Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Part IX – September 1968 - Papers - Grain Boundary Sliding, Migration, and Deformation in High-Purity AluminumBy H. E. Cline, J. L. Walter
Grain boundary sliding and migration were studied in pure aluminum bicrystal and polycrystal samples with two-dimensional grain structure. Scratches, 50 P apart, were used for measurement of sliding and migration distanceso. Samples were deformed at constant rate at 315C and events recorded continuously on wrotion picture film. Electron micrograPhs of boundary-scratch intersections were obtained. Yield and flow stress values were measured. The sequence of sliding and migration events for a three-grain junction is described in detail. Sliding depended only on the resolved shear stress imparted to the boundary. Sliding was accowmodated by formation of shear zones in grains opposite triple points and adjacent to curved boundaries. These shear zones provided the driving force for grain boundary migration. Migration caused rumpling of the boundaries, decreasing the sliding rate. Sliding and migration generally began at the same time, occurred simultaneously and ended at the same time. In the bicrystal, sliding and migration rates were proportional. Initial sliding rules of 5 X joe cm per sec. were measured for the polycrystal and bicrystal samples. These sliding rates agree wilh the internal friction experirnents of K;. The observations seem consistent with a viscous boundary sliding nzechanism. GRAIN boundary sliding is the translation of one grain relative to its neighbor by a shear motion along their common boundary. Sliding is thought to be an important mode of deformation at elevated temperatures and at low strain rates such as prevail in creep,' and perhaps in the area of superplastic behavior.2"4 Although much work has been done to investigate grain boundary sliding, the effort has not led to the identification of a mehanism. KG showed that grain boundaries in aluminum exhibit a viscous nature under very small displacements of internal friction measrements. Various dislocation mechanisms have been proposed but are without conclusive experimental support. Attempts to relate sliding to 6's viscous boundaries have been unsuccessful in that measured rates of sliding are always several orders of magnitude lower than KG'S results would predict.= In bi crystals7and polycrystalsR of aluminum tested under constant load, the grain boundary sliding was found to be proportional to the total creep elongation which indicated that sliding might be controlled by deformation of the grains. Shear zones were observed to extend beyond grain boundaries at triple points to accommodate the sliding.8 Surface observations brought forth the opinion that sliding and migration occurred alternately, in sequence.' Measurements of sliding at the surface have been criticized because they might not be representative of the interior of the sample. Generally speaking, it seemed that much of the previous work and knowledge was based on observations made at relatively low magnification and examination of samples after deformation had been accomplished. Thus, it was the purpose of the present study to continuously record, at high magnification, the events occurring during the deformation of pure aluminum. Samples with two-dimensional grain structures were used to simplify interpretation of the results. The sliding and migration of small areas of many samples were continuously recorded by time-lapse motion pictures. Replicas of the surface were used to provide high-resolution electron micrographs. These observations, coupled with tmsile strength data, provide sufficient information to arrive at an understanding of the phenomenon. EXPERIMENTAL PROCEDURE An ingot of 99.999 pct A1 was rolled to sheet, 0.127-cm thick. Tensile specimens, with a gage length of 0.85 cm, were machined from the sheet. Bicrystal tensile specimens, of the same dimensions, were spark cut from a large bicrystal ingot. The grain boundary was oriented at 45 deg to the tensile axis. The surfaces of the tensile samples were ground flat on fine metallographic paper and were then electropolished in a solution of 75 parts absolute alcohol and 25 parts of perchloric acid. The solution was cooled in an ice-water bath. Using a weighted sewing needle suspended from a small pivot on a precision milling machine, a grid of fine scratches, 50 p apart, was scribed on one surface of the sample. The polycrystalline samples were then annealed in hydrogen for 15 min at 350" to 400°C to produce a two-dimensional grain structure of about 0.2-cm average grain diameter which would not undergo further growth at the test temperature, 315OC. Examination of both surfaces of the samples showed that the grain boundaries were perpendicular to the surface of the polycrystal and bicrystal samples. A hot-stage tensile machine was constructed for use with an optical microscope as shown in Fig. 1. The specimen is shown mounted in the grips. The grips ride in V-ways so that the sample can be mounted without damage. The rear grip is free to slide so that when the sample expands during heating it is not put under a compressive stress. When the grips and samples are at temperature, the rear grip is locked in place by two set-screws. The other grip is connected to a synchronous drive motor which, through a worm gear and a fine-threaded rod, deforms the
Jan 1, 1969
-
Producing-Equipment, Methods and Materials - Single- and Two-Phase Fluid Flow in Small Vertical Conduits Including Annular ConfigurationsBy O. D. Gaither
This paper is an analytical study of the flow of fluids through small vertical conduits. Small conduits are defined as 11/4-in. nominal diameter tubing size and smaller, and approximately twice this area for annular conduits (i.e., 1- X 21/2-in. annulus and smaller). Experimental data are presented for the 1-X2-in. and 11/4- X 2%-in. annuli, and the I-in. and 11/4-in. tubing, since these represent the small conduit sizes and configurations generally encountered in oilfield applications. Data have been gathered for these conduits for single-phase water, single-phase gas and two-phase water-gas mixtures, with particular emphasis on high gas-liquid ratios. Water rates in excess of 2,000 BID and gas rates in excess of 2.5 MMcf/D, and two-phase flow ratios in between these two, represent the scope of the data gathered. Existing equations have been applied to predict flowing pressures and compared with experimental data. New correlations have been developed. INTRODUCTION The increased economic pressure on the domestic oil industry in the United States has constantly required the use of new techniques and equipment designed to reduce the cost of finding and producing oil and gas. Since tangible items are most readily apparent in economic analysis, the advent of lower-cost well completions was inevitable. One of the methods used to reduce costs which has received widespread attention is the slim-hole completion technique where tubing is used as the well casing and in which small conduits are used for tubing if necessary. Small conduits, defined by Kirkpatrick1 as "11/4-in. diameter nominal tubing and smaller for tubing flow and less than twice the 11/4-in. diameter nominal tubing internal flow area for annulus flow", have also found widespread usage as siphon strings for de-watering gas wells and as "kill" strings in deep high-pressure oil and gas wells. The growing use of small-diameter tubing has resulted in an increased need for development of improved methods to measure or predict flowing bottom-hole pressures since the physical dimensions generally preclude the use of subsurface-recording pressure gauges. Even in the cases where small bombs are available, the relatively high velocities encountered at nominal flow rates make it necessary to use excessive weight bars or special hold-down