, that these boundaries shift toward lower chromium contents if greater than nominal amounts of silicon or molybdenum are added. The effect of nitrogen on the location of the s phase boundaries in the Fe-Cr-Ni system has not been known with any certainty. In 1942, an approach to this problem was made by Krainer and Leoville-Nowak,' but at that time they apparently were unaware of the slow rate of s formation in strain-free samples and aged their samples for insufficient times, e.g., 100 hr at 650°C (1200°F) and 800°C (1470°F). For this reason, it would be expected that their (y+ u) /y boundary would be shifted toward lower chromium contents (restricted ?-field) when equilibrium conditions were approximated more closely. Procedure for Studying the Alloys The alloys used were prepared in the following way: Heats of 200 lb each were melted in an induction furnace. A 5 lb portion of each heat was poured into a ladle containing an aluminum slug for de-
Jan 1, 1955
-
Institute of Metals Division - Role of the Binder Phase in Cemented Tungsten Carbide-Cobalt AlloysBy J. T. Norton, Joseph Gurland
IN spite of the extended use and high state of practical development of the cemented tungsten carbides, the structure of these alloys is still a matter of considerable controversy. The characteristic high rigidity and rupture strength of sintered compacts have been attributed to a continuous skeleton of tungsten carbide grains, formed during the sintering process. This view is based mainly on the work of Dawihl and Hinnuber,1 who reported that a sintered compact of 6 pct Co maintained its shape and some of its strength after the binder was leached out with boiling hydrochloric acid. After leaching, only 0.04 pct Co was reported to remain in the compact. They also showed that the assumed increasing discontinuity of such a skeleton, as the cobalt content is increased, could be made to account for the observed discontinuous increase of the coefficients of thermal expansion, the loss of rigidity, and the impaired cutting performance of alloys of more than 10 pct Co. Contradictory evidence was cited by Sanford and Trent,' who mentioned that a sintered compact was destroyed by reacting the binder with zinc and leaching out the resulting Zn-Co alloy. The skeleton theory also does not account for the observed change of strength of sintered compacts as a function of cobalt content. If the skeleton is responsible for the strength, the latter would be expected to decrease with increasing binder content. Actually, the strength increases and reaches a maximum around 20 pct Co. In addition, tungsten carbide is brittle and undoubtedly very notch sensitive. The highest value found in the literature for the transverse rupture strength of pure tungsten carbide prepared by sintering is 80,000 psi.3 herefore, such a skeleton does not easily account for a rupture-strength value of 300,000 psi and higher, commonly found in sint.ered tungsten carbide-cobalt compacts. In view of the conflicting data present in the literature, experiments were undertaken to determine whether the sintering of tungsten carbide-cobalt alloys leads to the formation of a carbide skeleton or whether the densification behavior and the properties of cemented compacts are consistent with a structure of isolated carbide grains in a matrix of binder metal. The specimens were prepared from powders of commercial grade. Tungsten carbide powder ranged in particle size from 0 to 5x10-4 cm. Mixtures of tungsten carbide and cobalt were ball milled in hexane for 48 hr in tungsten carbide lined mills. After milling, the specimens were pressed in a rectangular die (1x1/4x1/4 in.) at 16 tons per sq in. NO pressing lubricant was used. Sintering of the tungsten carbide-cobalt compacts was carried out in a vertical tube furnace equipped with a dilatometer (Fig. I), by means of which the change of length of the powder compacts could be followed from room temperature to 1500°C. An atmosphere of 20 pct H, 80 pct N was maintained inside the furnace. Decarburization of the samples was prevented by the presence of small rings of graphite inside the furnace tube. The temperature of the sample was measured by a platinum-platinum-rhodium thermocouple, which also was part of a temperature control system able to maintain a constant temperature within ±100C. Pure tungsten carbide compacts were prepared by sintering the carbide without binder or by evaporating the binder from sintered compacts in vacuum at 2000°C. Since complete densification of these samples was not desired, they were sintered only to 60 or 80 pct of the theoretical density of tungsten carbide. The specimens were prepared for metallographic examination by polishing with diamond powders and etching with a 10 pct solution of alkaline potassium ferricyanide. Cobalt etches light yellow and the carbide gray. The amount of porosity is exaggerated since it is difficult to avoid tearing out carbide particles, especially from incompletely sintered samples. Experimental Observations A number of specific experiments were carried out in order to study some particular aspect of the sintering problem. The details of these experiments, together with their results, are as follows: Electrolytic Leaching: The binder was removed by electrolytic leaching from sintered tungsten carbide-cobalt compacts for the purpose of determining the continuity of the carbide phase. The method used was based on the work of Cohen and coworkers4 on the electrolytic extraction of carbides from annealed steels. If the sample is made the anode, using a 10 pct hydrochloric acid solution as the electrolyte, the binder is dissolved, but the rate of solution of tungsten carbide is negligible. A current density of 0.2 amp per sq in. was applied. As shown in Fig.
