Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Drilling - Equipment, Methods and Materials - Circumferential-Toothed Rock Bits - A Laboratory Evaluation of Penetration Performance
By H. A. Bourne, E. L. Haden, D. R. Reichmuth
A circumferential-toothed bit with novel tooth form gave improved penetration performance. In this design the exterior flank of all teeth were vertical when in rolling contact with the hole bottom. Rock chips were generated by the interior flank of the tooth displacing the rock inwardly and downslope toward the center of the hole. A unique two-cone laboratory bit assembly enabled evaluation of numerous cone and tooth configurations. Some of the variables investigated, in addition to weight on bit, rotary speed and rock type, were tooth interference, percent tooth, hole bottom angle, attack angle and relief angle. Most tests were conducted dry on a brittle synthetic sandsone or a ductile quarried limestone. Tooth configurations were found to be more significant in the ductile material. This was attributed to the deeper tooth penetration before rock failure. These studies showed that the attack angle (angle beween interior flank of the tooth and rock surface) was the controlling variable; changing the tooth configuration from the assymetric or semi-wedge to the more conventional symmetric or wedge form reduced penetration performance; and penetration performance of circumferential-type cutters was directly proportional to rotary speeds up to 200 rpm. INTRODUCTION Much of the published literature on rock-chisel interactions describe experiments wherein symmetrical wedges are vertically loaded or impacted against a smooth rock surface.1-6 are is usually taken to insure that the indentation is not made near the edge of the rock specimen less erroneous data be obtained. The literature describes relatively few studies in which the investigator deliberately attempted to take advantage of an edge or free surface. In contrast, anyone who chips ice or breaks up a concrete sidewalk almost always works near an edge. Chisel "indexing," which has been considered by some investigator1,2,6,7 makes limited application of an edge or free surface. Probably the best documented investigation into applying this idea to drilling was that of Drilling Research Inc. at Battelle Memorial Institute.' Their "annular wing" percussion bit consisted of paired asymmetric chisels oriented so as to produce and move chips to the center of the hole. They predicted that the lowest energy requirement for chip generation would be achieved with a stepped hole bottom having a median angle of 45" to the horizontal. Results from limited tests showed that approximately 50 percent of the rock fragments were large and semi-circular in shape, as would be expected by a chisel impact near an edge. The remaining 50 percent were fine chips produced by the chisels in re-establishing the steps or ledges. Initial penetration rates with this bit were high, but they rapidly decreased. This was the result of excessive tooth wear caused by the constant friction on the gauge surfaces. The basic idea — circumferentially placed asymmetric chisels — still appears to have merit. If the concept could be applied to a rolling cutter bit, two of the shortcomings of the fixed chisel design could be overcome: (1) reduction in tooth friction, and (2) greatly increased cutter surface. Adapting asymmetric chisels to cutters rolling on an inclined hole bottom is restricted by bit geometry. The basic elements of roller rock-bit construction prevents the practical attainment of a 45" hole bottom angle. Nonetheless, experimentally it was considered desirable to investigate the influence of hole bottom angle to at least 40". This paper describes the laboratory studies conducted in evaluating the circumferential-toothed roller cutter rock bit. EXPERIMENTAL APPARATUS AND PROCEDURE BIT ASSEMBLY The cost of constructing a sufficient number of conventional three-cone rock bits to investigate circumferential cutter performance was prohibitive. Instead, a novel two-cone laboratory assembly which used an external bearing system was designed and constructed. The external bearings made it possible to alter the journal bearing angles and thus allow a wide flexibility in cutter configuration. Fig. 1 shows the laboratory bit assembly, the various bearing mount plates and the appropriate roller cutters for drilling shallow holes having hole bottom angles of 0, 10, 20, 30 or 40". The bit was limited to a drilling depth of 1 1/2 in. at the gauge teeth and a hole diameter of 43/4 in. This more or less intermediate size bit was chosen because it gave a more realistic match between bit teeth and the rock than would a microbit. Also, the rock sample size required was convenient and easy to obtain. CIRCUMFERENTIAL CUTTERS The tooth configuration used in our initial studies is shown in the upper half of Fig. 2. All cutters used in this series had the same tooth form — 43" included tooth angle, 2" positive relief angle and a horizontal tooth flat width of 1/32 in. Each cone cuts alternate rows except for the gauge row. The row-to-row spacing in view was 1/4 in. Static loading tests conducted earlier with asymmetrical chisels had been used to establish this spacing. These tests showed energy requirements for chip production increasing rapidly as the distances to the edge increased beyond
-
Industrial Minerals - Importance and Application of Piezoelectric Minerals
By Hugh H. Waesche
Of all the military services, the Signal Corps is the most concerned with piezoelectric minerals because of its function as a supply service to the strategic and tactical military forces. Consequently this paper is written from the point of view of one associated with that organization. The Signal Corps is responsible for the research, development, and supply of communications, radar, and components to the using services of the Department of the Army and to some extent the Other branches of the National Defense Department. Their work therefore includes the study of the sources* characteristics, and application of quartz and other piezoelectric materials. These materials have become a vital consideration in strategic planning and are essential for efficient tactical operation by all the Armed Forces. The Signal Corps at the beginning of world War 11 Was respon-sible for both Army Ground and Air Force electronic equipment. Since that time this Army service organization has probably done more in the development of frequency control devices using piezoelectric materials than any other group. The U.S. Department of the Interior, Bureau of Mines, Minerals yearbook of 1945, shows that during the four war years, 1942 through 1945, 9,598,-410 Ib of quartz crystal were imported for all uses and of this total, 5,168,000 lb were consumed to produce 78,320,-000 crystal units for electronic application. Other government records confirm these data which conclusively show that approximately 53 pct of the crystalline quartz imported was consumed in the production of electronically applied quartz crystal units. It may be assumed that some effort was made to maintain a stockpile over demands for all purposes. and this would mean that the actual percentage of quartz used electronically was considerably over the 53 pct figure. These data only emphasize that electronic application of crystalline quartz was the greatest requirement, and per- haps the actual value in this application to national defense is many times greater in importance than is apparent on first inspection. Current electronic research and development programs of the Armed Forces are planned around the fundamental use of piezoelectric minerals for frequency control and this at present, at least, means quartz. Definition and Early Development The word piezoelectricity is formed from combination of the Greek word "piezein". meaning "to press," and "electricity." It is that property shown by numerous crystalline substances whereby electrical charges of equal and opposite value are produced on certain surfaces when the crystal is subjected to mechanical stress. It appears to be intimately associated with the better known property, pyro-electricity and in fact, the two may be manifestations of the same phenomeuon. This property was discovered by Pierre and Jacques Curie in quartz, tourmaline, and other minerals in 1880 while studying the symmetry of crystals. The converse effect, that is, mechanical strain in the crystal when placed in an electrical field, was predicted by the French physicist, G. Lippman, in 1881, and verified by the Curies almost immediately. As has been the case with many discoveries of similar character in the basic sciences, not much attention was paid to this property for man)- years except as an entertaining curiosity. Between 1890 and 1892 a series of papers was published by W. voigt in which the theoretical physical properties were put into mathematical form. The first practical application of piezoelectricity occurred during World War I when professor P. Langevin of France used quartz mosaics to produce underwater sound waves. The same mosaics were used to pick up the sound reflections from submerged objects which were in turn, amplified by electronic means and used to determine the distances to such objects. This device was intended for use as a submarine detector but development was not completed in time for war service although it was used later for determining ocean depths. About the same time, A. M. Nicholson, of Bell Telephone Laboratories, developed microphones and phonograph pickups using Rochelle salt crystals. A major step in the application of piezoelectric quartz came in 1921, when professor W. G. Cady, of wesleyan university, showed that a radio oscillator could be controlled by a quartz crystal; from that date, this use of quartz has increased steadily, reaching its peak in world war 11 as is shown by the figures previously given. Essentially all American electronic equipment for communication, navigation, and radar, utilized quartz crystals for the exacting frequency control required. Crystalline Minerals with piezoelectric Properties QUARTZ Hundreds of piezoelectric crystalline materials are known, most of which are water soluble. Of these, quartz appears to be without a peer for electronic frequency control. Unfortunately, the quartz must be of superior quality. It must be free of mechanical flaws, essen-tially optically clear, free of both Brazil and Dauphiné twinning and must be, for average uses, over 100 g in weight. Because of these stringent requirements, raw quartz of the quality desired is of rare occurrence. In addition to quartz, several other naturally occurring crystalline materials are known to have the piezoelectric property and could perhaps be substituted for quartz in some applications. These
Jan 1, 1950
-
Coal - An Investigation of the Abrasiveness of Coal and Its Associated Impurities
By J Price, M. R. Geer, H. F. Yancey
COAL mine operators recognize coal as an abrasive material, because the wear of drilling, cutting, and conveying equipment is reflected as a cost item for replacement of parts. Similarly, industrial consumers of coal experience abrasive wear on all coal-handling equipment. Operators of pulverized fuel plants are doubtless most keenly aware of the abrasiveness of coal, because under the high contact pressures developed between coal and metal in pulverizers, abrasive wear is increased many fold. Moreover, experience in operating pulverized fuel plants has demonstrated that some coals are much more abrasive than others. Hardgrove' stated that maintenance costs entailed by the wear of grinding elements is often a more important variable than the cost of the power required to pulverize different coals. Craig2 also reports that one coal may cause pulverizer parts to wear several times faster than another. It is apparent, therefore, that those concerned with pulverizing coal could profitably employ a method for estimating the abrasiveness of different coals, just as they utilize standard tests for thermal value, grindability, and ash-fusion temperature to assist in selecting the most suitable and economical coal to use in a particular plant. The objective of this investigation was to develop a test procedure that would be suitable for general use in estimating the abrasiveness of coals. However, few, if any, of the standard tests now used for evaluating the properties of coal are the product of a single investigation or the result of a single investigator's efforts. Rather, in each case, a testing procedure was devised by one investigator, used by others on a wider variety of coals, and finally refined completely as the result of the joint efforts of a number of interested people. Thus, the test procedure for estimating abrasiveness developed in the course of this work may not be refined sufficiently in its present form for general use, but it may serve as the starting point from which an acceptable test procedure can be developed. The method has been used thus far on only about a dozen coals, and there has been no opportunity to attempt a correlation between experimental results and actual plant experience. Only wider use of the procedure by other investigators and correlation with plant experience can determine to what extent the method will have to be modified to render it suitable for general application. Test Method Although the literature contains no record of an attempt to devise a method for estimating the abrasiveness of coal that could be used industrially, several investigators have tested properties of coal that are closely related to its abrasiveness. The abrasiveness of a material generally is considered to be related to its hardness, and hardness tests for coal have been employed by Heywood,' O'Neill," and Mathes. Also, the resistance of coal to abrasion, a property that presumably is related to the abrasiveness of coal, was measured by Heywooda and by Simek, Pulkrabek, and Coufalik.2 11 these investigators tested only individual pieces of coal. Since coal is a heterogeneous material having components of varying properties, tests of this type can yield results having little more than academic interest. Only a test method that utilizes a representative sample of coal can give results that are useful industrially. The abrasion tests used for various other materials have been considered for adaptation to testing the abrasiveness of coal. The tests used for metals,7-9 paving and flooring,'" and rubber," cannot be used because coal is not sufficiently abrasive.