devices. Attempts to use recognized correlations to accurately predict flowing or gas-lift performance in wells equipped with small conduits have been generally unsuccessful. Insufficient field data were available to allow the development of a correlation on this basis, and an experimental approach was applied in an attempt to obtain a workable relation. The experimental approach used to obtain the data presented in this paper was actually a compromise between a field installation and a laboratory study. A test well 1,000 ft in length was used to obtain flow data on single-phase liquid, single-phase gas and two-phase water-gas flowing mixtures. Liquid rates up to 2,200 B/D and gas rates up to 3 MMcf/D were used in the single-phase flow studies. Two-phase flow rates from 100 to 600 B/D with gas-liquid ratios from 500 to 8,000 cu ft/bbl were recorded. Experimental data were obtained for single- and two-phase flow through 1-in and 11/4-in. nominal tubing, and through the annuli between 1- and 2-in. and 11/4- and 2%-in. nominal tubing strings. Experimental results for the two-phase flow are compared to the Poettmann-Carpenter correlation2 which is widely used as a comparative standard for development of multiphase flow predictions in flowing and gas-lift wells. Correlations developed by Tek,3 Baxendell and Thomas" were also investigated. The experimental data recorded herein fell in between the two flow regimes as defined by Ros," and this correlation also failed to yield satisfactory results. The fact that existing correlations failed to confirm the experimental data led to the need for development of a new correlation. Although a two-phase flow study was the primary objective of this investigation, data were also recorded for single-phase flow of water and gas, and constants were developed relating to pipe roughness and equivalent diameters for annular flow. These single-phase studies assisted materially in the development of certain of the two-phase flow results. Considerable previous work has been published which presented relationship of surface measurements to bottom-hole condition. The works of Buthod and Whiteley,6 Jones,' Poettmannb and the Texas Railroad Commission" are classic examples of the successful use of mathematical relationships which allow acceptable predictions of subsurface pressures, when gas is the flowing fluid. Darcy and others have derived relationships which may be used with minor modifications to predict subsurface flowing conditions in injection and water-supply wells. As previously stated, the application of the single-phase flow relationships
-
Logging and Log Interpretation - An Approach to Determining Water Saturation in Shaly SandsBy J. G. Patchett, R. W. Rausch
Fresh waters and the presence of clay in many Rocky Mountain and West Coast sands require special methods of log analysis. Archie's saturation equation requires addition of a shale correction term, and the SP equation must also be modified to account for clays. Suitable equations were developed several years ago, but have not been widely used due to the algebraic complexity. A computer-oriented method has now been developed to overcome this problem. The basic shaly sand equations are rearranged in four different ways to permit solution for various sets of available input data. Essential to application of the method is the correction of observed SP values to those that would be observed if the resistivity of the formation waters were exactly interchangeable with the activity. A graphic method for doing this is given. Where conditions require consideration of the effect of clay in the sands, the method presented has been found to improve the accuracy of water-saturation determinations. INTRODUCTION Log interpretation in many Rocky Mountain and West Coast basins is complicated by rapid vertical and lateral changes in water resistivity. Calculation of formation water resistivity from the SP curve becomes difficult in zones that contain clay, since changes in SP deflection may be due to changes in either clay content or water salinity. In hydrocarbon-producing reservoirs, the problem is further complicated because hydrocarbon saturation also reduces the SP.1 A log interpretation system using computers has been developed to provide a solution to this problem, based on equations proposed by de Witte.2 Four different simultaneous solutions of de Witte's equations have been made. Each solution method uses a different set of input data as independent variables. Thus, a choice of solution method is possible, depending upon the logs run and the availability of other data. Two of the solutions do not require a knowledge of water resistivity. This system is intended to be used primarily in multiple sandstone-shale sequences of low and moderate resistivities where the principal contaminant in the sandstones is clay. However, where sufficient regional data are available, interpretation in single-zone sandstone reservoirs can also be improved by using the method. THEORY AND HISTORY OF SHALY SAND ANALYSIS The log interpretation formula originally proposed by Archie3 in 1941 is applicable only to rock-fluid systems wherein the rock has negligible electrical conductivity. In 1949, Patnode and Wyllie4 showed that if the rock itself can be considered conductive due to the presence of clay, a different calculation approach is necessary. During the following years, this problem was investigated at great length, as was the related problem of the effect of rock conductivity on the SP.5-11 These investigations established functional relationships between SP, resistivity, water saturation and water resistivity for such a formation. Refs. 2 and 12 provide summaries of these studies. Unfortunately, practical use of these relationships required that water resistivity be known independently from the SP. Although log interpretation methods for rock systems containing clay were proposed at that time,' they were not generally accepted for routine use. There are three principal reasons for this. First, in many field situations involving high-salinity water, rock conductivity may be neglected (even if present) without introducing appreciable error. This may be seen by considering the following expression for waier-saturated rock.' 1/R2=1/R1+1/FRn....(1) where 1/R, is conductivity due to clay. As Rw becomes small, I/FRw becomes much greater than 1/R, which may be neglected. Where 1/R, may be neglected, the sandstone is called clean. If the term may not be neglected, the sandstone is termed dirty or shaly. For resistivity purposes, the classification between clean and shaly sands then depends not only upon the conductivity due to shale in the sand, but also upon the resistivity of the associated water (shale is used here to mean surface condition due to disseminated clay). A sand of given conductivity might safely be treated as clean in association with high-salinity water, but would require shaly sand methods if associated with fresher waters. Shaly sand methods are not required in many areas having saline waters; but in Rocky Mountain and West Coast sands having relatively fresh waters (often more than 0.3 ohm-m resistivity at formation conditions), the shaly sand methods are needed. Errors Rw calculations from the SP due to the presence of shale are likewise related to water salinity. In saline water formations drilled with fresh mud, the ratio of mud filtrate resistivity to water resistivity is high, the SP is large and the presence of shale can introduce large errors in water resistivity calculated by the conventional method. When the resistivity ratio is low, the errors are smaller. At zero SP, no error would result from shale. Thus, from the SP viewpoint, a given rock could be shaly if associated with a saline water, and clean in association with a fresh water, which is the opposite of the resistivity-oriented definition above.