Jan 1, 1953
-
Part VII – July 1968 - Papers - Grain Boundary Penetration and Embrittlement of Nickel Bicrystals by BismuthBy G. H. Bishop
The kinetics of the inter granular penetration and embrittlement of [100] tilt boundaries in 99.998 pct pure nickel upon exposure to bismuth-rich Ni-Bi liquids have been determined in the temperature range from 700° to 900°C. The kinetics of penetration are parabolic in time at constant temperature over most of the temperature range. In a series of 43-deg bicrystals the rate of penetration is anisotropic with respect to the direction of penetration into the grain boundaries. In lower-angle bicrystals the penetration rate is isotropic. The rate of penetration decreases with tilt angle at 700°C. The activation energy for penetration in the 43-deg bicrystals is 42 kcal per g-atom independent of direction. It is concluded that the intergranular penetration and embrittlement in the presence of the liquid proceeds by a grain boundary diffusion process and not by the intrusion of a liquid film. This was confirmed by a determination that the kinetics of penetration and embrittlement were the same in the 43-deg bicrystals upon exposure to bismuth vapor under conditions such that no bulk liquid phase would be thermodynamically stable. WhEN solid metals are exposed to a corrosive liquid-metal environment, the grain boundaries are sites of preferential attack. Depending on the temperature, the composition of the liquid, and the composition, structure, and state of stress of the solid, a number of modes of attack are possible. This paper reports a study of the kinetics of intergranular penetration and embrittlement of high-purity nickel bicrystals upon exposure to bismuth which, together with an earlier study by Cheney, Hochgraf, and Spencer,' demonstrates that there are at least two modes of intergranular attack possible in the Ni-Bi system. In the study by Cheney et al., columnar-grain specimens of 99.5 pct pure nickel were exposed to liquid bismuth presaturated with nickel in the temperature range 670" to 1050°C. They found that the majority of the boundaries, which were predominantely high-angle boundaries, were penetrated by capillary liquid films, the attack proceeding by a process which will be termed grain boundary wetting. This process occurs in a stress-free solid when twice the liquid-solid surface tension is less than the surface tension of the grain boundary,* i.e., when 2yLs < YGB In this case the penetration of the grain boundary by the liquid occurs at a relatively rapid rate, resulting in the severe embrittlement of a polycrystalline solid. Grain boundary wetting is a common mode of intergranular attack in systems in which the lower melting component is relatively insoluble in the solid, but the solid has an appreciable solubility in the liquid, for example, the Ni-Bi system, Fig. 1. In systems of this type at temperatures above the range of stability of any intermetallic phases, once the liquid is saturated with respect to the solid so that no gross solution occurs, chemical gradients are small, and surface tensions become major driving forces for attack, provided the solid is stress-free. The results of Cheney et al. appear to be typical of those encountered when grain boundary wetting occurs.' Capillary films were observed in the boundaries after quenching from the exposure temperature. The mean depth of penetration increased linearly with time, and the activation energy for the process was found to be 22 kcal per g-atom. In a study of the Cu-Bi system Yukawa and sinott4 found that the depth of penetration of bismuth into high-purity copper bicrystals of orientations from 22 to 63 deg of tilt about (100) at 649°C ranged from 0.05 to 0.25 in. after a 12-hr anneal. This corresponds to a linear rate of 6 to 15 X 10~6 cm per sec. At the same reduced temperature of 0.68 the rate for the Ni-Bi system' was 7 x lo-' cm per sec. In another study of the Cu-Bi system, Scheil and schess15 determined the kinetics of grain boundary wetting in hot-worked commercial rod. While there were several complicating factors present in this study, there is general agreement with the above results. The kinetics of penetration were linear, the activation energy was 20 kcal per g-atom, and at 650°C the rate of wetting was 2 to 5 x 10-6 cm per sec. The rate of wetting in the A1-Ga system6 is somewhat
Jan 1, 1969
-
Extractive Metallurgy Division - Free Energy of Formation of CdSbBy Richard J. Borg
The vapor pressure of Cd in equilibrium with CdSb in the presence of excess Sb has been measured using the Knudsen effusion method over the temperature range 276° to 379°C. The free energy of formation of CdSb is given by AF° = -1.58 + 1.53 x l0-4 T, kcal per mole. The enthalpy and entropy are obtained from the temperature coefficient of the .free energy. CADMIUM and antimony have almost imperceptible mutual solid solubility but form a single stable intermediate phase, CdSb. This phase, according to Han-sen,l extends from about 49.5 at. pct to 50 at. pct Cd at 300°C and has the orthorhombic structure. The free energy of formation of CdSb can be calculated from the vapor pressure of Cd for compositions which contain less than 49 at. pct Cd. The appropriate reaction and formulae are given by Eqs. [I] and [2]- CdSb(s, ~ Cd(g)-, +Sb(s) [1] Since Sb is in its standard state, Af - N,,AF'-,, = NcdRT In a,, = NcdRT InP/PO [2] In Eq. [2], P, is the vapor pressure of Cd in equilibrium with the alloy, and Po is the vapor pressure in equilibrium with pure solid Cd. It is implicit in this calculation that the free energy only slightly changes within the narrow limits of the single phase field. Thus, the value obtained from the antimony-rich boundary is truly representative of the stoi-chiometric compound. The results reported herein are obtained from a mixture near the eutectic composition, i.e. 59 at. pct Sb. Only two previous investigations" of the free energy of formation of CdSb have been made. Both relied upon the electromotive force method, and measurements were made over relatively narrow temperature ranges which strongly influences the reliability of the values of AH and aS. EXPERIMENTAL The eutectic composition is prepared by fusing reagent grade Cd and Sb by induction heating in vacuo with the starting materials held in a graphite crucible having a threaded lid. The material obtained from the initial melt is pulverized, sealed under high vacuum in a pyrex capsule, and annealed at 420°C for two weeks. X-ray analysis"gives the following lattize parameters: a = 6.436A, b = 8.230& and c = 8.498A using Cu Ka radiation with A = 1.54056. These values are in fair agreement with the result? previously reported by Al~in:4 i.e. a = 6.471A, b = 8.253A, and c = 8.526A. Vapor pressures are measured using an apparatus which has been described elsewhere,= however, with a single important modification. Knudsen