~ The present experimental work was begun before World War II and was conducted by three research fellows"'" working under a joint agreement between the University of Washington and the Bureau of Mines. After a great deal of preliminary work with a variety of apparatus and materials, a test procedure was developed which consisted of rotating a test disk 2Yz in. diam in a steel mortar containing the coal sample. The shaft carrying the test disk at the lower end and a 100-lb load on the upper end was free to move vertically. The bed of coal in the mortar was kept fluid by low-pressure air admitted through a port near the bottom of the mortar. Measurable wear on an Armco iron disk could be obtained in this test procedure, but, despite extensive efforts to eliminate them, several major disadvantages remained in this test method. First, with most coals the amount of wear on the iron disk did not exceed a few milligrams. Second, a single type of disk was not applicable for all coals. A smooth iron disk gave satisfactory results with both bituminous and sub-bituminous coals, but hardly any wear with anthracite or coke. A disk having studs or projections gave more satisfactory abrasion losses with anthracite and coke and presented no operating difficulties with free-burning bituminous and sub-bituminous coals. It could not, however, be used with caking coals because these coals formed a
Jan 1, 1952
-
Industrial Minerals - Economic Aspects of Sulphuric Acid Manufacture
By William P. Jones
THE consumption of sulphuric acid, one of the most important commodities in our modern industrial world, is often used as a barometer for industrial activity. The economics of acid manufacture are largely dependent upon the location of the place of consumption and the availability of raw materials in that locality. Sulphuric acid is made from SO,, oxygen from the air and water. Therefore the sulphur dioxide is the only raw material to be considered in an economic study. SO, can be obtained from almost any material containing inorganic sulphur, such as elemental sulphur, pyrites, coal, sour gas and oil, metallurgical gases, waste gases, or gypsum and anhydrite. Many tons of acid can also be reclaimed by the recovery and concentration of spent acids. The aim of this paper is to present a guide to the economic aspects to be considered when the installation of an acid plant is contemplated. It must be remembered that 1 ton of elemental sulphur produces 3 tons of sulphuric acid and that the shipping of sulphuric acid by tank car is very costly. The size of the plant must also be given careful consideration. For instance, operation of a plant producing 5 tons of acid per day might be warranted in Brazil or Pakistan, whereas economics usually favor buying quantities up to 50 tons per day for use within the United States. Elemental sulphur, when available at the low price of 1M4 per lb delivered at an acid plant, has always been the raw material most frequently used for sulphuric acid. All conditions favor its use at this price. The so-called sulphur shortage has been the subject of so many technical papers, magazine articles, and newspaper items during the past y6ar that it hardly seems necessary to mention it again, but a very brief review of the matter will serve as a foundation for the discussion that follows. There is no shortage of sulphur. Only a shortage of low-cost Frasch-mined brimstone exists today. Other more expensive sulphur-bearing materials are plentiful, both in the United States and abroad. The low cost of Frasch-mined brimstone has discouraged the development of higher cost sources. However, the approaching depletion of Gulf Coast dome deposits and the greatly increased demand for sulphur here and abroad have made it necessary for industry to prepare for conversion to utilize sulphur in other forms. For future planning this situation must be considered permanent and not temporary. This conclusion is based on the fact that although sulphur demand will continue to rise, the production of Frasch-mined sulphur probably will not increase greatly beyond its present level of about 5,000,000 long tons per year. The International Materials Conference in Washington estimates 1952 requirements of the free world at nearly 7 million long tons; and the Defense Production Administration has recently set a new goal for 8,400,000 long tons annual domestic production by 1955. The total sulphur equivalent produced in this country in 1950 was 6 million tons. What, then, are the alternatives for the manufacture of the vital chemical, sulphuric acid? Today about 85 pct of this country's sulphur, and nearly 50 pct of the world supply, comes from our Gulf Coast salt domes and is extracted from the earth by Frasch's hot water process. The Gulf Coast salt dome deposits have been the most important known natural deposits in the world, producing 90 million tons of sulphur during the past 50 years. However, at the present rate of extraction these deposits cannot be expected to last indefinitely. Pyrites Pyrites are, and have been for many years, the source of more than 50 pct of the world's sulphur requirements. The principal use, of course, is in the manufacture of sulphuric acid. The use of pyrites in the United States has diminished greatly because of the availability of low cost native sulphur, but pyrites have continued a major source of sulphur in many other countries. The most available pyrites for use in this country are in the form of lump pyritic ore and in mill tailings from flotation of other minerals such as lead, zinc, copper, gold, and silver. An important factor, when the use of pyrites for acid manufacture is being considered, is the disposal of calcine. A ton of sulphuric acid requires approximately ton of high-grade pyrite and results in 1/2 ton of calcine. If the calcine is a fairly pure oxide, free of harmful impurities, it can be used, after sintering, in an iron blast furnace burden. Its value might be as high as 15d per unit of Fe at the blast furnace; or possibly $10.00 per ton of sinter, if it assays 65 pct Fe. This might result in a credit of $4.00 per ton of acid if the sintering plant and blast furnace are both located adjacent to the acid plant. On the other hand, several factors must be considered before this credit can be realized, i.e., freight to blast furnace, availability of sintering facilities, methods of eliminating impurities, and the removal of valuable metal values. In some locations it would be most economical to dump the calcines.
Jan 1, 1953
-
Economic Aspects Of Sulphuric Acid Manufacture
By William P. Jones
THE consumption of sulphuric acid, one of the most important commodities in our modern industrial world, is often used as a barometer for industrial activity. The economics of acid manufacture are largely dependent upon the location of the place of consumption and the availability of raw materials in that locality. Sulphuric acid is made from SO2 oxygen from the air and water. Therefore the sulphur dioxide is the only raw material to be considered in an economic study. SO2 can be obtained from almost any material containing inorganic sulphur, such as elemental sulphur, pyrites, coal, sour gas and oil, metallurgical gases, waste gases, or gypsum and anhydrite. Many tons of acid can also be reclaimed by the recovery and concentration of spent acids. The aim of this paper is to present a guide to the economic aspects to be considered when the installation of an acid plant is contemplated. It must be remembered that 1 ton of elemental sulphur produces 3 tons of sulphuric acid and that the shipping of sulphuric acid by tank car is very costly. The size of the plant must also be given careful consideration. For instance, operation of a plant producing 5 tons of acid per day might be warranted in Brazil or Pakistan, whereas economics usually favor buying quantities up to 50 tons per day for use within the United States. Elemental sulphur, when available at the low price of 1 ½ ¢ per lb delivered at an acid plant, has always been the raw material most frequently used for sulphuric acid. All conditions favor its use at this price. The so-called sulphur shortage has been the subject of so many technical papers, magazine articles, and newspaper items during the past year that it hardly seems necessary to mention it again, but a very brief review of the matter will serve as a foundation for the discussion that follows. There is no shortage of sulphur. Only a shortage of low-cost Frasch-mined brimstone exists today. Other more expensive sulphur-bearing materials are plentiful, both in the United States and abroad. The low cost of Frasch-mined brimstone has discouraged the development of higher cost sources. However, the approaching depletion of Gulf Coast dome deposits and the greatly increased demand for sulphur here and abroad have made it necessary for industry to prepare for conversion to utilize sulphur in other forms. For future planning this situation must be considered permanent and not temporary. This conclusion is based on the fact that although sulphur demand will continue to rise, the production of Frasch-mined sulphur probably will not increase greatly beyond its present level of about 5,000,000 long tons per year. The International Materials Conference in Washington estimates 1952 requirements of the free world at nearly 7 ½ million long tons; and the Defense Production Administration has recently set a new goal for 8,400,000 long tons annual domestic production by 1955. The total sulphur equivalent produced in this country in 1950 was 6 million tons. What, then, are the alternatives for the manufacture of the vital chemical, sulphuric acid? Today about 85 pct of this country's sulphur, and nearly 50 pct of the world supply, comes from our Gulf Coast salt domes and is extracted from the earth by Frasch's hot water process. The Gulf Coast salt dome deposits have been the most important known natural deposits in the world, producing 90 million tons of sulphur during the past 50 years. However, at the present rate of extraction these deposits cannot be expected to last indefinitely. Pyrites Pyrites are, and have been for many years, the source of more than 50 pct of the world's sulphur requirements. The principal use, of course, is in the manufacture of sulphuric acid. The use of pyrites in the United States has diminished greatly because of the availability of low cost native sulphur, but pyrites have continued a major source of sulphur in many other countries. The most available pyrites for use in this country are in the form of lump pyritic ore and in mill tailings from flotation of other minerals such as lead, zinc, copper, gold, and silver. An important factor, when the use of pyrites for acid manufacture is being considered, is the disposal of calcine. A ton of sulphuric acid requires approximately ¾ ton of high-grade pyrite and results in ½ ton of calcine. If the calcine is a fairly pure oxide, free of harmful impurities, it can be used, after sintering, in an iron blast furnace burden. Its value might be as high as 15¢ per unit of Fe at the blast furnace; or possibly $10.00 per ton of sinter, if it assays 65 pct Fe. This might result in a credit of $4.00 per ton of acid if the sintering plant and blast furnace are both located adjacent to the acid plant. On the other hand, several factors must be considered before this credit can be realized, i.e., freight to blast furnace, availability of sintering facilities, methods of eliminating impurities, and the removal of valuable metal values. In some locations it would be most economical to dump the calcines.