-
Institute of Metals Division - Zinc-Zirconium SystemBy P. Chiotti, G. R. Kilp
Thermal, metallographic, vapor pressure, and X-ray data were obtained to establish the phase diagram for the zinc-zzrconiz~m system. Five compounds corresponding to the stoi-chiometric formulas ZrZn, ZrZn,, ZrZn,, ZrZn,, and ZrZn14 were observed. All these compounds, with the exception of ZrZn2, which melts congruently at 1180°C under constrained zinc-vapor conditions, undergo pexitectic reactians. The temperature at which the zinc vapor pressure is I atm for a series of alloys was determined from vapor-pressure measurements. The data obtained are summarized in the construction of a I-atm-pressure phase diagram and a phase diagram corresponding to a pressure of less than 10 atm. THE purpose of this investigation was to establish the phase diagram for the zinc-zirconium system. Thermal, metallographic, vapor pressure, and X-ray data were employed in determining the phase regions. Partial investigations of this system have been conducted by Gebhardt1 and Carlson and Borders.' Carlson and Borders studied the high-zirconium region and established the existence of a eutectic at 69 wt pct Zr with a melting point of 1015°C. The terminal phases of the eutectic horizontal were shown to be an intermetallic compound ZrZn and a solid solution of ß zirconium containing 21 wt pct Zn. The ß solid solution decomposes into ZrZn and a zirconium at 750°C. The eutectoid composition is given as 15 wt pct Zn, and the solubility of zinc in a zirconium at temperatures below 750°C is indicated to be negligible. Gebhardt studied the zinc-rich region and observed a lowering of the melting point of zinc from 419.5" to 416°C and temperature horizontals at 545" and970°C. Some preliminary observations by Chiotti, Ratliff, and Kilp were reported by Hayes.2 pietrokowsky3 has reported the compound ZrZn2 to have a cubic MgCu2 structure with ao = 7.396A. MATERIALS AND EXPERIMENTAL PROCEDURES The metals employed in the preparation of alloys were Bunker Hill slab zinc or Baker analyzed reagent granulated zinc, both 99.99 pct pure and hafnium-free iodide-process crystal bar zirconium obtained from the Westinghouse Electric Corp. The zirconium contained 200 ppm Fe, 200 ppm Si, 100 ppm C, and minor amounts of other impurities. The zirconium was milled or machined into thin chips or shavings. These were cleaned with a nitric-hydrofluoric acid solution, rinsed with water, and acetone, and dried just prior to their use in alloy preparation. The granulated zinc was similarly cleaned using dilute nitric or hydrochloric acid. Weighed quantities of these materials, 20 to 30 g total, were mixed and pressed at 20,000 to 70,000 psi to give relatively dense compacts. During the early part of this investigation the pressed compacts were placed in MgO-15 wt pct MgF, crucibles which were then sealed inside of quartz ampules. The compacts were given various prolonged heat treatments prior to their use for thermal analyses, or vapor-pressure measurements. Because of expansion of the compacts and the relatively high zinc vapor pressure it was difficult to heat to the melting temperatures of the alloys without failure of the quartz ampules. Homogenization at temperatures below the melting temperature gave brittle, porous alloys unsuitable for metallographic examination. It was also difficult to prevent condensation and segregation of zinc on the colder parts of the quartz ampules during heating and cooling operations. These problems were eliminated to a great extent by the use of tantalum crucibles. Tantalum proved to be a satisfactory container with little or no reaction between the alloys and the tantalum. Small tantalum thermocouple wells were successfully welded in the bottom of these crucibles. Pressed compacts were sealed inside the tantalum crucibles by welding on preformed caps under an argon atmosphere. Heat treating and differential thermal analysis were combined into a single operation. The experimental sample assembly is shown in Fig. 1. This assembly was enclosed inside a stainless-steel tube heating chamber which could be evacuated and filled with an inert gas. The thermocouple leads were brought out of the heating chamber between two rubber gaskets used to provide a vacuum seal for the water-cooled head. Most of the compounds in this system undergo peritectic decomposition. After heating above the temperature of a particular peritectic horizontal the sample was cooled to just below the peritectic temperature and held at temperature for several hours. The sample was then reheated through the peritectic temperature and the size of the thermal arrest, if still present, compared with the one previously obtained. If the thermal arrest was not characteristic for the alloy composition being investigated its magnitude diminished and repeated cycling and annealing eventually eliminated it. The peritectic thermal arrests characteristic of a particular composition were established in this manner.
Jan 1, 1960
-
Part III – March 1969 - Papers- Large Area Epitaxial Growth of GaAs1-x Px for Display ApplicationsBy R. A. Burmeister, G. P. Pighini, P. E. Greene
An open tube vapor phase epitaxial growth system has been used for large area (multiple substrate) growth of GaAs1-xPx on GaAs substrates. The GaCl-GaCl transport reaction is used with either a GaAs or Ga (nonsaturated) source. Selenium and tellurium have been used for donor impurities, and zinc as an acceptor. The useable substrate area in this system is approximately 20 sq cm. The uniformity of thick-ness of the epitaxial layers are typically better than ±5 pct across a given wafer. Electrical and optical measurerments indicute comparable uniformity in electrical and luminescent properties within a wufer. The application of this system to the large scale pro-duction of GaAs1-x Px for display devices, both discrete and arrays, is discussed. Typical electrical and luminescent properties of light emitting diodes fabricated front material produced by this technique are presented. THE most promising materials currently being utilized for visible injection electroluminescence are GaAs1-xPx, Ga1-xAlxAs, and Gap. All have reasonably efficient emissions in the red portion of the visible spectrum at room temperature; Gap also has an efficient green emission.' At present, GaAs1-xPx has a technological advantage over Ga1-xAlxAs and Gap for display applications, since relatively large (several sq cm) areas of GaAs1-xPx suitable for use in electroluminescent devices may be readily grown by vapor phase growth techniques. In contrast, the preparation of Gap and Ga1-xAlxAs for electroluminescent device applications generally employs solution growth techniques which are at present not well suited for the growth of large areas of uniform thickness and doping level. The capability of uniform growth over large substrate areas and the use of multiple substrates is necessary for the practical utilization of electroluminescent devices. This is particularly important when quantity production or monolithic devices are required. Furthermore, in many display applications arrays of light emitting devices are used, the individual elements of which are of a size resolvable by the unaided eye. Thus the overall dimensions of display are substantially larger than those of most semiconductor devices. It is also necessary to achieve a high degree of control over the growth parameters to attain the required degree of reproducibility of materials properties for electroluminescent devices. In the case of GaAs1-xPx it is necessary to accurately and precisely control the phosphorus content of the alloy, both on a macroscopic and microscopic scale, in addition to the parameters generally associated with epitaxial growth such as thickness and doping level. This value is critical, as it has a major effect on the performance of electroluminescent devices. This paper describes the epitaxial growth of GaAsl-xPx suitable for electroluminescent display devices using a system developed specifically for this purpose, and which contains several novel features. The results of studies of selected physical properties of the epitaxial layers are also discussed. Finally, a brief summary is given of the characteristics of display devices fabricated from GaAsl-xPx grown in this system. EXPERIMENTAL A) Reactants. A number of techniques suitable for the vapor phase epitaxial growth of GaAs1-xPx have been reported in the literature.'-' The method selected for this investigation is that in which the Ga is transported by the GaC1-GaCI3 reaction in an open tube process. The results reported here were obtained using either the combination of GaAs, AsC13, and pH3, or Ga, AsH3, pH3, and HC1 as the initial re-actants.* The ASH3 and pH3 were obtained as dilute *Several different sources of supply were used for these reactants, y~elding comparable results._____________________________________________________ mixtures in HZ; the HC1 was obtained from the reduction of AsC13 by Hz at elevated temperatures. Both selenium and tellurium were employed as donor impurities, and zinc as an acceptor impurity. Selenium was introduced in the form of H2Se, tellurium in the form of tellurium-doped GaAs, and zinc in the form of diethy1 zinc. B) Apparatus. The prinicipal difference between the apparatus used in the present study and that of Tietjen and Amick,8 in addition to size and other related design features, is that RE induction heating is utilized in place of resistance heated furnaces. Induction heating was selected for this application because it appears to have several advantages, including: 1) It is possible to keep all fused silica portions of the apparatus at temperatures well below those of the reaction zone, thus minimizing a possible source of contamination. 2) The thermal mass of an induction heated system can be made small, thus reducing the total time required for the growth process. 3) Sharp temperature profiles (desirable for high deposition efficiency) are easily achieved. 4) The volume of the system for a given substrate area can generally be made smaller than a comparable resistance heated unit. This results in shorter time