effusion cells are made of pyrex with knife-edged orifices made by grinding the convex surface of the lid on #600 emery paper. Photographs taken at known magnifications using a Leitz metallograph enable the determination of the orifice area. Numerous calibration measurements of the vapor pressure of pure Cd give close agreement with values previously reported5,= thus indicating that no significant error can be ascribed to the substitution of glass cells for metal cells used in previous work. Because the vapor pressure of Cd is reliably established and because it is difficult to obtain Clausing factors for the glass cells, the final values used for the orifice areas are calculated from the calibration measurements of the vapor pressure of pure Cd. Effusion runs are started in an atmosphere of purified helium which is quickly evacuated as soon as the cell attains thermal equilibrium. Less than one minute is necessary to obtain high vacuum after evacuation begins, and the temperature seldom varies by more than 0.5oC from the value obtained prior to pumping out the helium. RESULTS The results of this investigation along with other pertinent data are tabulated in Table I. Fig. 2 is the familiar graph of log P against T-10 K. At least mean squares analysis of the data presented in Table I yields the following equation: log1DJP = 8.790 - 6472 x T"1 [3] The deviations of the individual measurements from the values calculated with Eq. 131 are given in column six of Table I; the average deviation is 4.0% of the calculated value. Although the partial molal properties change significantly with composition within the single phase region, the integral thermodynamic value should remain relatively constant. Hence the results of the following calculations, which use the data obtained for the eutectic composition, are probably representative of the equi-atomic compound. Eq. [4] describes the vapor pressure of pure Cd as a function of temperature and may be combined with Eq. [3] to
Jan 1, 1962
-
Part II – February 1969 - Papers - Elastic Calculation of the Entropy and Energy of Formation of Monovacancies in MetalsBy Rex O. McLellan
The formation of a monovacancy in a metal is simulated in an elastic model by the displacement of the surface of a small spherical cavity in a large elastic continuum. The application of linear elasticity to this distortion results in a well- known formula for the energy and an expression for the concomitant entropy change due both to the shear strain in the continuum and also to the dilation of the solid resulting from the boundary conditions at the surface of the solid. Elastic data (the sliear modulus and its temperature coelficient) are used to calculate the entropy and energy of formation for many metals. Despite the simplicity of the assumptions involved, the agreement between the calculated entropies and energies and experimental values is remarkably good. In recent years there has been a large increase in measurements of the absolute concentration of mono-vacancies in metals as a function of temperature. Hence new data for both the energy and the noncon-figurational entropy of formation of monovacancies has become available. Recent measurements' of the anomalous (non-Arrhenius) self-diffusion in many bcc metals has also focused interest on the prediction of the thermodynamic parameters of mono- and multi-vacancies in those metals for which no data are available. Damask and Dienes' have discussed the various theoretical calculations of the energy of formation EL, of a monovacancy. These include simple models involving the breaking of atomic bonds on moving atoms from the interior of a crystal to the surface, models combining elastic calculations with surface-energy terms and detailed quantum mechanical calculations. The simler models give the correct order of magnitude of &, but tend to overestimate it by a factor of about two. The quantum mechanical calculations4"7 have been carried out for the noble and alkali metals with generally reasonably good agreement with the available Ef data. The calculation of entropy of formation Sfv14 lnvolves a fundamental calculation of the perturbation of the phonon spectrum caused by the creation of a vacancy. Huntington, Shirn. and wajda8 have given an approximate evaluation of sJV by considering an Einstein model for the localized vibrations in the immediate neighborhood of the defect and then using elastic theory to calculate the entropy associated with the shear stress field in the distorted crystal (as originally proposed by Zenerg). They also included a term due to the dilation of the crystal. They obtained a value of 1.47k for copper, in good agreement with the experimental value (1.50k). However, Nardelli and Tetta- manzi1° have recently shown that neglecting the coupling between atoms (Einstein Model) may lead to a serious error so the agreement may be somewhat fortuitous. In this work simple linear elastic theory is used to calculate the entropy and energy of formation of mono-vacancies. Despite the simplicity of some of the assumptions involved, the agreement with the available experimental data is remarkable. However. the reasonable degree of success in the application of linear elastic calculations to the excess entropy of a solute atom in a dilute solid solution1' indicates that the application of elastic theory to vacancies. where the interaction of different atomic species is not involved, may not be inappropriate. THE ELASTIC MODEL The metal is assumed to be a spherical elastic continuum. A small spherical cavity of volume V = 4i;v:'/3 is cut from the center. removed. and dissolved rever-sibly in the bulk of the material. TO a good approximation no net atomic bonds are broken and the material does not undergo a volume change although the externally measured volume of the body would increase by V. The radius of the sphere of metal is much larger than r Next a negative pressure is applied to the cavity causing its surface to be displaced inward by an amount simulating the relaxation of the lattice around a monovacancy. In this model the energy and entropy accompanying the distortion are taken as 4, and <. As a first approximation the equation of state for the solid is taken as: r = ro(i + *~D LiJ where K is the bulk modulus. P the hydrostatic pressure. Vo the volume of the material at 0°K and zero pressure. and d+/dT = 30. where 0 is the linear thermal expansion coefficient. The variation of entropy with hydrostatic pressure is given by the Maxwell equation: These equations give the entropy change resulting from increasing the hydrostatic pressure from 0 to P as: and since • we have: This is the entropy arising from the dilation resulting
Jan 1, 1970
-
Institute of Metals Division - Grain Boundary Attack on Aluminum Hydrochloric Acid and Sodium HydroxideBy E. C. W. Perryman