Jan 1, 1952
-
Industrial Minerals - Economic Aspects of Sulphuric Acid Manufacture
By William P. Jones
THE consumption of sulphuric acid, one of the most important commodities in our modern industrial world, is often used as a barometer for industrial activity. The economics of acid manufacture are largely dependent upon the location of the place of consumption and the availability of raw materials in that locality. Sulphuric acid is made from SO,, oxygen from the air and water. Therefore the sulphur dioxide is the only raw material to be considered in an economic study. SO, can be obtained from almost any material containing inorganic sulphur, such as elemental sulphur, pyrites, coal, sour gas and oil, metallurgical gases, waste gases, or gypsum and anhydrite. Many tons of acid can also be reclaimed by the recovery and concentration of spent acids. The aim of this paper is to present a guide to the economic aspects to be considered when the installation of an acid plant is contemplated. It must be remembered that 1 ton of elemental sulphur produces 3 tons of sulphuric acid and that the shipping of sulphuric acid by tank car is very costly. The size of the plant must also be given careful consideration. For instance, operation of a plant producing 5 tons of acid per day might be warranted in Brazil or Pakistan, whereas economics usually favor buying quantities up to 50 tons per day for use within the United States. Elemental sulphur, when available at the low price of 1M4 per lb delivered at an acid plant, has always been the raw material most frequently used for sulphuric acid. All conditions favor its use at this price. The so-called sulphur shortage has been the subject of so many technical papers, magazine articles, and newspaper items during the past y6ar that it hardly seems necessary to mention it again, but a very brief review of the matter will serve as a foundation for the discussion that follows. There is no shortage of sulphur. Only a shortage of low-cost Frasch-mined brimstone exists today. Other more expensive sulphur-bearing materials are plentiful, both in the United States and abroad. The low cost of Frasch-mined brimstone has discouraged the development of higher cost sources. However, the approaching depletion of Gulf Coast dome deposits and the greatly increased demand for sulphur here and abroad have made it necessary for industry to prepare for conversion to utilize sulphur in other forms. For future planning this situation must be considered permanent and not temporary. This conclusion is based on the fact that although sulphur demand will continue to rise, the production of Frasch-mined sulphur probably will not increase greatly beyond its present level of about 5,000,000 long tons per year. The International Materials Conference in Washington estimates 1952 requirements of the free world at nearly 7 million long tons; and the Defense Production Administration has recently set a new goal for 8,400,000 long tons annual domestic production by 1955. The total sulphur equivalent produced in this country in 1950 was 6 million tons. What, then, are the alternatives for the manufacture of the vital chemical, sulphuric acid? Today about 85 pct of this country's sulphur, and nearly 50 pct of the world supply, comes from our Gulf Coast salt domes and is extracted from the earth by Frasch's hot water process. The Gulf Coast salt dome deposits have been the most important known natural deposits in the world, producing 90 million tons of sulphur during the past 50 years. However, at the present rate of extraction these deposits cannot be expected to last indefinitely. Pyrites Pyrites are, and have been for many years, the source of more than 50 pct of the world's sulphur requirements. The principal use, of course, is in the manufacture of sulphuric acid. The use of pyrites in the United States has diminished greatly because of the availability of low cost native sulphur, but pyrites have continued a major source of sulphur in many other countries. The most available pyrites for use in this country are in the form of lump pyritic ore and in mill tailings from flotation of other minerals such as lead, zinc, copper, gold, and silver. An important factor, when the use of pyrites for acid manufacture is being considered, is the disposal of calcine. A ton of sulphuric acid requires approximately ton of high-grade pyrite and results in 1/2 ton of calcine. If the calcine is a fairly pure oxide, free of harmful impurities, it can be used, after sintering, in an iron blast furnace burden. Its value might be as high as 15d per unit of Fe at the blast furnace; or possibly $10.00 per ton of sinter, if it assays 65 pct Fe. This might result in a credit of $4.00 per ton of acid if the sintering plant and blast furnace are both located adjacent to the acid plant. On the other hand, several factors must be considered before this credit can be realized, i.e., freight to blast furnace, availability of sintering facilities, methods of eliminating impurities, and the removal of valuable metal values. In some locations it would be most economical to dump the calcines.
Jan 1, 1953
-
Extractive Metallurgy Division - Reverse Leaching of Zinc Calcine
By H. J. Tschirner, L. P. Davidson, R. K. Carpenter
HE electrolytic zinc plant of the American Zinc Co. of Illinois, at Monsanto, was expanded in 1943 to a capacity of 100 tons of slab zinc daily. This capacity was not attained because of inability of the leaching plant to deliver an adequate amount of solution for electrolysis. Changing the leaching method so that the acid was added to the roasted zinc material reversed the usual procedure and made it possible to attain the desired capacity. The conditions which prevented satisfactory work before this change and the difficulties which arose in reversing the usual leaching procedure are described. The "reverse" leach operation as now practiced is carried out as follows: All the calcine to be leached is fed continuously to a slurry mixing tank. About one third of the acid to be used is fed to the tank with the calcine. The slurry is discharged continuously to a Dorr duplex classifier in closed circuit with a Hardinge mill. The classifier overflow is pumped to any of six leaching tanks where the leach is completed. A finished leach is discharged through Allen-Sherman-Hoff pumps to Dorr thickeners, from which the overflow goes to the zinc dust purification and the underflow to vacuum filters. This change in leaching procedure from the usual one of adding calcine to a large amount of acid made it possible to provide an adequate amount of purified solution to the electrolyzing division and at the same time filter and dry all the residue produced. Operating savings in reagents and better metallurgical recoveries were also important benefits. The original flowsheet of the leaching plant provided leaching, sedimentation of the insoluble residue, and purification of the neutral zinc sulphate solution with zinc dust. The thickened residue was filtered and washed. The purification cake of excess zinc dust, precipitated copper and cadmium, and any insoluble residue was filtered off on plate-and-frame duplex classifier. Settlement in the thickeners was inadequate and the suspended solids in the thickener overflow gave rise to filtration difficulties after the zinc dust purification. Further, the filtration and washing of the leach residue was poor, and it became necessary to pump a large amount of unwashed or poorly washed residue to storage ponds outside the plant building. Two causes of the poor settling and filtration were determined: Soluble silica and ferrous iron in the calcine treated. The latter was a result of poor roasting and with more experience ceased to be a major problem. The silica was a normal constituent of the feed and the working out of the problem became a matter of controlling its solubility. The obvious method to render the silica insoluble was by intensive roasting. This, however, met with total failure as such roasting resulted in silicates, probably zinc, soluble in the 13 pct acid used for leaching. Attempts were made to coagulate the fine gelatinous slime with addition agents. Glue, lime, starch, beef-blood serum and others were tried without success. All the suggested tried-and-tested means of operating the thickeners gave no consistently good results. Variations in leaching time, in addition of calcine to the leaching tanks, "conditioning" of the pulp by prolonged agitation, immediate discharge of the leach upon completion to avoid breaking up flocs were all tried and given up as ineffective. Byron Marquis, of Singmaster and Breyer, worked with the plant staff on a beaker scale until a leaching procedure was developed which gave consistent results and a promise of overcoming the difficulties which had plagued the plant operation. It was suggested that the difference in solubility of silicates and zinc oxide in sulphuric acid could be made use of in a leaching method where the acidity was controlled carefully. Such control is possible when acid is added to a slurry of calcine. This process reverses the normal procedure of adding calcine to a vessel of acid, hence the term "reverse leach" was applied. In this way, the overall acid concentration can be kept very low. In the tests made, it did not exceed 0.05 g per liter free sulphuric acid. Numerous advantages were realized when no silicates were taken into solution and later precipitated as a bulky gel. The gel had made reasonable thickening and filtration of the leach pulp and practical drying of the residue impossible. When the gel was eliminated, thickening rates were increased as much as five times. The volume of residue after thickening represented about 10 pct of the total leach pulp and had been as high as 95 pct when the gel was present. The thickened pulp was filterable and the filtered cake was dried readily after washing. The zinc extraction from the calcine was slightly lower. This was more than compensated for by the increase in zinc recovered in solution from zinc which had been trapped in the gelatinous residue. The amount of copper recovered was lower. However, the amounts of other impurities, such as arsenic, antimony, and germanium, taken into solution were lower. This was particularly true of antimony. Since the inception of reverse leaching, no concentrates have failed to yield solutions free of antimony even when present in the calcine to the extent of 0.2 to 0.3 pct. Oxidation of ferrous iron is a problem of reverse leaching. Ferrous hydrate does not precipitate at pH 5.3 to 5.4 where a leach is finished. The usual oxida-