Jan 1, 1970
-
Part II – February 1969 - Papers - Monotectic Solidification of Cu-Pb AlloysBy J. D. Livingston, H. E. Cline
Cu-Pb alloys in the vicinity of the monotectic composition have been directionally solidified under a high temperature gradient at rates up to 2 X l0-' cm per sec. Over a wide range of compositions, high growth rates yield a composite structure consisting of continuous rods of lead in a copper matrix. This range of compositions increases with increasing growth rate, in agreement with arguments based on the relative velocities of composite growth and the growth of copper dendrites or lead drops. The breakdown of the composite structure at slow growth rates is explained in terms of the relative interphase surface energies. The observed interrod spacings of the composite structure are large compared with the predictions of the Jackson-Hunt equations of eutectic growth. ThE directional solidification of many eutectic alloys produces fine composite structures of parallel lamellae or rods. There has been considerable interest not only in the fundamentals of this two-phase solidification process,'-3 but also in the interesting physical properties produced by such regular and aniso-tropic microstructures. Composite structures can be grown only over a limited range of composition, beyond which coarse primary dendrites of one phase appear. In organic eutec-tics, this composition range of composite structures has been shown to increase with increasing growth rate.7"10 These results were explained in terms of the relative velocities of composite (coupled) growth and dendritic growth. Although similar arguments should apply to metallic eutectics,11-13 suitable experimental results are lacking. In contrast to the work on eutectics, the directional solidification of monotectic alloys has received little attention. (The monotectic reaction is similar to the eutectic reaction, except that one of the resulting phases is a liquid, which subsequently solidifies in a separate reaction at a lower temperature.) Directional solidification of some monotectic alloys'4715 yields regular rodlike microstructures, whereas in other cases macroscopic separation of solid and liquid phases occurs.16 chadwick17 rationalized these results in terms of the probable relative magnitudes of the various interphase surface energies. A recent study of chill-cast Cu-Pb alloys18 revealed a fine rodlike microstructure in alloys near the monotectic composition. It was decided to investigate the directional solidification of such alloys, and to determine the range of composition and growth conditions yielding composite structures. The Cu-Pb system is convenient for such a study, both because it is simple metallurgically, with no compound formation and negligible solid solubilities, and because its basic properties are well-documented. Recent literature on the Cu-Pb system includes studies of bulk thermo-dynamic properties,'g surface energies,20"21 densi-ties,25 and diffusion constants.a6 A similar study of the directional solidification of Cu-Pb alloys was recently undertaken, independently, by Kamio and Oya." EXPERIMENTAL Alloys were prepared by melting 99.999 pct Cu and 99.999 pct Pb in a graphite crucible, stirring well, and pouring into a cold graphite mold. Rods 0.175 in. in diam were machined from the ingots. Alloy compositions studied ranged from 25 to 55 wt pct Pb. Samples were placed in graphite crucibles 5 in. long with 4 in. OD and 0.035-in. walls. They were melted under flowing argon in a vertical, two-zone. platinum -wound furnace. A voltage stabilizer was used to minimize fluctuations in input power. The narrow specimen diameter minimized convection. Directional solidification was achieved by driving the crucible downward into a +-in. hole in a water-cooled copper toroid. The toroid was located immediately below the narrow end zone of the furnace. The end zone was separately powered to maintain high local temperature. Therefore a high temperature gradient (approximately 300 deg per cm) was maintained in the specimen throughout the run. The crucible motion was screw-driven. and a wide range of drive speeds were available. The limited rate of heat removal caused a thermal lag in the specimens at high drive rates. However. temperature-time curves from thermocouples imbedded in a representative sample indicated that the average growth rate still approximately equaled the drive rate. Although the specimens were initially homogeneous, melting and re solidification redistributed the lead. producing composition variations of several percent along the specimen length. (During melting. lead melted first and ran down the sample surface. Rapid freezing tended to reproduce the resulting composition gr~dient, but slow freezing did not because a slow-moving interface tended to reject lead. as discussed later.) To determine local composition. ;-g samples were cut from regions exhibiting various microstructures and were chemically analyzed for lead content. Micrographs were taken on as-polished or lightly etched surfaces. Three-dimensional structure of the lead network was viewed with a scanning electron microscope after removal of some of the copper matrix with nitric acid. RESULTS Several different microstructures are observed, depending on composition and drive rate. Because melting and resolidification produced composition gradients, results are best presented in t&ms of final local composition, rather than initial or average composition. The ranges of local compositions and drive
Jan 1, 1970
-
Reservoir Engineering – General - Application of Numerical Methods to Predict Recovery from Thin Oil ColumnsBy R. D. Taylor, Jim Douglas Jr., H. H. Rachford Jr., P. M. Dyke
A major obstacle to the use of wetting agents in .secondary recovery by water flooding is the adsorption of the agents on the sand. As a result of adsorption, the surfactant always lags behind the floodwater front. Consideration of the chromatographic theory of adsorption indicates that the detergents will not lag as much if used in very high concentrations. An investigation was made of the possibility of using high concentrations economically by flowing slugs of wetting agents followed by normal flood water. The experiments consisted of adsorption studies on Alundum powder and Berea sandstone. Flow rests on a 12-in. Alundum core and 22-in. Berea core were used to determine rate of detergent movement. The results of the flow experiments indicate that the relative rate of surfactant advance is, indeed, sensitive to the concentration of the agent. A 10 per cent slug moved with a rate that war 78 to 95 per cent as fast as the rate of advance of the flood water. By contrast, one with 25 ppm (the number of parts of commercial detergent in a million parts of water on a weight basis) concentration moved less than one-fourth as fast as the flood water, and calculations indicate that in very long porous systems the rate of movement of the lower concentrations will be a small fraction of the rate of advance of the flood front. The results. of the adsorption studies were utilized to calculate the rate of advance of the detergent when only the initial concentration was known. The calculated rates showed substantial agreement with the experimental flow tests in the high concentration ranges. The adsorption results were also used to estimate the cost of the materials for a slug-type surfactant flood in the field. In addition to the faster rates of movement, the concentrated detergent slugs removed much more oil than the dilute solutions. However, the effectiveness of the slug process depends on many variables. The quantity of oil removed is increased markedly by increasing the flooding rate. The efficiency is also influenced by the type of crude, type of reservoir rock and initial water saturation. Therefore, a careful analysis of each reservoir system is required before the economic value of the process can be determined. INTRODUCTION It is well known that the displacement of oil by invading water during water flooding is far from complete. It is generally agreed that the unrecovered oil is retained in the porous medium by the capillary forces which may be relatively large compared to the forces generated by the flowing water. Therefore, it was logical that some early workers should turn to surface-active materials to reduce the capillary forces to facilitate the release of oil. As early as 1927,' a patent was granted for the use of surface-active materials in water flooding. In 1932, when soap solutions were passed through Bradford and Venango sands, it was reported that the results were inconclusive, erratic and that "further investigation is needed to determine exactly the function of the solution and to obtain a clearer insight into the phenomena involved."' Some of the modern scientific reports conclude with a similar statement,' showing that the lack of agreement on the mechanism of oil removal by wetting agents is still very widespread even though several comprehensive studies have been reported.'