The wide grooves formed at the grain boundaries when high purity aluminum is attacked by hydrochloric acid or sodium hydroxide have been attributed by earlier workers to the high energy of the grain boundary material. The effect has been investigated for high-purity AI-Fe alloys with up to 0.055 pct Fe as a function of iron content and heat treatment. It is shown that the explanation given above is untenable, but that the results can be explained on the assumption that iron segregates to the grain boundary in solid solution. IN 1934, Rohrmann¹ showed that aluminum of 99.95 pct purity suffered intercrystalline corrosion when immersed in 10 to 20 pct hydrochloric acid, and that the susceptibility to intercrystalline corrosion depended upon the heat treatment given. The greatest susceptibility was found for specimens quenched from a high temperature (600°C) and the lowest susceptibility for specimens cooled slowly from that temperature. Lacombe and Yannaquis2 have shown that super-pure aluminum (99.9986 pct) annealed at 600°C suffers intercrystalline attack in 10 pct hydrochloric acid and that this attack is intensified by anodic dissolution in the same solution at a current density of 10 milliamperes per sq dm. No difference in extent of intercrystalline attack was found between the 99.993 and 99.986 pct Al, which led the authors to suggest that impurities played only a secondary role in the mechanism of intercrystalline corrosion. It was found, however, that the attack at the grain boundaries depended upon the relative orientation of the grains, large differences in orientation favoring rapid attack. Boundaries where the two neighboring grains were similarly orientated showed high resistance to attack as did boundaries between grains which were in twin relationship. These observations led Lacombe and Yannaquis to suggest that the intercrystalline attack was due to lattice discontinuities present at grain boundaries. Assuming that the grain boundary is a layer three to five atoms thick and has a crystal structure which is a compromise between the two neighboring grains it is clear that the discontinuities will increase with increasing difference in orientation between the neighboring grains and hence the increasing tendency to intercrystalline attack. Roald and Streicher³ investigated the effect of heat treatment of aluminum alloys ranging in purity from 99.2 to 99.998 pct on the corrosion resistance in 20 pct hydrochloric acid and 0.30N sodium hydroxide. They found that in hydrochloric acid the intercrystalline attack appeared to be determined by the type and quantity of impurities present and by the relative orientation of the grains. No difference in the susceptibility to intercrystalline attack was observed between specimens quenched and those furnace cooled, from 575°C. In 0.30N sodium hydroxide some materials exhibited intercrystalline attack, this taking the form of V-notches. Rohrmann¹ offered no explanation for the greater susceptibility to corrosion of material quenched from 600°C. It seems possible that this difference is connected in some way with a different distribution of impurity elements in the quenched and slowly cooled specimens. The fact that Roald and Streicher8 observed no difference between quenched and slowly cooled specimens may possibly be due to differences in either rate of cooling or silicon content or possibly both. Both these would be expected to have an effect on the distribution of impurity elements. Although the rate of cooling used by Rohrmann was slightly more rapid than that used by Roald and Streicher the position cannot be clarified because Rohrmann does not give the silicon content and Roald and Streicher give the silicon contents of only a few of their alloys. That Lacombe and Yannaquis2 found no difference in corrosion behavior attributable to impurities between the two materials they used may be because both were of high purity compared with the aluminum used by Rohrmann.¹ Although they found no difference in the corrosion behavior of their two materials it is possible that the results obtained by Lacombe and Yannaquis may, nevertheless, have been influenced by impurity distribution, since, on the transition lattice theory of grain boundary structure, it would be expected that sparingly soluble impurities would tend to segregate to boundaries where the orientation difference is such that there is a greater density of atomic sites of suitable size to contain them. It was considered worth while, therefore, to examine the corrosion properties of a series of materials of differing impurity content with the objects of confirming the experimental observations made
Jan 1, 1954
-
Institute of Metals Division - Distribution of Lead between Phases in the Silver-Antimony-Tellurium SystemBy Voyle R. McFarland, Robert A. Burmeister, David A. Stevenson
The distribution of lead between phases in the Ag-Sb-Te system was studied using microautoradio -graphy. Two compositions were investigated, both containing an intermediate phase Known as silver antimony telluride as the major phase, and one containing AgzTe and the other SbzTes as the minor phase. For both compositions, two thermal treatments were used: nonequilibrium solidification from the melt and long equilibration anneals of the as-solidified structure. For each composition, lead was segregated in the minor phase of the as-solidified structure, but was distributed in the matrix after anneal. The electrical resistivity and carrier type were insensitive to the distribution of lead in the two-phase structure. ThERE has been considerable interest in the Ag-Sb-Te system because of its thermoelectric properties. The major interest has been in compositions on the vertical section between AgzTe and SbzTes, particularly the 50 mole pct SbzTes composition AgSbTez (compositions are conveniently expressed as mole percent SbzTes along the AgzTe-SbzTes section). One of the major problems in the proper evaluation and utilization of this material is the inability to control the electrical properties through impurity additions: all alloys prepared to date have been p-type, even with the addition of large amounts of impurities. It has been shown Wit all the compositions previously studied contain an intermediate phase of the NaCl st'ructure as a major phase (denoted by b) and a second phase, either AgzTe or SbzTe3, as a minor phase.'