Jan 1, 1952
-
Part VIII – August 1969 – Papers - The Activities of Oxygen in Liquid Copper and Its Alloys with Silver and Tin
By R. J. Fruehan, F. D. Richardson
Electrochemical measurements have been made of the activity of oxygen in copper and its alloys with silver and tin at 1100" and 1200°C. The galvanic cell used was Pt, Ni + NiO/solid ellectrolyte/[O] in metal, cermet, Pt The results do not support any of the equations so far designed for predicting the activities of dilute solutes in ternary solutions from activities in the corresponding binaries. If, however, a quasichemical equation is used with the coordination number set to unity, agreement between observed and calculated activities shows that this empirical relationship can be useful over a fair range of conditions. SEVERAL solution models have been proposed for predicting the activity coefficients of dilute solutes in ternary alloys from a knowledge of the three binary systems involved. Alcock and Richardson1 have shown that a regular model, and a quasichemical model,' in which the dissolved oxygen is coordinated with eight or so metal atoms, can reasonably predict the behavior of both metal and nonmetal solutes when the heats of solution of the solute in the separate solvent metals are similar. But when this is not so, neither model gives useful predictions unless coordination numbers of one or two are assumed. Wada and Saito3 subsequently adopted a similar model to derive the interaction energies for two dilute solutes in a solvent metal. Belton and Tankins4 Rave proposed both regular and quasichemical type models in which the oxygen is bound into molecular species, such as NiO and CuO in mixtures of Cu + Ni + 0. However, their models have only been tested on systems in which the excess free energies of solution of the solute in the two separate metals differ by a few kilocalories. Ope of the reasons why more advanced models have not been proposed is because few complete sets of data exist for ternary systems in which the solute behaves very differently in the two separate metals. For this reason measurements have been made of the activities of oxygen dissolved in Cu + Ag and Cu + Sn. Measurements on both systems were made by means of the electrochemical cell, Pt, Ni + NiO/solid electrolyte/O(in alloy), cermet,Pt [1] The activity of oxygen was calculated from the electromotive force and the standard free energy of formation of NiO, which is accurately known.5 Before investigating the alloys, studies were made of oxygen in copper to test the reliability of the cell and to check the thermodynamics of the system. Of the previous studies those by Sano and Sakao,6 Tom-linson and Young,7 and Tankins et al.8,7 have been made with gas-metal equilibrium techniques; those by Diaz and Richardson,9 Osterwald,10 wilder," Plusch-kell and Engell,12 Rickert and wagner,13 and Fischer and Ackermann14 have been made by electrochemical methods. EXPERIMENTAL The apparatus employed was the same as described previously,9 apart from slight modification. The molten sample of approximately 40 g was held in a high grade alumina crucible 1.2 in. OD and 1.6 in. long. The solid electrolytes were ZrO2 + 7½ wt pct CaO and ZrO2 + 15 wt pct CaO; the tubes 4 in. OD and 6 in. long were supplied by the Zirconia Corp. of America. They were closed (flat) at one end. In one experiment with Cu + O, both electrolytes were used in the cell at the same time. The reference electrodes inside the electrolyte tubes consisted of a mixture of Ni + NiO. They were made by mixing the powdered materials and pressing them manually into the ends of the tubes, with a platinum lead embedded in them. The tubes were then sintered overnight in the electromotive force apparatus at 1100°C. By sintering the powders inside the tubes (instead of using a presintered pellet9) better contacts were obtained between the electrolyte, the powder, and the platinum lead. Troubles arising from polarization9 were thus much reduced. The electromotive force was measured by a Vibron Electrometer with an input impedence of 1017 ohm; the temperature was measured with a Pt:13 pct Rh + Pt thermocouple protected by an alumina sheath. The couple was calibrated against the melting point of copper. The cermet conducting lead of Cr + 28 pct Al2O3, previously found to be satisfactory9 for use with Cu + 0 was also found satisfactory with Cu + Ag + 0 and Cu + Sn + 0. Superficial oxidation was observed, but it did not interfere with the working of the cell. The reaction tube containing the cell was closed at each end with cooled brass heads and suspended in a platinum resistance furnace. The tube was electrically shielded by a Kanthal A-1 ribbon which was wound round it, and the ribbon was protected by a N2 atmosphere between the furnace and the reaction tube. The cell was protected by a stream of high purity argon which was dried and passed through copper gauze at 450°C and titanium chips at 900°C. All the metals used were of spectrographic standard. Procedure. In studies of the system Cu + 0, be-
Jan 1, 1970
-
Iron and Steel Division - Thermodynamics of Silicon Monoxide (with Appendix by P. J. Bowles)
By H. F. Ramstad, F. D. Richardson
The equilibria (a) SiOz +Hz =SiO +H20 and (b) Si + SiO, = 2Si0 have beet1 studied at temperatures of 1425"to 1600°C ad 1310°to 1485°C respectively. The stattdard free energy changes for the tzrro reactions are given by the equatiotts Combination of the results for both equilibria leads to tiotz removes certain anomalies in existing high-terlzperature data for equilibria involving silica and silicon in iron. In many metallurgical processes and in many laboratory investigations silicon monoxide undoubtedly plays an important role. It is unfortunate therefore that wide differences exist between the results obtained by different investigators1-7 in their studies of such equilibria as In an attempt to put our knowledge of SiO on a surer basis, an exhaustive study has been made of equilibria [I] and [2] at temperatures ranging from 1300" to 1600°C. Reaction [I] was studied by measuring the amounts of silica which could be condensed from streams of Hz or Hz + HzO which had previously been brought into equilibrium with silica at temperatures ranging from 1425" to 1600°C. Reaction [2] was studied by measuring the material that could be condensed from streams of Hz or argon which had been brought into equilibrium with mixtures of silicon and silica at temperatures ranging from 1310" to 1485°C. EXPERIMENTAL Materials. The silicon was "superpure" grade and contained less than 0.1 pct impurities. The silica was prepared from pure mineral quartz; this was crushed and treated with concentrated hydrochloric acid to remove particles of iron, washed with water, and finally dried at 120°C. For the hydrogen + silica reaction, the silica was sized to —20+100 mesh. For the silicon + silica reaction, the two materials were ground to a fine powder in an agate mortar. The hydrogen and argon were commercial oxygen-free gases. The gas streams were controlled with capillary flow meters and the volumes were measured by wet gas meters. After passing through the meters, the gases were partially dried by silica gel. The hydrogen for the HZ + SiOz reaction was then passed through palladised asbestos at 300°C and dried with magnesium perchlorate. The efficiency of oxygen removal was checked throughout the experiments by passing the gas over an electrically heated strip of nichrome, used as an indicator as described by Rathman and de itt.' When mixtures of HZ + Hz0 were required, the partial pressures of water vapor (1.8 to 22 mm) were obtained by passing the hydrogen through oxalic acid dihydrateg' lo held at various controlled temperatures, O.l°C, by means of a water bath. The hydrogen for the Si + Si02 reaction was purified by passing it over a mixture of 3 parts of magnesium to 5 of lime heated to 600°."l1 u The argon for this reaction was passed through titanium powder (-3/16 in. + 100 mesh) heated to 900°C. The nitrogen used to prevent the reaction products escaping from the condenser (see later), was deoxidized by copper or iron at 600°C. All these gases were finally dried with magnesium perchlorate. Furnace, Temperature Contr01, and Measurement A molybdenum resistance furnace was used for both sets of experiments. The reactions were conducted inside a high-grade alumina tube, 36 in. long and 1 in. in diam as indicated in Fig. 1. With this arrangement an even temperature zone (2"C) 4 cm long was satisfactorily obtained. The temperatures were kept constant by means of a proportional controller actuated by a Pt-Pt 13 pct Rh thermocouple. This was placed between the two alumina tubes, so that the temperature at the junction was 1400" to 1450°C. Up to 1485"C, the temperatures were measured with Pt-Pt 13 pct Rh thermocouples. For higher temperatures an optical pyrometer was used, this being sighted (through the glass window 1 in Fig. 1) on the end of the alumina tube, that held the SiOz or Si +SiOz mixture, 10 in Fig. 1. The optical pyrometer was recalibrated whenever a change was made in any part of the apparatus situated in the hot zone. Successive readings with the optical pyrometer were reproducible to within 1"C. Equilibrium Apparatus and Procedure. Hydvogen and Silica Reaction. The apparatus is shown in Fig.