." Although there is a lack of agreement as to the general effectiveness of the detergents for water flooding, most investigators do agree that all of the common detergents are strongly adsorbed onto the solid surfaces of the reservoir. In the early calculations it appeared that all additives would be lost before reaching much of the formation area which contained the additional oil to be removed. Experiments indicated that if the usual small waterflood concentrations of wetting agents were used, the rate of advance of detergent through the formation would be only a small fraction of the rate of advance of the flood front. Indeed, some investigators4 felt that the use of wetting agents would never be economically feasible because of their adsorption. For example, DunningG estimated that the wetting agent in concentrations of 25 ppm, would advance only 0.05 times as fast as the flood front. Ojeda, et al,' found that a surfactant in a concentration of 10 ppm moved less than 0.01 times as fast as the flood front. It is significant, however, that both investigators found that increased concentrations of wetting agents moved faster, relative to the flood front, than solutions at the lower concentrations. Ojeda showed that an extrapolation of his data indicated a relative rate of 0.5 at 1 per cent concentration, while Dunning6 estimated a relative rate of 0.46 for a 1 per cent concentration. It was obvious that these concentrations could not be used for continuous injection because the cost of the injected detergent would far exceed the value of additional oil produced. Traditionally, detergents are used in very low concentrations for they show good
-
Institute of Metals Division - Mechanical Properties of Beryllium Fabricated by Powder MetallurgyBy K. G. Wikle, W. W. Beaver
The factors which control the rate of dissolution of pure gold in cyanide solution were studied both directly and through measurement of solution the current-potential curves for the anodic and cathodic portions of the reaction. The mechanism of dissolution is probably electrochemical the reaction in nature, and the rate is determined by the rate of diffusion of dissolved oxygen or cyanide to the gold surface, depending on their relative concentrations. The significance of the results and the effects of impurities are considered. ALTHOUGH the dissolution of gold in aerated cyanide solutions has been used as an industrial process for treatment of gold ores since the late nineteenth century, the factors which determine the rate of the reaction have never been identified unambiguously. Studies of the rate of dissolution by Maclaurin,1 White,2 Christy,3 Beyers,4 Thompson,6 and others are contradictory in their conclusions; some claiming that diffusion of the reactants to the gold. surface controls the rate, and others that the chemical reaction is inherently slow and related to high activation energy for the reaction. Christy3 and 'Thompson" both suggest that the reaction is electrochemical in nature and that the dissolution of gold proceeds at local anodic regions while the oxygen is reduced at cathodic regions on the gold surface. Although their studies are ingenious and do indicate an electrochemical reaction under the conditions of study, their experiments were of limited nature and failed to identify the rate-controlling process in the system. The importance from an industrial viewpoint of a knowledge of the mechanism and rate-controlling factors in gold dissolution can be illustrated as follows: If the rate is controlled by a slow chemical reaction rather than by diffusion of the reactants, then an increased temperature should have a marked accelerating effect; agitation of the slurry should have no effect on rate: and increased concentration of reactants should cause acceleration of the rate. If the rate is controlled by the diffusion of one or the other of the reactants to the gold surface, then increased agitation should increase the rate; increased temperature will increase the rate, but not as much as for the case of a slow chemical reaction; increased concentration of the reactant which is diffusion limited will increase the rate; and the concentration of other reactants should be without effect on the rate. It may be concluded that for design of a commercial process for gold leaching, the rate-controlling factors of the reaction should be understood so that an intelligent choice of the conditions of agitation, temperature, and reactant concentration may be made. The experiments described here lead to the unambiguous conclusion that in a system of pure gold and a pure aerated cyanide solution the rate of dissolution is controlled either by the rate of diffusion of dissolved oxygen or cyanide to the gold surface, depending on the relative concentrations of each. There is also ample, but not conclusive, evidence that the mechanism of the reaction is identical to that of electrochemical corrosion. The practical significance of these conclusions will be discussed later in the paper. Experimental The experimental method used in this work was to employ an electrolytic cell which performed the overall gold-dissolution reaction, and to study the anodic and cathodic reactions of this cell as to their nature and the rate-controlling factors. Simple experiments on the rate of dissolution and the potential of the dissolving specimen also were performed under conditions of agitation, temperature, and concentration identical to those used in the electrode studies. Analysis of the electrode studies by well established theories of electrochemical corrosion were made, and the results were found to bear a one-to-one relation with actual rate and potential measurements. Electrode Studies: The Anodic Reaction: The gold specimen used for all of the electrode studies and the rate determination consisted of a sheet of 99.99 + pct Au wrapped around a lucite rod and sealed at the edges with plastic cement, thus forming a cylinder of gold of known and constant area (8.0 sq cm). The lucite rod was threaded into a brass spindle which could be rotated at speeds of 100, 300, and 500 rpm. For the electrode studies electrical contact between the gold cylinder and the brass spindle was made by means of a gold strip covered with plastic. The anodic dissolution of gold was studied by immersing the electrode in a solution containing known concentrations of KCN and KAu(CN)2 but free of oxygen, and by passing an anodic current through the gold electrode. The pH of the solution was maintained between 10.5 to 11.0 in these and all other tests by addition of KOH. The pH was measured before and after each test by means of a glass-elec-
Jan 1, 1955
-
Reservoir Engineering - Steady Flow of Two-Phase Single-Component Fluids Through Porous MediaBy Frank G. Miller