-3 One explanation for the unusual electrical behavior of this material is that the impurity additions have a higher solubility in the second phase than in the matrix; the impurity would segregate to the second phase, leaving the bulk matrix essentially free of impurity.4 In order to investigate this mechanism with a specific impurity element, the distribution of lead between the two phases was determined using autoradiography. Lead 210 was chosen because of the suitability of its 0.029 mev 0 particle for autoradiography and also because of the interest in lead as an impurity in this system.5'6 EXPERIMENTAL PROCEDURE Two compositions were taken from the vertical section between AgzTe and SbzTes, 50 mole pet SbzTes (Viz. AgSbTez) and 75 mole pct SbzTes, in which AgzTe and SbzTes appear, respectively, as the minor phase. Lead containing radioactive lead (pb210) was added to the above compositions to provide a concentration of 0.1 wt pct Pb. The material was placed in a graphite crucible in a quartz tube which was then evacuated and sealed. The samples were melted and solidified by cooling at a rate of 8°C per min and then removed and prepared for microa~toradiography. After autoradiographic examination of these samples, they were again encapsulated and annealed in an isothermal bath at 300°C for a number of days and prepared for examination. An alternate method of preparation employed a zone-melting furnace; the molten zone traversed the sample at a rate of 1.2 cm per hr and the solid was maintained at a temperature of 500°C both before and after solidification. This treatment had the same effect as solidification at a slow rate followed by an anneal for several hours at 500°C. In order to obtain the best resolution, thin sections of the alloy were prepared by hand lapping to a thickness of approximately 20 p. Other samples were prepared for examination by lapping a flat surface on the bulk sample. The resolution, although somewhat better in the former procedure, was adequate in both instances and the majority of the samples were treated in the latter fashion. A piece of autoradiographic film (Kodak Experimental SP 764 Autoradiographic Permeable Base Safety Stripping Film) was stripped from its backing, care being taken to avoid fogging due to static-electrical discharge. A small amount of water was placed on the sample, the film applied emulsion side down on the surface of the sample, and the sample and the film dipped into water in order to assure smooth contact. After drying, the film was exposed for 2 to 5 days, the period of time selected to give the best resolution. The film was developed on the specimen and fixed and washed in place. Two major factors must be considered in establishing the reliability of an autoradiograph: the in-
Jan 1, 1964
-
Institute of Metals Division - Growth of (110) [001] - Oriented Grains in High-Purity Silicon Iron - A Unique Form of Secondary RecrystallizationBy C. G. Dunn, J. L. Walter
Secondary recrystallization to the (110) [001] texture in high-purity silicon iron occurs if low-oxygen material is annealed in a nonoxidizing atmosphere. Any departure from these conditions results in a growth of (100) oriented grains. The nature of the matrix and secondary recrystallization structures and textures and the nature of grain boundary interactions during growth show that the low gas-metal interfacial energy of the (110) surfaces provides the driving force for growth of these grains. A type of grain growth, characterized by a driving force which derives from energy differences of {hkl} surfaces at the gas-metal interface, has been treated in recent papers.'-7 Secondary recrystallization to the cube text!:: in high-purity silicon iron provides one example. The present paper also deals with a surface energy driving force but the texture that results by secondary recrystallization is not the cube texture; it is a texture in which the (110) plane is in the plane of rolling and the [001] direction is in the direction of rolling. The phenomenon described in this paper is different from the impurity (dispersed phase)-controlled secondary recrystallization process in which the (110) [001] oriented grains grow under the action of grain boundary driving forces.8-12 It is also different from tertiary recrystallization,2 which also produces the (110) [001] texture in high-purity silicon iron, since the matrix textures and grain sizes are different. Finally, it is unlike any other form of secondary recrystallization reported in the literature. The possibility of obtaining the (110) [001] texture in high-purity silicon iron became clear in a study of the effect of impurity atoms on the energy relationships of (100) and (110) surfaces. In this study Walter and Dunn6 observed the migration of (100)/(110) boundaries, i.e., boundaries between two grains, one of which has a (100) plane and the other a (110) plane, respectively, parallel to the plane of the sheet specimen. At 1200°C the (100)/(110) boundaries advanced into (100) grains in a vacuum anneal, then reversed their direction and migrated into (110) grains in a subsequent anneal in impure argon. Finally, the direction of migration reversed once again with (110) grains growing into (100) grains in a second vacuum anneal. These results were explained in terms of a change in concentration of oxygen atoms at the gas-metal interface during the anneals. Thus, oxygen atoms were added to the surface during the anneals in impure argon to the point where ?100, the specific surface energy of the (100) oriented grains, was lower than ?110, the surface energy of (110) oriented grains. In vacuum, however, the oxygen concentration at the surface was lowered to the point where ?110 < ?100. Concerning the possibility of secondary recrystallization in high-purity silicon iron with a low initial oxygen concentration, the observed effect of adsorbed oxygen atoms has indicated6 that a good vacuum anneal would favor the rapid growth of matrix grains with the (110) plane in the plane of the sheet much more than grains in the (100) orientation. The growth of only (110) oriented grains of course would depend upon y110 being less than ?hkl, where hkl refers to any plane different from (110). The present paper is concerned with the application of the above ideas to secondary recrystallization to the (110) [001] texture in high-purity silicon iron. The matrix and secondary recrystallization textures and structures are defined and discussed. Observations of growth of nuclei for secondary recrystallization and of boundary interactions are included to provide direct information on the surface energy relationships between (110) and other (hkl) surfaces. EXPERIMENTAL PROCEDURE As before, 2,4-6 high-purity iron and silicon were melted and cast in vacuum to provide an alloy containing 3 pct Si with less than 0.005 wt pct impurities. The oxygen content of the ingot was lower than in previous ingots, being approximately 3 ppm (by weight). The carbon content of this ingot may have been slightly higher than was found for previous ingots. The same rolling and annealing schedule used previously2 was followed in this study to obtain samples 0.012 in. (0.3 mm) thick. These samples were electropolished prior to annealing. After rolling and polishing, the oxygen content of the material was approximately 6 ppm; material used in the previous studies contained about twice this amount of oxygen.