Jan 1, 1962
-
Reservoir Engineering – Laboratory Research - A Laboratory Study of Laminar and Turbulent Flow in Heterogeneous Porosity Limestones
By Charles R. Stewart, William W. Owens
Reservoir performance predictions based on laboratory core test data assume that fluid flow is laminar for the laboratory test. A study has been made to determine the validity of this assumption for laboratory tests on various types of porosity found in producing limestone formation. Data are presented which show that turbulence and slippage can occur during laboratory tests on hetero-geneous-type porosity limestones, thus causing serious errors in measured single-phase permeabilities and two-phase relative permeability characteristics. In single-phase flow tests it is possible to eliminate turbulence and correct for slippage or to eliminate both factors by controlling test conditions. It is not always possible to control test conditions and thereby eliminate turbulence and slippage in two-phase .flow tests. A correction method is presented which can be used to calculate the true two-phase laminar flow relative permeability characteristic even though furbulence and slippage exist. .INTRODUCTION It is customary to make use of Darcy's law and modifications of this law, together with laboratory data on formation core samples to predict the performance of producing reservoirs. Such predictions are based on an assumption that fluid flow is in the laminar or streamline region for the laboratory test. It was the purpose of this inves- tigation to determine the extent to which turbulent flow may occur in laboratory fluid flow tests on hetero-geneous porosity limestones. Considering that turbulent flow conditions might exist in some laboratory fluid flow tests, additional emphasis was placed on the development of a method to correct for turbulence when laminar flow conditions could not be attained. FLUID FLOW CONCEPTS FOR POROUS MEDIA The Influence of Pore Geometry on Fluid Flow One of the more important factors influencing fluid flow in porous media is the geometry of the pore space which includes such characteristics of the pores as size, shape, distribution, roughness, uniformity, etc. In general, oil- and gas-producing formations can be divided into two broad types on the basis of pore geometry. One has been called sandstone-type porosity media, which is characterized by a small range in pore size, uniformity in shape of the pores, smooth pore surfaces and a regular and uniform distribution of pores. The other type has been called heterogeneous porosity media and is usually limited to the dolomites and limestones. This type is characterized by a wide variation in the size, shape, and distribution of the pores and rough, irregular pore surfaces. It is therefore apparent that conditions are much more favorable for turbulent flow* in heterogeneous-type porosity media than in sandstone-type porosity media. Interrelationship Between Turbulence and Gas Slippage In studying the problem of turbulent flow in laboratory tests on porous media, it is necessary to be aware of the interrelationship between slippage and turbulence for gas flow. As a result of slippage or the Klinken-berg effecta, apparent perrneabilities to gas are greater than the true value because there is no stationary layer of gas in contact with the walls of the flow channels. Gas slippage decreases as the mean free path of the gas molecules decreases. Since the mean free path of any gas decreases with increasing density, increases in static pressure result in lower apparent gas permeabilities. However, a reduction in gas permeability can also be due to turbulence. Therefore, in studying only turbulent flow in porous media, it is necessary to hold gas density, and slippage, constant or to reduce slippage to a negligible value by operating at high static pressures. Presentation of Laminar and Turbulent Flow Data A graphical relationship between permeability and a pseudo-Reynolds number, N,, will be used to show the two types of fluid flow, i.e., laminar and turbulent. The usual graphical method for such a description has been the use of friction factor-Reynolds number charts4. On such a logarithmic diagram, the laminar region appears as a straight line having a slope of 45 degrees. As the friction factor decreases and the Reynolds number increases, the turbulent region is reached and appears as a deviation from the 45-degree slope line. However, in petroleum engineering literature resistance of por-
-
Institute of Metals Division - Thermal Diffusion of Dissolved Hydrogen Isotopes in Iron and Nickel
By O. D. Gonzalez, R. A. Oriani
A thermo-osmosis technique has been used to measure the heat of transport, Q* , of hydrogen and of deuterium dissolved in a iron and in nickel, and of hydrogen in Feo.6Nio.4 in the tempevature range 400° to 600°C. For all these systems, Q* is negative and has a large temperature coefficient; an isotope effect can be established for the solutes only in nickel. The magnitude of Q* is considerably larger than the activation energy, E , for migration in the case of these isotopes in a iron, so that all variants of the Wirtz model must be rejected. The phenomenological definition of Q* is developed to show that Q* is related to the mechanisms by which the activation energy is dissipated back into the lattice, and that Q*/E is a function of the ratios of the mean free paths of electrons and of phonons to the distance of jump of the diffusing atom. A correlation is shown to exist between the sign of Q* in thermal diffusion and that of the effective charge in electro migration, and may be understood as due to the large ratio of the mean free path of electrons to that of phonons. THE study of nonisothermal diffusion in the solid state is of interest because certain aspects of the mechanism of diffusion are made manifest which remain concealed though still present in the isothermal case. The thermodynamics of irreversible processes characterizes nonisothermal diffusion, known as thermal diffusion or as the Ludwig-Soret effect, by a quantity, Q*, called the heat of transport, which essentially measures the sign and the magnitude of the steady-state concentration gradient produced by the imposed temperature gradient. The problem then is to understand the quantity Q* at the atomistic level. There does not exist a theory for the atomistic interpretation of the heat of transport. There are, however, two classes of simple models which seem to afford some physical insight into Q*. Wirtz's model1, z and its subsequent generalizations partition the activation energy, E, for the migration of the atom spatially about the region of the migrating atom, so that Q* is the difference between the portion of the activation energy centered about the original site of the jumping atom and that portion about the arrival site. Clearly, the magnitude of Q* cannot on this model be larger than the activation energy for migration. The model of Oriani3 also considers the spatial distribution of E not only before but also after the atomic jump, and Q* is related to the variation of the spatial distribution of E that is produced by the jump. The simplest kind of system with which to compare the consequences of these ideas is the interstitial solid solution, since one may easily choose a temperature at which only the interstitial component moves, the solvent lattice serving as a completely satisfactory frame of reference. Thus, one avoids complications arising when both species in a binary system move. In addition, one avoids the necessity of knowing the energy for the formation of a vacancy, something which is needed for the analysis of thermal-diffusion data on metals which diffuse by the vacancy-exchange mechanism. However, the number of well-measured interstitial systems is extremely small, and, in particular, there are almost no data in the published literature for the temperature dependence of the heat of transport. If one works with solutes which are gases in the pure state at ordinary temperatures, one may use the technique of thermo-osmosis4 which permits thermal diffusion to be measured over a small temperature difference so that the temperature dependence of Q* can be more easily determined. The choice of dissolved hydrogen in iron and nickel was based on these considerations as well as on the desire to look for an isotope effect associated with localized
Jan 1, 1965
-
Institute of Metals Division - Heterogeneous Nucleation Of the Martensite Transformation
By D. Turnbull, R. E. Cech
FISHER, Hollomon, and Turnbull have developed a theory for the nucleation of martensite. They first tested the theory on Fe-C alloys and low alloy steels. The major factor influencing nucleation of martensite was considered to be statistical composition fluctuations occurring in small regions at high temperature and frozen-in on quenching. These local regions of varying size and composition serve as nucleation centers. They become supercritical, one by one, as temperature is progressively lowered, resulting in temperature-dependent or athermal transformation. Fisher next applied nucleation theory to substi-tutional solid solution alloys. Detailed predictions were made for Fe-Ni alloys because of the availability of free energy data on this system. It was shown that composition fluctuations that were significant energy-wise did not occur, and nucleation frequencies could be calculated from average properties of the system. Nucleation was predicted to occur as time-dependent and having the functional relationship to give a C curve of nucleation frequency vs temperature. The analysis further predicted that the nucleation frequency was extremely sensitive to composition. Experimentally, it would be found that the transformation in some compositions is so slow that measurable amounts will not form in a reasonable length of time. With other compositions, only slightly different, the nucleation frequency becomes so great that the material becomes transformed while still distant in temperature from the maximum nucleation frequency. On quenching an alloy of such composition, the observed transformation kinetics would be similar to those found in Fe-C alloys. Cech and Hollomon repeated experiments of Kurdjumov n which the kinetics of transformation were similar to those predicted by Fisher for Fe-Ni alloys. The alloy studied in this investigation contained 73.3 pct Fe, 23.0 pct Ni, and 3.7 pct Mn. Fisher,' using an idealized model for the extent of transformation as a function of the number of martensite crystals per grain of parent phase, derived nucleation frequencies from the transformation curves of Cech and Hollomon. Complicating influences such as coupling effects between grains in the polycrystalline specimens were neglected. Nevertheless, excellent agreement was found between the theoretically and experimentally derived nucleation frequencies. These experiments, however, could not provide a critical test of the theory. Experimental nucleation frequencies could vary widely from those calculated, depending upon the extent of deviation from ideal partitioning and the extent of coupling effects. Further, since the compositions of material theoretically analyzed and experimentally determined were different, the free energy changes involved in the experimental work could only be estimated. Also, the effect of heterogeneities on the transformation kinetics was not considered. For these reasons, it was decided that experiments designed to test the validity of the Fisher analysis must be conducted on binary Fe-Ni alloys, which were the ones considered theoretically by Fisher. The martensite transformation in Fe-Ni alloys has been the subject of considerable study. Machlin and Cohen have shown that transformation proceeds in a manner quite unlike that in any other ferrous alloy system. They found that single crystals would transform to a large extent in a single burst. In large grain polycrystalline specimens, frequently more than one grain and sometimes the whole specimen would transform at the same instant in this manner. Results on filings indicated that different particles would undergo the burst transformation at widely different temperatures. These results support the conclusion that the transformation behavior could not be described by a single nucleation frequency as would be the case if the nucleation were homogeneous. It appeared that further work was necessary to define the factors responsible for burst-type transformation, so that the conditions could be altered to favor homogeneous nucleation of martensite if such could be accomplished. This report summarizes the results of some experiments conducted with powdered Fe-Ni alloys for this purpose and the re-
Jan 1, 1957
-
Institute of Metals Division - Effect of Orientation on the Surface Self-Diffusion of Copper
By Jei Y. Choi, Paul G. Shewmon