This report presents developments of fundamental equations for describing the flow and thermodynamic behavior of two-phase single-component fluids moving under steady conditions through porous media. Many of the theoretical considerations upon which these equations are premised have received little or no attention in oil-reservoir fluid-flow research. The significance of the underlying flow theory in oil-producing operations is indicated. In particular, the theoretical analysis pertains to the steady, adiabatic, macroscopically linear, two-phase flow of a single-component fluid through a horizontal column of porous medium. It is considered that the test fluid enters the upstream end of the column while entirely in the liquid state, moves downstream an appreciable distance, begins to vaporize, and then moves through the remainder of the column as a gas-liquid mixture. The problem posed is to find the total weight rate of flow and the pressure distribution along the column for a given inlet pressure and temperature, a given exit pres5ure or temperature and given characteristics of the test fluid and porous medium. In developing the theory, gas-liquid interfacial phenomena are treated. phase equilibrium is assumed and previous theoretical work of other investigators of the problem is modified. Laboratory experiments performed with specially designed apparatus. in which propane is used as the test fluid, substantiate the theory. The apparatus. materials and experimental procedure are described. Comparative experimental and theoretical results are presented and discussed. It is believed that the research findings contributed in this * paper should not only lead to a better understanding of oil-reservoir behavior, but also should be suggective in regard to future research in this field of study. INTRODUCTION In recent years much time and effort has been consumed in both theoretical and experimental studies of the static and . dvnamic behavior of oil-reservoir fluids in porous rocks. Although lack of sufficient basic oil-field data, principally concerning the properties and characteristics of reservoir rocks and fluids, largely precludes quantitative application of research results to oil-field problems, qualitative application has become common practice. In effect. oil-reservoir engineering research is serving as a firm foundation for oil-field development and production practices leading to increased economic recoveries of petroleum. This province of research. however, still poses many perplexing problems. The thermodynamic behavior of two-phase fluids moving through porous media constitutes one facet of reservoir-fluid-flow research that has not received the attention it deserves. This report embodies a theoretical discussion of this subject and a description of a series of related laboratory experiments. The significance of the problem to oil field operations is indicated but in articular the report centers around a theory and method for analyzing the steady. macroscopically linear, two-phase flow of a fluid (a single molecular species) through a horizontal column of porous medium. For simplicity in showing how the thermodynamic behavior of two-phase fluids moving through porous media affects oil-reservoir performance problems, attention is focused temporarily on a particular well producing petroleum from an idealized water-free solution-gas drive reservoir, the reservoir rock being a horizontal, thin, fairly homogeneous sandstone of large areal extent confined between two impermeable strata. The flowing hydrocarbon fluid is considered to exist entirely as a Iiquid at points in the reservoir remote from the well; however. the decline in fluid pressure in the direction of the well causes vaporization of the hydrocarbon to begin at a radial distance r from the well. Upstream from r the fluid moves entirely as a liquid and downstream from r it moves either entirely as a gas or as a gas-liquid mixture depending on the properties of the hydrocarbon and on the thermodynamic process it follows during flow. The distance r would be variable under transient flow conditions. but for purposes of analysis the flow is considered to l~e steady at the particular instant of observation during the flowing life of the well of interest. If the flow were isothermal and the hydrocarbon a pure substance, the fluid would be entirely gaseous downstream from r. Thus, this isothermal flow process for a pure substance would require that the heat of vaporization be supplied at r. over zero length of porous medium, at the precise rate necessary to maintain the constant temperature. This means that the solid matrix of the porous medium (reservoir rock) and the surroundings (impermeable strata confining the reservoir rock) would have to serve as infinite heat sources. Heat-transfer requirements would be somewhat less severe for the isothermal flow of a multicorn-ponent hydrocarbon as bubble and dew points at the same temperature correspond to different pressures. In this instance isothermal conditions would be sustained without complete vaporization of the fluid over zero length of porous medium. Nevertheless. as the flow is in the direction of decreasing
Jan 1, 1951
-
Producing - Equipment, Methods and Materials - Displacement Mechanics in Primary CementingBy W. W. Whitaker, C. W. Manry, R. H. McLean
In an eccentric annulus, cement may favor the widest side and bypass slower-moving mud in the narrowest side. Tendency of the cement to bypass mud is a function of the geometry of the annulus, the density and flow properties of the mud and cement and the rate of flow. Bypassing can be prevented if the pressure gradient protluced from circulation of the cement and buoyant forces exceeds the pressure gradient necessary to drive the mud through the narrowest side of the annulus at the same velocity as the cement. In the absence of buoyant forces, one requirement for this balance is maintenance of the yield strength of the cement greater than the yield strength of the mud multiplied by the maximum distance from the casing to the wall of the borehole and divided by the minimum distance. If the yield strength of the cement is below this value, bypassing of mud cannot be prevented unless buoyant forces or motion of the casing significantly aid the displacement. INTRODUCTION Successful primary cementing leaves no continuous channels of mud capable of flow during well treatment and production. Prevention of channels requires care. Tep-litz and Hassebroek provide evidence of channels of mud after primary cementing in the field.' Channeling of cement through mud in laboratory experiments has also been reported.'-' Recommendations for improving the displacement of mud include (1) centralizing the casing in the borehole,'-" 2) attaching centralizers and scratchers to the casing and moving it during displacement,18 "3) thinning the isolating the cement by plugs while it is circulated down the casing,%( (5 establishing turbulence in the cement," and (6) holding the cement slurry at least 2 lb/gal heavier than the mud and circulating the cement slurry at a very low rate of flow.' Although much has been written about the above parameters, the relative importance of each has not been well defined. In this investigation, the mechanics of mud displacement are described through results from analytical models and experiments. The model chosen — a single string of casing eccentric in a round, smooth-walled, impermeable borehole — is analagous to casing centralized in a borehole which is not round and to placing more than one string of casing in a borehole. In each, some paths for flow are more restricted than others. A fluid flowing in the borehole may seek the least restricted, or most open, path. This tendency for uneven flow can lead to channeling of cement through mud unless preventive measures are taken. The analytical models describe channeling and give means of balancing the flow. Experimental data test the analytical models and illustrate effects of motion of the casing, differences in density and mud's tendency to gel. Results are encouraging. Piston-like displacement of mud by an equal density cement slurry is possible through proper balance of the flow properties of the mud and cement slurries to the eccentricity of the annulus. The more eccentric the annulus, the thicker must be the cement relative to the mud. If proper balance is not achieved. bypassing of mud by cement cannot be prevented without assistance from motion of the casing or buoyant forces. Increasing the rate of flow can help to start all mud flowing but cannot prevent channeling of cement through slower moving mud in an eccentric annulus. Thinning the cement slurry tends to increase channeling although the extent of turbulence in the annulus may be increased. Description of flow in an eccentric annulus begins in the next section. It is assumed that (1) the casing is eccentric and is stationary, (2) the mud and cement slurries have the same density and (3) the gel structure of the mud has been broken and the mud and cement follow the Bingham flow model. Effects related to these restrictions will be discussed. FLOW PATTERNS SlNGLE FLUID IN ANNULUS Flow of a single fluid through an eccentric annulus is illustrated in Fig. 1. Part A shows laminar flow of a Newtonian fluid. This distribution of flow was calculated by Piercy, Hooper and Winney.' In fully developed turbulent flow, the velocity distribution around the annulus is less distorted, but the flow still favors the widest part of the annulus Parts B, C and D of Fig. 1 are a qualitative representation of the flow of a Bingham fluid. The yield strength of the fluid increases the severity of bypassing compared to Newtonian flow. At a very low rate of flow, all flow is confined to that portion of the annulus which has the minimum perimeter-to-area ratio. The fluid shears on the perimeter of that area when the pressure gradient multiplied by the area just exceeds the yield stress of the fluid multiplied by the perimeter. Whether or not the minimum perimeter-to-area region encompasses all of the annulus or only a part (as shown in Part B) depends on the geometry of the annulus. If only a part begins to flow, increasing the rate of flow increases the area flowing until finally there is flow throughout the annulus.