Jan 1, 1961
-
Extractive Metallurgy Division - Preparation of Metallic Titanium by Film BoilingBy L. A. Bromley, A. W. Petersen
The van Arkel-deBoer method for producing ductile titanium by thermal decomposition of Til, vapor and deposition on an electrically heated filament is modified by film boiling Til liquid on a heated filament, resulting in similar titanium deposition on the filament and liberation of gaseous iodine. The deposition rate is higher and the energy requirement smaller than in the van Arkel process. Many problems must be solved before the process is commercially feasible. TITANIUM of 99.9 pct purity, called ductile titanium, has been produced by a modification of the van Arkel-deBoer' method. In the van Arkel-deBoer method, an electrically heated wire is suspended from two electrodes, which are placed in a container holding TiI, vapor at a low' vapor pressure (usually <5 mm Hg). The vapor diffuses to the hot wire, usually maintained at 1100" to 1600°C,' and decomposes according to the reaction liberating gaseous atomic iodine and depositing solid crystalline titanium on the wire. Estimations based on the data of Runnalls and Pidgeon,' indicate that the rate-control ling step is the diffusion of atomic iodine away from the wire. There appears to be nearly thermodynamic equilibrium at the wire with TiI, and iodine as the main gaseous species. TiI, is almost certainly an important gaseous species in the cooler regions.' The liberated iodine diffuses to a heated source of crude titanium and reacts to form more TiI, vapor, which again diffuses to the hot wire and completes the cyclic process. The foregoing process may be modified by suspending the hot wire in liquid TiI,, instead of the vapor, and obtaining film boiling. This type of boiling is characterized by the formation of a continuous film of vapor over the wire surface. Since only vapor contacts the wire sul.face, the temperature of this surface may be raised as high as desirable, within the limit of mechanical strength requirements for the wire. By properly adjusting the input voltage. the temperature of the wire may be maintained above U0C"C; and by evacuating the vessel holding the liquid TiI, and maintaining a suitable condenser temperature, the vapor pressure of TiI, may be held low. Thus, the conditions of operation of the van Arkel-deBoer method may be approximated with film boiling; and hence, it is postulated that ductile titanium may be produced by this method. Preparation of Til, There are many methods available for the preparation of TiI,; that used in this research was prepared by the direct reaction of titanium sponge in controlled amounts with liquid iodine. Although no difficulty was encountered with this reaction, it has since been pointed out that this method is sometimes dangerous and should be used with caution. The resulting TiI, was purified by distillation. First Film Boiling Experiments Apparatus: The apparatus shown in Fig. 1 was used for film boiling TiI, on short wire filaments. The current to the filament was supplied through a bank of three 5 kva transformers connected in parallel. The current was controlled by adjusting the voltage over a 0 to 67.5 v range with a 7 kva variable transformer on the low voltage side of the bank of transformers. The current and voltage were measured by Weston meters. The sealed-in-glass tungsten electrodes were hard-soldered to the filament for the film boiling of TiI,. The bottom part of the reactor, containing TiI,, was wrapped with ni-chrome heating wires to maintain the TiI, in the liquid state. An ice or liquid nitrogen trap, for solidifying I, vapor and any TiI, not condensed, was attached to the low pressure side of the air-cooled condenser. A Megavac vacuum pump was used. Procedure: A 0.010 in. diam tungsten filament was hard-soldered to the tungsten electrodes. TiI, was melted (mp 156°C) and poured into the reactor chamber; the top of the reactor chamber, containing the electrodes, was replaced. Freezing of the TiI, was prevented by controlling the current to the ni-chrome wires wrapped around the reactor with a 1 kva variable transformer. The mechanical vacuum pump was started and the system evacuated to about 2 mm Hg TiI, vapor pressure. The current to the filament was turned on and the impressed voltage slowly increased with the variable transformer. A sudden drop in current at nearly constant im-
Jan 1, 1957
-
Logging and Log Interpretation - Prediction of the Efficiency of a Perforator Down-Hole Bases on Acoustic Logging InformationBy A. A. Venghiattis
A rational approach to the selection of the appropriate perforator to use in each specific zone of an oil well is presented. The criteria presently in use for this choice bear little resemblance with actual down-hole condilions. These environmental conditions affect the elastic properties of rocks. One of these elastic properties, acoustic velocity, is suggested as the leading parameter to adopt for the choice of a perforator because, being currently measured in the natural location of the formation, it takes into account all of the effects of compaction, saturation, temperature, etc., which are overlooked in the laboratory. Equations and curves in relation with this suggestion are given to allow the prediction of the depth of perforation of bullets and shaped charges when an acoustic log has been run in the zone to be perforated. INTRODUCTION When an oil company has to decide on the perforator to choose for a completion job, I wonder if it is really understood that, to date, there is no rational way of selecting the right perforator on the basis of what it will do down-hole. This situation stems from the fact that the many varieties of existing perforators, bullets or shaped charges, are promoted on the basis of their performance in the laboratory, but very little is said on how this performance will be affected by subsurface conditions such as the combination of high overburden pressure and high temperature, for example. The purpose of this paper is to show the limitations of the existing ways of evaluating the performance of perforators, to show that performances obtained in laboratories cannot be extended to down-hole conditions because the elastic properties of rocks are affected by these conditions and, finally, to suggest and justify the use of the acoustic velocity of rocks, as the parameter to utilize for the anticipation of the performance of a perforator in true down-hole environment. EVALUATING THE PERFORMANCE OF A PERFORATOR It is natural, of course, to judge the performance of a perforator from the size of the hole it makes in a predetermined target. Considering that the ultimate target for an oilwell perforator is the oil-bearing formation preceded in most cases by a layer of cement and by the wall of a steel casing, the difficulties begin with the choice of an adequate experimental target material. For obvious reasons of convenience, the first choice that came to the mind of perforator designers was mild steel. This is a reasonable choice for the comparison of two perforators in first approximation. Mild steel is commercially available in a rather consistent state and quality, and is comparatively inexpensive. The trouble with mild steel is that it represents a yardstick very much contracted; minute variations in depth of penetration or hole diameter and shape may be significant though difficult to measure. The penetration of projectiles in steel being a function of the Brinell hardness of the steel (Gabeaud, O'Neill, Grun-wood, Poboril, et al), it is often difficult to decide whether to attribute a small difference in penetration to a variation on the target hardness or to an actual variation on the efficiency of the projectile. Another target material