The surface self-diffusion coefficient of copper (D,) has been measured between 847° and 1069 "C for six different orientations. These were the(111), (110, (100, and three higher index surfaces. The activation energy for Ds (designated Q s) was found to be about 49 kcal per mol for all six surfaces, and Do about 2 x 104 sq cm per sec. At any temperature Ds varied by no more than a factor of three over these orientations. It is shown that, if the free energy of a surface atom is uniquely determined by its number of nearest neighbors, it follows from the Principle of microscopic reversibility that Qs should have the same value for all surface orientations, and Ds should vary little with orientation. This model also suggests that for clean fee metals Qs ~ 2/3 AH, (heat of vaporization). This is true for copper. ALTHOUGH it has been appreciated for several decades that atoms can diffuse more rapidly on a surface than through the bulk of a crystal, it has only been in the last few years that reliable values of the surface self-diffusion coefficient (Ds) have become available. Tracer studies of Ds had been attempted prior to this period, but when a tracer is placed on a surface, an ever increasing fraction of it is drained off into the lattice. The correction for this loss involves a very difficult, and as yet unperformed calculation. Those who have worked with tracers have not corrected for this loss.1, 2 Thus their results indicate that Ds is greater than the self-diffusion coefficient in the lattice (Dl), but it has not been established that they give quantitative data on Ds. A procedure which avoids the problem of tracer loss is to study the rate of mass-transfer under the effect of surface tension. If the surface asperity being studied is very small, the mass transfer occurs entirely by surface diffusion. The kinetics at which a grain boundary groove forms on an initially plane surface is a well-studied case of this type. The smoothing of a slight scratch in an otherwise flat surface is another procedure that has been studied. If these grooves are up to 20 to 30 µ in width, the dominant mechanism for mass transfer is surface diffusion (at least in the case of metals with low vapor pressures), and the widths can easily be measured with an interference microscope. Of these two, mass-transfer techniques only in the case of grain boundary grooving has a rigorous mathematical treatment been given. This was done by Mullins.3,4 His analysis predicted that in the case of copper in an atmosphere of an inert gas, surface diffusion should be the dominant transport mechanism. This analysis gave an equation for the groove profile and predicted that the width of the groove would increase as (time)1/4. Mullins and Shewmon showed that both of these predictions agreed with experiments.5 Thus the validity of the values of Ds given by this procedure seems to be well established. Gjostein has used copper bicrystals and the grain boundary grooving technique to determine Ds and the activation energy for surface selfdiffusion (9,) in the [001] direction on surfaces ranging between the (100) and (110) planes.= He reported that Qs = 41 kcal per mole and Do = 6.5 x 102 sq cm per sec for all orientations studied. Since the results did not change with the dew-point of the dry hydrogen atmosphere or the type of refractory tube used, he concluded that the surfaces were clean, or at least that the results were not influenced by any impurities chemisorbed from the atmosphere. The work reported here reproduces and extends Gjostein's study in that D s and Q s were determined for copper over a wider range of orientations. To study the effects of impurities, two purities of copper were used as well as cathodic etching to remove any possible electropolishing film. Gjostein postulated that the diffusing atoms on a surface near a low index plane are the few atoms which are adsorbed on the smooth region between ledges or steps in the surface. A more rigorous derivation of the equation relating Ds to the concentration and jump frequency of these adsorbed atoms is given here. Using this treatment, our empirical observation that Q s and D s are essentially the same for all surface orientations can be shown to follow from the assumption that the free energy of a surface atom is uniquely determined by its number of nearest neighbors. The studies of D s using the scratch technique have been carried out by Blakely and Mukura on nickel,' and by Geguzin and Oveharenko on copper. The latter study using copper gives values of D s roughly
Jan 1, 1962
-
PART IV - The Solubility of Nitrogen in Liquid Fe-Ni-Co Alloys
By Robert D. Pehlke, Robert G. Blossey
The solubility of nitrogen in liquid binary and ternary Fe-Ni-Co alloys has been measured by the Sieverts' method between 1550°and 1700°C. Solubility data and standard free energzes and enthalpies of solution for nitrogen in the alloys are presented. Interaction parameters are discussed and presented for binary and ternary alloys. MOST of the studies of nitrogen solubility in liquid metals have been directed toward the dilute alloys of iron. Several of these investigations have included measurements of the nitrogen solubility in Fe-Ni al10s'- and in Fe-Co alloys.435 There has been some work, however, that has extended across the e-i-" and F-CO" binaries. This investigation was undertaken to determine the nitrogen solubility in both binary and ternary alloys of the Fe-Ni-Co system. It was also hoped that the differences between earlier studies might be resolved. EXPERIMENTAL METHOD This investigation was made using a Sieverts' apparatus described previously." The nickel (99.85 pct) and cobalt (99.9 pct) were obtained from Sherritt-Gordon Mines, Ltd., and the iron (99.95 pct) was Fer-rovac-E obtained from Crucible Steel Co. Recrystal-lized alumina crucibles were used throughout the entire investigation with no evidence of crucible-melt reaction. Melt temperatures were measured with an optical pyrometer and the temperature scale calibrated against the melting points of the three pure metals. The emissivity of the melt was assumed to be a linear function of composition for all alloys, as has been shown for Fe-Ni alloys.lZ The emissivity of the pure metals at 1600°C were taken as 0.43 for iron, 0.44 for cobalt, and 0.45 for nickel. Using these emissivities, the trans mis sivity of the system was found to be 0.51 i 0.01. The Sieverts' method was used for this study and followed the procedures outlined previously.l' The individual metals were weighed to give about 100 g of alloy. The alloys were melted in the crucible under a partial pressure of argon. The system was evacuated, and the "hot volume" was measured with argon. To avoid the errors caused by vaporization, the melt was held under vacuum only long enough to ensure that all of the gas in the system had been removed. The influence of any small amount of vaporization on the "hot volume" was shown to be negligible by measuring the "hot volume" after a run. This measurement agreed with that made at the start of the run within the implicit error, 0.2 cc, caused by the limitations in accurately reading the buret. The solubility-pressure relationship was measured in the pure metals and in several alloy compositions throughout the ternary system. These measurements were made by admitting measured amounts of nitrogen to the system, and then determining the equilibrium nitrogen pressure above the melt. This method has the distinct advantage of higher accuracy, particularly at lower pressures, than measurements made by withdrawing gas from the system to reduce the pressure after determining the solubility at 1 atm nitrogen pressure. This latter method has a practical lower limit of about 0.4 atm where an increased error is encountered because the buret must be emptied to permit further measurements at lower pressures. By determining the relation between apparent solubility and pressure, it was possible to make a good estimate of the initial nitrogen content of the metal from the intercept of the solubility curve extrapolated to zero pressure.11 DISCUSSION The solubility data corrected to 1 atm nitrogen pressure are summarized in Table I. The reported solubility has been corrected for the initial nitrogen content of the alloys. The initial nitrogen contents fell between 0.0002 and 0.0010 wt pct, and were lower in the iron and nickel than in the cobalt. Sieverts' law was obeyed in all alloys at pressures up to 1 atm. Examples of this behavior are shown in Fig. 1. The reaction for solution of nitrogen is Taking the standard state as 1 wt pct N in the alloy and the reference state as nitrogen at infinite dilution in the alloy, and noting the adherence to Sieverts' law, K becomes the solubility of nitrogen in the alloy at 1 atm pressure. Thus the solubility data of Table I were used directly to calculate the standard free energy for the solution reaction. These results are also presented in Table I. The enthalpy of solution is also summarized in Table I as calculated from a form of the van't Hoff relation: Iron-Nickel System. The data for the solubility of nitrogen in liquid Fe-Ni binary alloys is presented in Fig. 2 along the with data of aito, Schenck et al.,' and Humbert and 1liott.l' The data for studies of nitrogen solubility in Fe-Ni alloys containing less than 20 pc t i'- are not presented in Fig. 2, although they are in good agreement with the present work. The results of this study are in good agreement with Schenck
Jan 1, 1967
-
Minerals Beneficiation - Energy Transfer By Impact
By P. L. De Bruyn, R. J. Charles
THE transfer of kinetic energy of translation into other forms of energy by impact is a fundamental process in most crushing and grinding operations. During and after the impact process the original source energy may be accounted for in any of the following possible forms: 1) Kinetic energy of translation of both the impacted and impacting objects. 2) Kinetic energy of vibration of the components of the impact system. 3) Potential energy as strain energy of the components of the system or in the form of residual stresses. 4) Heat generated by internal friction during plastic deformation or during damping of elastic waves. 5) New surface energy of fractured materials. At any instant during the impact process only the strain energy of the components of the system can contribute directly to the brittle fracture process. If fracture is the desired result, as in comminution, it would seem advantageous to choose or arrange the conditions of impact so that a maximum amount of the original kinetic energy could be converted to strain energy at some moment during a single impact. The present work deals with determination of these desirable conditions for a simple case of impact and application of the principles involved to general cases of impact. Experimental Method: Longitudinal impact of a rod with a fixed end was chosen as the impact system for investigation. The rod was mounted horizontally and the fixed end was formed by butting one end of the rod against a rigidly mounted steel anvil. The rod, of pyrex glass, was 10 in. long by 1 in. diam with both ends rounded to a 6 in. radius. The rounded ends permitted reproducible impacts on the free end of the rod and assured a symmetrical fixed end. Pyrex was selected as the rod material because of the marked elastic properties of such glass and the similarity of fracture between pyrex and many materials encountered in crushing and grinding operations. The frequency of natural longitudinal oscillation of the rod was 10 kc, and thus simple electronic equipment could be used for observation of strain changes occurring in the rod at this frequency. As shown in Fig. 1, impacts on the free end of the rod were obtained either by a pendulum device or by a spring-loaded gun. Relatively heavy hammers (100 to 600 g) of mild steel were used in the pendu- lum impacts, while fairly light projectiles (20 to 80 g) were fired from the spring-loaded gun. One of the main objects of the experimental work was to obtain the strain-time history of the rod as a function of the mass and kinetic energy of the impacting hammers. For this purpose a technique involving wire resistance strain gages and a recording oscilloscope was employed. Five gages were applied at equidistant sections along the rod, and by means of a switching arrangement the strain-time history at any section, and for any impact, could be obtained in the form of an oscillograph with a time base. The equation relating strain and voltage change across a strain gage through which a constant current is flowing is as follows: e = ?v/iRF [1] ? = strain, ?v = voltage change, i = gage current, R = gage resistance, and F = gage factor (from manufacturer's data — SRA type, Baldwin Lima Corp.). With the above equation an oscillograph depicting voltage change vs time on a single trace can be converted directly to a strain-time diagram if a calibration of the vertical response on the oscilloscope screen for specific voltage inputs is available. In the present case the calibration was obtained by photographing precisely known audio frequency voltages on the same oscillograph as that on which a voltage-time trace from a strain gage had been made. Synchronization of the beginning of the single trace with the beginning of the impact was accomplished by permitting contact of the impacting objects to close an electrical circuit from which a voltage pulse, sufficient to initiate the trace, was obtained. The struck end of the rod was lightly silvered for purposes of electrical conduction so that it would form one of the electrical contacts. Markers every 100 micro-seconds on the traces served for a time base calibration. Determinations of the kinetic energies of translation prior to impact were made in the case of the pendulum hammers by measuring the height of fall of the hammer and in the case of the projectiles by measuring the exit velocity from the gun barrel by means of an electrical circuit employing light sources, slits, and phototubes.' During the experimental work it became evident that the time of contact between the impacting object and the rod was an important variable in the impact process. Measurements of the times of contact were made, therefore, for every impact for which a strain-time record was obtained. The time of contact was determined by permitting the impacting components, when in contact, to act as a closed switch and discharge a condenser at relatively constant voltage. The discharge was observed and photographed with a time base on the oscilloscope screen.