-
Part XI – November 1969 - Papers - The Electromagnetic Levitation of Liquid Metal Sulfides and Their Reaction in OxygenBy A. E. Jenkins, O. C. Roberts, D. G. C. Robertson
Using an inverted-cone coil at 450 kHz, it has been possible to levitate iron (FeS), cobalt (CoS), and nickel (NiS) sulfides. Important nontransition metal sulfides such as ZnS, PbS, and Cu2S have proven impossible to levitate although Cu-Fe-S ternary alloys containing 30 wt pct S and up to 10 wt pct Cu, and Cu-Co-S and Cu-Ni-S ternary alloys containing 30 wt pct Cu have been levitated. The levitation technique has been used in preliminary experiments on the vaporization from liquid sulfides and the reaction of liquid metal-sulfur alloys with oxidizing atmospheres. The course of the reactions with pure oxygen were followed using highspeed photography and two-color pyrometry. ELECTROMAGNETIC levitation is now established as a basic laboratory technique in high-temperature research but its application has been restricted mainly to metals and alloys. Applications have included alloy preparation,' metal purification,2'3 determination of liquid metal densities and emissivities,4,5 and studies of metal supercooling,4 alloy thermodynamics,6 and vaporization phenomena.7-9 The application of the technique to compounds has not been considered previously. The successful investigation of the reactions between dilute iron alloys and oxidizing atmospheres10'1 has prompted the current physico-chemical studies involving levitated metal sulfide drops and flowing inert or oxidizing atmospheres. This paper presents the results of such a study and provides a basis for future studies involving a wide range of other compounds of metallurgical interest. The successful levitation of many metal sulfides and mattes provides a method of studying the oxidation reactions fundamental to flash-smelting and similar pyrometallurgi-cal operations under closely controlled laboratory conditions. In addition the system allows the use of a controlled atmosphere (e.g., a gas stream of a certain H2/H2S ratio) with a particular chemical potential to study the relevant thermodynamic equilibria or the mass transfer processes between the atmosphere and the levitated drop under conditions where the hydrodynamics of the system can be closely defined. The optimum frequency for the levitation melting of metals in an inverted-cone coil type inductor is within the radio frequency range 400 to 500 kHz. At frequencies lower than 10 kHz the rate of heat generation is usually insufficient to melt the levitated charge' or where melting is achieved, "dripping" from the charge is encountered.'' At frequencies above 2 mHz the levitation force decreases. Metals, alloys and preheated elemental semiconductors such as germanium and silicon, have been levitated but the levitation of only a few metal compounds has been reported. Jostsons13 and the authors have levitated liquid titanium-oxygen alloys containing 50 at. pct 0 while clark14 has reported the levitation of mixtures of FeS and MnS for short periods. With a "cold crucible" inductor sterling15 has melted ferrites by preheating them by induction in a 4 mHz field and melting at a lower frequency. However this second type of inductor has been designed purely for the melting of materials without contamination; there is only a small gas film between the charge and the inductor and the electromagnetic levitation effect is of secondary importance. For this reason further discussion will be restricted to the use of the coil type inductor. The assessment of the suitability of a particular metal compound for levitation is based upon the following two criteria: i) thermal stability, and ii) physical "levitability". In this paper these two criteria will be considered separately. The thermal stability of a solid or liquid metal compound with respect to a gaseous environment depends upon its chemical reactivity with that environment or, in the case of an inert atmosphere considered here, its volatility. The physical criterion as to whether or not a particular compound can be levitated is based upon a comparison between those physical properties of the compound determining "levitability" which are defined by the fundamental equations of levitation theory as developed by Okress et a1.,16 and the properties of the metals. Since it is not practical to cover the vast field of metal compounds, further discussion will concentrate on the metal sulfides but the treatment would be applicable to any metal compound. THE THERMAL STABILITY OF METAL SULFIDES The temperatures usually encountered during levitation in inert atmospheres cover the range 1400" to 2000°C. The stabilities of the condensed states of the sulfides under these conditions are considered in relation to the periodic classification by reference to Table I. Two general classes of sulfides emerge. The solid sulfides of elements of group IIB and of groups further to the right are volatile while those sulfides of group IB and of groups further to the left are nonvolatile solids. The sulfides described as volatile may be dismissed as unsuitable for levitation. The stabilities of the more favorable nonvolatile sulfides under the anticipated conditions must be studied more closely From Table I it is seen that the alkali metal sulfides exist as liquids in the temperature range of in-
Jan 1, 1970
-
Reservoir Engineering - Steady Flow of Two-Phase Single-Component Fluids Through Porous MediaBy Frank G. Miller
This report presents developments of fundamental equations for describing the flow and thermodynamic behavior of two-phase single-component fluids moving under steady conditions through porous media. Many of the theoretical considerations upon which these equations are premised have received little or no attention in oil-reservoir fluid-flow research. The significance of the underlying flow theory in oil-producing operations is indicated. In particular, the theoretical analysis pertains to the steady, adiabatic, macroscopically linear, two-phase flow of a single-component fluid through a horizontal column of porous medium. It is considered that the test fluid enters the upstream end of the column while entirely in the liquid state, moves downstream an appreciable distance, begins to vaporize, and then moves through the remainder of the column as a gas-liquid mixture. The problem posed is to find the total weight rate of flow and the pressure distribution along the column for a given inlet pressure and temperature, a given exit pres5ure or temperature and given characteristics of the test fluid and porous medium. In developing the theory, gas-liquid interfacial phenomena are treated. phase equilibrium is assumed and previous theoretical work of other investigators of the problem is modified. Laboratory experiments performed with specially designed apparatus. in which propane is used as the test fluid, substantiate the theory. The apparatus. materials and experimental procedure are described. Comparative experimental and theoretical results are presented and discussed. It is believed that the research findings contributed in this * paper should not only lead to a better understanding of oil-reservoir behavior, but also should be suggective in regard to future research in this field of study. INTRODUCTION In recent years much time and effort has been consumed in both theoretical and experimental studies of the static and . dvnamic behavior of oil-reservoir fluids in porous rocks. Although lack of sufficient basic oil-field data, principally concerning the properties and characteristics of reservoir rocks and fluids, largely precludes quantitative application of research results to oil-field problems, qualitative application has become common practice. In effect. oil-reservoir engineering research is serving as a firm foundation for oil-field development and production practices leading to increased economic recoveries of petroleum. This province of research. however, still poses many perplexing problems. The thermodynamic behavior of two-phase fluids moving through porous media constitutes one facet of reservoir-fluid-flow research that has not received the attention it deserves. This report embodies a theoretical discussion of this subject and a description of a series of related laboratory experiments. The significance of the problem to oil field operations is indicated but in articular the report centers around a theory and method for analyzing the steady. macroscopically linear, two-phase flow of a fluid (a single molecular species) through a horizontal column of porous medium. For simplicity in showing how the thermodynamic behavior of two-phase fluids moving through porous media affects oil-reservoir performance problems, attention is focused temporarily on a particular well producing petroleum from an idealized water-free solution-gas drive reservoir, the reservoir rock being a horizontal, thin, fairly homogeneous sandstone of large areal extent confined between two impermeable strata. The flowing hydrocarbon fluid is considered to exist entirely as a Iiquid at points in the reservoir remote from the well; however. the decline in fluid pressure in the direction of the well causes vaporization of the hydrocarbon