which has been widely used for testing the efficiency of bullets or shaped charges in an effort to represent a formation—a mineral target as opposed to an all-steel target—is cement cast in steel containers. This type of target, although offering a larger scale for measuring penetrations, proved so unreliable because of its poor repeatability that it had to be abandoned by most designers. The drawbacks of these target materials, and particularly their complete lack of similarity with an oil-bearing formation, became so evident that a more realistic target arrangement was sought until a tacit agreement was reached between customers and designers of oilwell perforators on a testing target of the type shown on Fig. 1. This became almost a necessity about seven years ago because of the introduction of a new parameter in the evaluation of the efficiency of a perforator, the well flow index (WFI). The WFI is the ratio (under predetermined and constant conditions of ambiance, pressure and temperature) of the permeability to a ceitain grade of kerosene of the target core (usually Berea sandstone) after verforation. to its vermeabilitv before perforation. The value of this index ;or the present state if the perforation technique varies from 0 to 2.5, the good perforators presently available rating somewhere around 2.0 and the poor ones around 0.8, There is no doubt that, to date, the WFI type of test is by far the most significant one for comparing perforators. It is obvious that a demonstration of a perforator
-
Institute of Metals Division - Some Remarks on Grain Boundary Migration (TN)By G. F. Bolling
STUDIES of grain boundary migration in zone-refined metals have all shown that the rate of migration is greatly reduced by small added solute concentrations. However, it is apparent that a difference exists between boundary migration during normal grain growth and single boundaries migrating in a bicrystal to consume a substructure. To effect the same reduction in velocity in the two cases, much more solute is required for grain growth than for the single boundary experiments. One case is available for direct comparison; both Bolling and winegardl and Aust and utter' added silver and gold to zone-refined lead to study grain growth and single boundary migration, respectively. For comparable reductions in migration rates, about 500 times more solute was required to retard grain growth than to retard the single boundaries. A reason for this difference is suggested here. The rate of grain boundary migration is dependent on solute concentration and must therefore also depend on the solute distribution; i.e., regions of higher solute concentration encountered by a moving boundary must produce greater retardation and thus could determine any observed rate. A dislocation substructure can be the source of a nonuniform solute distribution since it can attract an excess concentration of certain solutes. In fact, it is probable that the solutes which impede grain boundary migration most would segregate most severely to a substructure for the same reasons. Thus a dislocation substructure present in a crystal being consumed could locally magnify the concentration of solute confronting an advancing grain boundary. In the single boundary experiments a low-angle substructure, within single crystals obtained by growth from the melt, was used to provide the driving force to move a grain boundary; in grain growth, no substructure of this magnitude was present. The increased solute concentration at subboundaries should be given approximately by C, = G e c,/kT, where t, is a binding energy and CO the bulk concentration. To account for the difference between the two experiments in the Pb-Ag and Pb-Au cases, C, must be the concentration impeding the single boundary migration, and a value of t, = 0.25 ev is necessary. This is reasonable, even though calculation on a purely elastic basis gives t, = 0.12 ev. because electronic effects must enter for silver and gold in lead. The compound AuPbz forms3 and the metastable compound AgrPb has been reported to nucleate at dislocations prior to the formation of the stable, silver-rich phase.4 Other observations support the hypothesis that a magnified solute concentration impedes the single boundary migration. For example, some crystals were grown by Aust and Rutter at concentrations of ~ 0.1 wt pct Sn and 2 x X at. pct Ag or Au which exhibited a cellular substructure, and in these crystals no boundary migration was observed. It is therefore evident that the higher concentrations at cell boundaries drastically inhibited migration. Inclusions would not have been responsible for this inhibition since according to recent work on cellular segregation,5 no second phase should have occurred in the segregated regions at the cell boundaries for the conditions of growth used, at least in the Pb-Sn system. In the purest lead, only the "special" boundaries observed by Aust and Rutter gave rise to the same activation energy as that obtained in grain growth. It is reasonable to suppose that the structure of special boundaries does not favor segregation at low concentrations and thus solute, or an inhomogeneity in its distribution, would have no effect. Random boundaries, on the other hand, are affected by solute and the substructure would enhance residual concentrations in the zone-refined lead, leading to a higher activation energy. It is clear, even without a detailed theory, that the apparent activation energies and exact solute dependence in the two experiments must be different as long as the non-uniform solute distribution produced by the substructure is important. Recrystallization experiments should also be susceptible to the same kind of local segregation at subboundaries or disloca tion cell walls; a suggestion similar to this has been made by Leslie et al.' Following the arguments presented here, the effects of a given solute concentration would be like those observed by Aust and Rutter if segregation occurred, and like those of grain growth otherwise. This work was partially supported by the Air Force Office of Scientific Research; Contract AF-49(638)-1029.
Jan 1, 1962
-
Part XI – November 1968 - Papers - The Density and Viscosity of Liquid ThalliumBy A. F. Crawley
The density and viscosity of 1iquid thallium have been measured by absolute methods to temperatures of about 200° and 150°C, respectively, above the melting point. These new data reported, especially density data, do not closely confirm previous work. Density p, in g per cu Cm, is shown to vary linearly with temperaluve t, in °C, according to the equation p = 11.658 - 1.439 X l0-3t. The viscosity data obey the well-known Andrade equation nv1/3 = A exp C/vT , the constants A and C for thallium having values of 2.19 x A and 79.648, respectively. This paper reports some new data for the density and viscosity .of liquid thallium. Measurements of these fundamental physical properties were undertaken as part of a continuing research program at the Mines Branch, Department of Energy, Mines and Resources, Ottawa. Canada. A literature search has revealed that data are so scarce that there could not be a consensus on the true values of the density and viscosity of liquid thallium. To be more specific, there exists only one set of viscosity data' and only two acceptable sets of density data,273 one of which is limited in scope.3 In Liquid Metals Handbook,3 another density study is reported but indications of impurities in the thallium render the results suspect. In this situation, further careful experimentation was required to realize the true density and viscosity of thallium. EXPERIMENTAL METHODS Density. Densities were determined using a graphite pycnometer. The technique and its accuracy have been