Jan 1, 1957
-
Iron and Steel Division - A Thermodynamic Study of the Reaction CaS + H2O [=] CaO + H2S and the Desulphurization of Liquid Metals with Lime
By Terkel Rosenqvist
THE desulphurization of molten iron and steel is a very complicated process. One way to arrive at a better understanding of this process is to break it down into several simpler chemical processes that can be studied individually in the laboratory. For a study of the different factors that influence the equilibrium distribution of sulphur between liquid metals and slags, several simpler equilibria may be investigated. One very important subject is the determination of the escaping tendency of sulphur in the liquid metal and its dependency on temperature and composition of the melt. Several papers in this field have recently been published.', ' Another subject is the study of the sulphur capacity of the slag. A molten slag is indeed complex, and even if sulphur distribution data for a large variety of molten slags may give empirical data about their desulphurizing power, the importance of the individual components is still not quite clear. It is accepted generally that lime is the most important desulphurizing component in the slag. The present investigation has as its purpose to study the desulphurizing power of lime in its standard state, and to provide a basis for thermodynamic calculations of the desulphurizing power of various lime-containing slags. The standard state of lime at steelmaking temperatures is solid calcium oxide, CaO. It can react with sulphur to form solid calcium sulphide, CaS. The relative stability of calcium oxide and calcium sulphide is expressed by the free energy of the reaction: 2Ca0 (s) + S1 (g) = 2CaS (s) + O2 (g) The existing free energy data for this reaction, listed by Kelley5 nd Osborn,' are uncertain to about 10 kcal and are of limited value for a calculation of equilibrium constants. Under the conditions prevailing in a melting furnace, the sulphur pressure may be expressed conveniently by the ratio H,S/H2 and the oxygen pressure by the ratio H,O/H, (or CO,/CO). The desulphurizing power of calcium oxide may, therefore, be studied by the reaction CaO + HIS = CaS + H2O. A study of this reaction may be complicated by certain side reactions: Water vapor and hydrogen sulphide may react. to form sulphur dioxide, and calcium sulphide may be oxidized to calcium sulphate. A thermodynamic calculation shows that these side reactions will be suppressed to insignificance if the equilibrium is studied in the presence of an excess of hydrogen. The apparatus used is shown in Fig. 1. About 10 g calcium oxide and 20 g calcium sulphide (laboratory qualities) were intimately mixed, and some water was added to make a thick paste. The paste was put into a thimble of zirconium silicate, which was placed within the constant temperature zone of a furnace, and capillary refractory tubes were attached in both ends. After the mixture had been heated in dry hydrogen at 1000°C for several hours all Ca(OH), and CaCO, had decomposed and CaSO, was reduced, so only CaO and CaS remained in the thimble forming a porous plug. The mixture was examined by X-ray diffraction after the initial reduction in dry hydrogen as well as after the subsequent experimental runs up to 1425 °C. It was shown that crystalline calcium oxide and calcium sulphide were always present together in about equal amounts. The unit cell edges were found to be 4.80A for CaO and 5.68A for CaS in good agreement with existing literature values." This shows that the mutual solid solubility is very small, and that the compounds are present in their standard states. Purified hydrogen was passed through water sat-urators kept at constant temperature in a thermostat bath. The amount of water vapor saturation was checked by means of a dew point method, not shown on Fig. 1. The gas mixture was passed through the capillary inlet into the furnace, where it was sifted through the porous plug of calcium oxide and calcium sulphide. The hydrogen sulphide present in the outgoing gas was absorbed in a zinc acetate solution and the hydrogen was collected over water. When one liter of hydrogen had been collected, the amount of hydrogen sulphide was determined by iodometric titration. As one molecule of H,O is used for the formation of each molecule of H,S, the equilibrium ratio H,S/H,O would be , where (H,O) is the molar concentration in the ingoing gas, and (H,S) the molar concentration in the outgoing gas. In the present work (H,S) was always very small compared to (H20). In order for the observed H,S/H20 ratio to represent the true equilibrium ratio the gas flow has to be: 1—Sufficiently slow to give a complete establishment of equilibrium, and 2—sufficiently fast to counteract thermal diffusion. Incomplete reaction would give a value decreasing with increasing flow rate, and thermal diffusion would give a value increasing with decreasing flow rate. When inlet and outlet tubes of about 2 sq mm cross-section were used, the observed gas ratio was independent of the flow rate between 15 and 125 cc per min, Fig. 2. In this range, therefore, the observed gas ratio represents true equilibrium.* For the rest of the in-
Jan 1, 1952
-
Reservoir Engineering - Laboratory Research - Model Studies of Pilot Waterfloods
By B. H. Caudle, W. J. Bernard
Factors which influence the success or failure of a waterflood can seldom be determined in the laboratory. For this reason pilot waterfloods are initiated in a repreventative portion of the oil reservoir in question. For a pilot flood to predict quantitatively the recovery to be expected in a field-wide waterflood operation, the pilot area must behave as though it were confined (surrounded by similar areas). In this study, laboratory fluid-flow models were used to determine the simplest pilot pattern, for particular conditions of mobility ratio and initial gas saturation, that would behave as though it were confined. Pilot patterns studied ranged in complexity from a single inverted five-spot to a grouping of nine regular five-spots. Only the innermost producing well in each pattern was studied. Model results showed that the optimum number of wells in the pattern depends upon the oil-water mobility ratio and the expected oil-bank size. Unfavorable mobility ratios will, in general, require more wells in the pilot pattern than will favorable mobility ratios. Pilot patterns in reservoirs which contain a dispersed, flowable, free gas saturation will require fewer wells than for the under-saturated case. The single inverted five-spot pattern was found to be unsatisfactory for predicting behavior of fully developed waterfloods. In particular, it is possible that, in reservoirs which contain a flowable, dispersed gas phase, the oil bank will never be observed at the producers due to the large amounts of free gas which continue to be produced with the oil. INTRODUCTION One method which has been used to predict the performance of a waterflood is the pilot flood. The pilot waterflood is a flood which involves only a small cluster of the reservoir wells and is located in a small, representative portion of the reservoir. The object is that oil produced from the pilot can, in some way, be related to the oil recovery to be expected from a field-wide expansion of the waterflood. However, these field pilot waterfloods have often been unreliable in the prediction of oil recovery in a fully developed waterflood. This unreliability has also been demonstrated in several laboratory studies of pilot floods. Some of the investigators have shown that there are situations in which the pilot flood oil production is far too optimistic with respect to the oil recovery in the fully de- veloped flood. Others4-G have shown that the pilot results can also be pessimistic, especially if the pilot waterflood is initiated in an oil reservoir which has been depleted by primary recovery and is at very low pressure. The major reason for this unreliability of pilot water-floods is the migration of fluids into or out of the pilot area. By the well-known method of images, if straight lines can be drawn to represent vertical planes of symmetry in a porous medium which contains pressure sources and sinks (injectors and producers), then these lines are invariant streamlines, or lines across which there is no potential gradient, and therefore no flow. In an actual reservoir, these lines of symmetry can never be established exactly because of reservoir inhomogeneities and irregular reservoir boundaries. However, if the reservoir is relatively large and contains wells in repetitive patterns, these lines of symmetry are commonly assumed to exist for the pattern units sufficiently far removed from the reservoir boundary. Lines of symmetry for the five-spot injection pattern are shown in Fig. 1. Each five-spot unit in this figure can be considered confined with respect to flow across its boundary. In pilot floods this is not the case. The lines of symmetry for the pilot patterns investigated in this study are shown in Fig. 2. It is obvious that the fluid within these pilots is not confined and is therefore able to migrate into or out of the pilot area. Intuitively, one can see that, if more wells are added to the pilot, the innermost unit tends to behave more and more like the confined pattern. However, there is a practical limit to the number of wells which should be placed in the pilot. This limit is usually determined by economic factors. It was the purpose of this study to use laboratory fluid-flow models to determine which of the previously mentioned pilot patterns will force the innermost producing well to behave as it would in a fully developed waterflood. Since fluid migration is influenced by initial saturation conditions and the mobility ratio, these factors were included in the study. The ultimate objective of this study was to develop data which would allow the operator to choose a pilot pattern and operating conditions that will yield a production history which can be applied directly as an estimate of the performance of each production well of the fully developed waterflood. BASIS FOR THE STUDY The basic problem of field pilot floods is the migration of the reservoir fluids into or out of the pilot area. This problem has been the subject of previously reported model studies on pilot floods. These studies have been concerned mainly with the development of arbitrary "correction factors" to be applied to the simple, unconfined pilot systems such as the single five-spot. The correction factors were intended to adjust the production history of the un-
-
Institute of Metals Division - Tungsten Oxidation Kinetics at High Temperatures
By R. W. Bartlett
The rates of oxidation of tungsten have been determined at temperatures between 1320" and 3170°C and oxygen pressures to 1 amn using a surface -recession measurement technique. Above approximately 2000°C and 10-6 atm the rate is independent of temperature and can be calculated from gas collision theory assuming a constant reaction probability, e, of 0.06. Oxygen molecules react at surface sites where oxygen atoms have previously chemisorbed. This provides a direct pressure dependence at low pressures but at high pressures tungsten oxide molecule s form an adjacent gas boundary layer which lowers the PO2 at the tungsten surface. A correction for this effect using free-convection theory fits the rate data over the entire oxygen-pressure range from 10-8 to 1 atrn as well as data using O2-A mixtures. Below 10-6 atrn and above 2000°C, e decreases with increasing temperature because of desorption of oxygen atoms. Below 2000°C the rate decreases with decreasing temperature at all oxygen pressures following an apparent activation energy of 42 kcal per mole and depending on (Po2)n with n varying between 0.55 and 0.80. MOST of the previous tungsten oxidation studies have employed gravimetric methods and have been limited to temperatures below 1000°C where the weight loss associated with evaporation of tungsten oxides is negligible compared with the weight gain from oxidation.' At higher temperatures, oxygen-consumption rates have been determined from pressure measurements, usually at constant flow rates, by Langmuir,2 Eisinger,3 Becker, Becker, and Brandes,4 and Anderson.5 The sensitivity of this method decreases with increasing pressure and, with the exception of Langmuir's work, these investigations were confined to pressures below 10-6 atm. Above approximately 1300°C, depending on the oxygen pressure, the rate of oxide evaporation is greater than the oxide-formation rate and the recession of the tungsten surface can be measured optically without interference from an oxide layer. This was first done by Perkins and crooks6 who heated tungsten rods in air pressures from 1 to 40 torr at temperatures between 1300" and 3000°C. The present investigation of the oxidation kinetics of tungsten at high temperatures emphasizes oxygen pressures from 10-6 to 1 atm. This is the range of interest for earth atmosphere re-entry applications of tungsten for which little data were previously available. APPARATUS The apparatus is a modification of the type used by Perkins and crooks.' Ground tungsten seal rods, 6 in. long by 0.125 in. diam, were mounted vertically between two water-cooled electrodes, one fixed and the other having free vertical travel. The movable counter-weighted electrode is prevented from undergoing horizontal displacement by three sets of runners mounted at 120-deg intervals. Electrical contact is made by means of a water-cooled mercury pool. A 24-in. vacuum bell jar having a volume of approximately 267 liters was used as the reaction chamber with the sample holder mounted in the middle of the chamber. Power was supplied from an 800-amp dc variable power supply. Temperature readings were made by means of a Latronics automatic two-color recording pyrometer. With this instrument, corrections for emissivity are not necessary provided the spectral emissivi-ties at two closely spaced wavelengths are equal. Supporting measurements were made with a micro-optical pyrometer corrected for emissivity of bare tungsten and window absorptivity. The micro-optical pyrometer was calibrated against a National Bureau of Standards calibrated tungsten lamp and both pyrometers were periodically checked against the melting points of tungsten and molybdenum using the oxidation apparatus. Above 10-6 atm, pressures were measured with an Alphatron gage calibrated against a McCleod gage. At 10-6 atm, a hot-filament ionization gage was employed. A magnified image of the self-illuminated tungsten rod was formed using a 360-mm objective lens mounted outside the bell jar. When the experiment exceeded 1 hr, the image was focused on a ground-glass plate about 10 ft from the tungsten rod at about X8 and the recession of the thickness of this image was monitored with a Gaertner cathe-tometer. When faster rates were encountered, a 35-mm time-lapse cinecamera with a telephoto lens and bellows extension was substituted for the ground-glass plate and cathetometer. Diameter recession rates were determined from the photograph image projected on the screen of an analytical film reader. EXPERIMENTAL PROCEDURE After installing the rod in the apparatus and cleaning it with acetone, the system was evacuated to 5 1 x 10-5 torr. Before oxygen was introduced,
Jan 1, 1964
-
Institute of Metals Division - Lamellar Growth: an Electric Analog
By K. A. Jackson, G. A. Chadwick, A. Klugert
The diffusion field ahead of a lamellar interfnce is analyzed using an electrical analog. A self-consistent solution is obtained for the shape of the interfnce and the diffusion field by an iterative process. The solutions presented here are for a 50-50 eutectoid or eutectic, The shape of the interface is found to he independent of growth velocity and lamellar spacing, and to depend on the relative values of interfacial free energies at the phase houndaries . The mode of growth of lamellar eutectics and eutectoids has been a subject of much interest for many years.1-4 Mehl and Hagel 1 have shown photomicrographs taken by Tardif when he attempted to determine experimentally the shape of an advancing pearlite interface; the results are completely ambiguous. Brandt' and schei13 have made approximate calculations of the composition ahead of a lamellar growth front. The shape of the advancing front and the composition distribution ahead of the front are difficult to calculate because one depends on the other. It is the purpose of the present paper to describe a method by which this calculation has been done. Lamellar-eutectic growth usually occurs under conditions where the growth is fairly rapid, and the interface temperature is close to the eutectic temperature. The growth rate is usually determined by heat flow. Eutectoid growth, on the other hand, can best be studied by quenching to some temperature, and allowing growth to proceed isother-mally. In both cases the growth is believed to be controlled by diffusion* rather than by the atomic kinetics of the transformation. This being the case, a single treatment of the diffusion equation will apply to both cases, provided the region of the interface in a eutectic may be considered to be isothermal. If a part of the interface could appreciably change its thermodynamic driving force by advancing ahead of or lagging behind the mean interface, then the two cases would not be similar. Eutectics normally grow in temperature gradients of the or-der of a few degrees per centimeter. The normal eutectic spacing is the order of a few microns. Part of the interface would have to extend many lamellar spacings ahead of the mean interface before it experienced sensibly different conditions. The interface temperature is usually a few tenths of a degree below the eutectic temperature so that temperature differences of the order of one-thousandths of a degree (a displacement of one lamellar spacing) would be unimportant. Protrusions large compared to the mean spacing do occur when one phase only grows into a eutectic liquid. This is usually a dendritic type of growth, and easily distinguishable from the lamellar mode of growth. A single treatment of lamellar growth will apply equally well to both eutectic and eutectoid decomposition. At the interface, which as shown above is essentially isothermal, the difference between the equilibrium eutectic temperature Teu and the actual interface temperature Ti, can be divided into two parts: 1) the composition varies across the interface, so that the local equilibrium temperature is not Teu; and 2) the interface is curved, so that the local equilibrium temperature is depressed according to the Gibbs-Thompson relationship. This undercooling can be written as Teu-Ti =?T = mAC(x) + a/r(x) [1] where ?C(X) is the departure of the composition at a point x on the interface from the eutectic composition, see Fig. 1, r(x) is the local radius of curvature at a point x on the interface, m is the slope of the liquidus line on the phase diagram, and a is a constant given by where s is the interfacial free energy, TE is the equilibrium temperature, and L is the latent heat of fusion. The calculations in this paper will be made only for the case where the phase diagram is symmetric, that is, the eutectic occurs at 50 pct, the liquidi have the same magnitude slope m at the eutectic temperature, and C,, the amount of B rejected when unit volume of a freezes, see Fig. 2(a), is the same for both phases. As shown in Fig. 2(b), the composition ahead of the a phase will be rich in B, the composition ahead of the ß phase will be rich in A. The composition at the phase boundary is the eutectic composition. The difference between the local liquidus temperature and the actual tempera-
Jan 1, 1964
-
Institute of Metals Division - Embrittlement of NaCl by Surface Compound Formation
By W. H. Class
The embrittling effects of oxygen, ozone, nitrogen, air, and surface residues, on NaCl has been investigated. The embrittlement by ozone and oxygen was found to be associated with the formation of a NaClO3 surface compound. In these cases the initial crack that was responsible for fracture (in a bend test) always nucleated at the corners between the tension and side faces. The behavior of air was very erratic and on certain days did not produce enzbrittlement. During these periods, crystals that had become embrittled by the ozone treatment completely recovered their ductility after a short exposure to the ambient atmosphere, It was established many years ago1 that considerable ductility could be obtained in NaCl single-crystal specimens if the crystal surfaces were dissolved in water either during or immediately prior to the test. The original interpretation of this effect by Joffe attributed the enhanced ductility to the removal of surface microcracks by dissolution. Later investigations2'3 have suggested that the exclusion of air from the specimen surface is the criterion for extensive plastic flow prior to fracture. The air em-brittlement in this later work was attributed to the diffusion of gaseous atoms into the surface layers of the crystal, thereby impeding the movement of dislocations. This model satisfactorily accounts for the reembrittlement observed after further air exposure subsequent to the water dissolution treatment. However, the situation has recently become more complex by the observations in several laboratories4-t that under certain conditions air exposure does not impair the ductility of NaC1. It has also been recognized5 that improper drying operations after water dissolution can leave surface precipitates that lead to embrittlement. Cleavage defects on as-cleaved crystals can often be another source of embrittlement. In the present work the effect of the gaseous atmospheres nitrogen, argon, air, oxygen, and ozone, on the ductility of rock salt was studied extensively. The embrittlement resulting from oxygen and ozone exposures was found to be associated with the formation of a NaC1O3 surface film. It is suggested that certain atmospheres, one of which often can be ambient air, which inhibit the formation or favor the decomposition of this compound, can promote ductility. Thus one aspect of the Joffe effect is certainly related to the removal of surface compounds or complexes by water dissolution. The effect of surface precipitates that remain after drying operations and of cleavage defects were also studied. In neither of the latter cases was the embrittlement as severe as that found with a NaClO3 surface layer. PROCEDURE AND SPECIMEN PREPARATION The nature of the embrittlement produced by the agents mentioned above was studied by means of microscopy, mechanical testing, and X-ray diffraction. Specimens were cleaved from large crystals of optical quality sodium chloride obtained from the Harshaw Chemical Co., and, except for those tested in the as-cleaved condition, were given a 15- to 20-sec immersion in distilled water followed by a rinse in absolute methyl alcohol. The specimens were then blotted on a soft, absorbent paper, and dried by a few seconds exposure to a stream of warm, dry air. Such a procedure was found to give a control surface which was microscopically free of residues. (A few crystals were intentionally painted with a concentrated NaCl solution in order to investigate the effect of surface residues). All specimens were of 0.140 sq in. cross-section. Crystals prepared in the above manner were immediately placed in a gas train where they could be exposed to the desired gases for preselected periods of time. For the oxygen and nitrogen exposures, pure reagent-grade gases were employed. The ozone was provided in the form of an ozone-oxygen mixture (approximately 10 pct ozone) prepared by passing commercial grade oxygen over a strong ultraviolet light source. All gases were dried prior to their introduction into the train. Since argon was found to be completely inert in its behavior (i.e., residue-free specimens that were exposed to argon were not embrittled), it was periodically utilized to check the control specimen surfaces as well as the condition of the gas train used for aging the specimens. After exposure to the gaseous media in question, the crystals to be used for the measurement of the strain to fracture were transferred from the gas train to a protective oil bath (without further exposure to the atmosphere) where the tests were conducted in three-point bending. The apparatus was so adjusted that the load could be applied at a constant, continuous rate. Other Snecimens from the gas train were deformed
Jan 1, 1962