discussed in earlier papers.4'5 It is considered that experimental data can be obtained which are accurate within +0.05 pct, all sources of random and systematic errors having been evaluated. Density results for thallium were identical whether measured under an atmosphere of argon or a vacuum of 5 x 10-6 torr and, for the most part, the argon atmosphere was used. Viscosity. Viscosity measurements were made in an oscillational viscosimeter by an absolute method—the liquid metal being held in a closed graphite cylinder. Design and operation of the apparatus, constructed in this laboratory, have previously been discussed.6 For thallium, runs were made under a vacuum of about 2 x 10-6 torr. To evaluate viscosity coefficients from the various experimental parameters, the mathematical analysis of Roscoe7 was used. Measurements of the necessary parameters and the accuracy of these measurements have also been discussed.6 The cylinder dimensions were corrected for the anisotropic expansion of graphite, as discussed for density measurements.4,5 It is well-known that thallium oxidizes rapidly and hence a newly machined surface quickly tarnishes in air. The oxide film, however. is nonadherent and is easily removed by rubbing or by solution in water. Hence, immediately before use, both density and viscosity charges were immersed in water, wiped dry, and quickly transferred to the apparatus which was then rapidly evacuated. Specimens removed after determinations were only slightly tarnished and there was no other evidence that tarnishing affected the results. For example, the sharpness of the specimen edges from the containing vessels indicated complete filling by the liquid metal. Thallium of 99.999 pct purity was used in this investigation. Because of its high toxicity care was exercised in handling this material. For example, the melting procedure to prepare machinable ingots was carried out in an open, well-ventilated area, while protective gloves were always worn when handling the solid metal. RESULTS AND DISCUSSION Density. Measurements were made over a tempera-ture range of about 200°C above the melting point. The results are listed in Table I and plotted in Fig. 1. From the graph it is evident that the relation between density and temperature is linear. Such a relation has been observed before in this program for other metals and alloys475 and elsewhere by other workers. A least-squares analysis of experimental data gives the equation: pT1 = 11.658 - 1.439 x 10-3t where p = density in g per cu cm and t = temperature in "C. In Fig. 1, together with the present results, the data of Schneider and Heymer2 in the corresponding temperature range have also been plotted. Evidently, the two sets of data do not agree well, the results of Schneider and Heymer being about 0.6 pct higher. Viscosity. Viscosity data were obtained from the melting point, 303.5°C, up to 457.5"C. The data are listed in Table I and in Fig. 2 the plot of these results demonstrates a smooth curvilinear relation between
Jan 1, 1969
-
Institute of Metals Division - A Technique for the Preparation of Thin Films of Two-Phase Alloys Suitable for Use in Transmission Electron Microscopy (TN)By E. Eichen, G. S. Ansell. L. R. Sefton
A Technique for the Preparation of Thin Films of Two-Phase Alloys Suitable for Use in Transmission Electron Microscopy In order to obtain foil sufficiently thin to permit transmission electron microscopy of two-phase alloys, particularly alloys in which the second phase is present as a very finely dispersed second phase, a technique has been developed to permit the thinning of these materials without either the large degree of pitting present in the electrochemical or chemical thinning process or the slicing of the second phase particles accompanying the mi-crotoming process. The metal or alloy to be thinned is first ground to initial sheet thickness of approximately 0.002 in. by hand grinding on 4/0 emery paper. This starting sheet of material is then reduced in cross section by an air-abrasion technique using an S. S. White dental abrasive unit. This unit consists of a supply of compressed CO, which provides a stream of high velocity gas impinging on the metal surface. Incorporated in the machine is a hopper-type of device in which fine abrasive particles of alumina are introduced into this high velocity gas stream. The abrasive particles are irregular in shape, approximately 30 across. If any particles are introduced into the sample during thinning, they should be readily observable. Impingement of this gas abrasive mixture on the metal surface causes rapid removal of the metal in a rather uniform manner. The rates of metal removal may be adjusted by both regulating the gas pressure and amount of abrasive material introduced into the gas stream. By moving the gas stream abrasive mixture slowly about the specimen or sheet surface, a large area of the sheet may be uniformly reduced to a thickness which is then suitable for use in transmission electron microscopy. Attendant with this metal removal is a result in cold working of the metal surface due to the impingement of the abrasive particles. The resultant foils, therefore, if made from materials which are desirable to view in the annealed condition, have to be subsequently heat treated. If the alloy from which these foils have been made has been initially heavily worked or deformed during manufacture, then no subsequent heat treatment is, necessary as in the case of the SAP-type alloys. Following this initial abrasive thinning technique, the material is then given a final electropolish which is just sufficient to remove any oxide which has formed on the metal surface during the abrasion technique. Care has to be exercised in this technique to make sure that none of the attendant problems associated with the chemical or electrochemical removal process are encountered. An electrolyte solution which has been found suitable for aluminum-aluminum oxide SAP materials is one containing 78 ml of perchloric acid, 120 ml of distilled water, 700 ml of ethanol, and 100 ml of butylcellosolve. The current density used is 1 amp per sq cm and a polishing time of 3 sec on each side of the foil is used. Extreme care must be used in choosing the current density and time to ensure that just the oxide film on the specimen is removed. Times or current density which are greater than this will lead to perforation of the film due to the removal of the A1,0, particles or a complete loss of the film due to complete solution of the matrix. Once the oxide film is removed the specimens must be kept in alcohol until placed in the microscope to prevent any further oxidation. Fig. 1 shows -an electron micrograph at X28,000 of a thin foil of an aluminum-aluminum oxide SAP-type alloy prepared using this technique. The alloy consists of a matrix of commercial purity aluminum containing a very finely dispersed second phase of aluminum oxide flakes. In the electron micrograph, the dark patches are the aluminum oxide particles. The lighter portions of the micrograph are the aluminum matrix. Within the aluminum matrix, the dislocation structure of the alloy is clearly visible. This structure consists of intersecting twin boundaries and single dislocations. No abrasive particles were observed in the samples. In addition, thin films of commercial purity aluminum were prepared using this method and observed in the electron microscope. Here also, there was no evidence of abrasive particles introduced in the samples. The technique presented provides a satisfactory method for the production of thin films of aluminum-aluminum oxide SAP-type alloys for use in transmission electron microscopy where none of the usual thinning techniques appears to be satisfactory.
Jan 1, 1962