to begin at a radial distance r from the well. Upstream from r the fluid moves entirely as a liquid and downstream from r it moves either entirely as a gas or as a gas-liquid mixture depending on the properties of the hydrocarbon and on the thermodynamic process it follows during flow. The distance r would be variable under transient flow conditions. but for purposes of analysis the flow is considered to l~e steady at the particular instant of observation during the flowing life of the well of interest. If the flow were isothermal and the hydrocarbon a pure substance, the fluid would be entirely gaseous downstream from r. Thus, this isothermal flow process for a pure substance would require that the heat of vaporization be supplied at r. over zero length of porous medium, at the precise rate necessary to maintain the constant temperature. This means that the solid matrix of the porous medium (reservoir rock) and the surroundings (impermeable strata confining the reservoir rock) would have to serve as infinite heat sources. Heat-transfer requirements would be somewhat less severe for the isothermal flow of a multicorn-ponent hydrocarbon as bubble and dew points at the same temperature correspond to different pressures. In this instance isothermal conditions would be sustained without complete vaporization of the fluid over zero length of porous medium. Nevertheless. as the flow is in the direction of decreasing
Jan 1, 1951
-
Natural Gas Technology - Testing and Analyzing Low-Permeability Fractured Gas WellsBy L. Cichowicz, K. K. Millheim
The constant-rate drawdown test performance for a low-permeability, verticany fractured gas well was investigated. A series of gar wells were tested by flowing each well at constant rate until the data could be analyzed using con-ventional radial flow theory. Each well was then shut in to build up. After a sufficient buildup was obtained, another flow Iest commenced but at a higher flow rate than Ihe first test. Again, the well was shut in when radial fiow was obtained. his procedure was repeated for three to four different flow rates. Two wells in the San Juan basin were tested using this procedure. Both wellere fractured after completion, cleaned up and then shut in until flow testing commenced. Test designs of both wells permitted investigation of the most realistic values of egective permeability, wellbore radius and turbulence factor. Also, being able to determine the eflective fracture flow area and vertical fraclure efficiency was inherent with this testing approach. It was observed that fractures in both wells influenced the Pressure behavior for approximately Is to 40 hours (depending on the flow rate) before radial flow was evident. After this time, drawdown data were analyzed using radial pow theory. When a low-permeability gas well has vertitally oriented, induced fractures, the early flow geometry ic. essentially linear. It will be shown how to determine when a flow test has been conducted long enough so lha' the most representative values of effective permeahiiity. wellbore radius and turbulence factw can be calculated. From the linear pressure data, valuable information about The fracture treatment, such as the effective flow area and vertical fracture efficiency, can be determined for vertically froctured wells. Introduction During tests on gas wells in the Sari Juan basin7 initial transient behavior lasted for many days because of the low permeability of some porous media. As a result, stabilized flow performance could not be obtained. If these wells received some type of stimulation treatment, early pressure behavior deviated from conventional theoretical radial Row. When conventional radial flow theory was used to analyze these low-permeability fractured gas wells, larger values of flow capacity and absolute open flow potentials (AOF) sometimes resulted. Wells were assigned open flow poten- tials that proved to be 3 to 10 times higher than the well would sustain over a longer period of production. In some cases where the wells had flowed for longer periods of time during a constant-rate drawdown test, it was noticed that the effective flow capacity appeared to be decreasing with time until a certain value was reached. The early nonradial pressure behavior can be explained If linear flow is assumed. Rusell and Truitt mathematic. ally investigated the vertically fractured well in a bounded area. They showed that early flow behavior was essentially linear and, for x,/x. approximately less than 0.10 radial flow was obtained after short periods of time. Then realistic values of effective permeability and skin could be determined. Scotta experimentaliy studied the vertically fractured well with a heat flow analog. He showed that earb flow was linear, Both studies indicate that, for small values of x,/x,, linear flow approaches radial flow if the well is tested long enough, To help prove this concept of early linear flow caused by induced vertical fractures, two low-permeability gas wells were tested. Both wells received large fracture treatments prior to testing. A vertical fracture was indicated from the analysis of fracture treatments, As anticipated, tests of both wells indicated early linear flow that was later followed by a period of radial flow, Data collected from each well were analyzed. From the well tests, plus other information on each well, the effective permeability, wellbore radius and turbulence factor were calculated. Effective fracture flow areas calculated from test analyses for each well proved to be approximately one-fourth the created area calculated from classic hydraulic fracturing theory: other fractured wells that were tested but not presented in this paper also indicated that the effective fracture flow area was one-fourth to one-third the created area predicted from hydraulic fracturing theory. The vertical fracturing efficiency was estimated from the calculated values of effective wellbore radius and fracture flow area. For the two wells tested, calculated fracture lengths x, were 112 and 105 ft, and the vertical fracturing efficiencies E, were 122 and 183 percent. Development of Flow Model Agnew' showed that most induced fractures below 1,500 ft are vertical. Anderson and Stah15 indicated that most of the fractures they studied were vertical. Thc model proposed for early flow in most vertically fractured gas wells is shown by Fig. 1. This model should approximate early flow behavior until radial flow is reached, at which time a radial model with an effective wellbore radius of 0.5 they will
Jan 1, 1969
-
Reservoir Engineering – Laboratory Research - Steam-Drive Project in the Schoonebeek Field – The NetherlandsBy C. van Dijk
In Sept., 1960, a steam-drive project was started in the solution-gas drive area of the Schoonebeek field. A part(ern of three five-spots and one four-spot was selected covering an area of 65 acres. The pay in the project area has good lateral continuity and dips slightly to the northeut; it is about SO ft thick and permeability increases from 1,000 and at the bottom to approximately 10,000 md at the top. The oil originally in place was 12.6 X 10' bbl. The oil has an in situ viscosity of about 180 cp. At the start of the steam drive the cumulative primary production due to. solution-ga.7 drive amounted id 4 Percent of the oil originally in place. Reservoir pressure had dropped about 120 psi and no significant primary re-.serves remained. Some 11.3 million bbl of steam (all steam quantities are expressed in barrels of water vaporized) have been injected, resulting in production of an additional 4.1 X I0 9bl of oil, or 33 percent of the oil originally in place. This corresponds to a cumulative oil-stearn rario of 0.37 bbllbbl. It appears that the steam preferentially moves r updip while liquids are produced mainly from downdip wells observations indicate that tile steam flows through only the upper part of the formation. The lateral steam distribution in the pattern is satisfacrory since several prodriction wells hardly reacted and, hence, cori tributcd little to the oil production. Production performance and results from material balance calcutlations agree satisfactorily with the results of large-,scale laboratory experiments. On the basis of these experirmental results the .steam drive, together with a cold water follow-up. is expected to bring ultimate recovery to a value of crt leas: 50 percent of the oil originally in place. No serious production problems have been encountered. However, due to mechanical fuilure, two old prodriction wells and one injection well had to be replaced. An extension of the. steam drive in this area is under connstruction. Introduction The Schoonebeek oil field, discovered in 1943 and developed after World War 11, is situated in the eastern part of the Netherlands. The main oil reservoir in this field is the Valanginian sand. A completely sealing fault divides this reservoir into two areas (Fig. 1): the southwestern part of the sand body where primary production is ob- tained by means of a solution-gas drive, and the remain. der where edge-water drive is the production mechanism. In the greater part of the field the reservoir consists of a single, unconsolidated sand body. The net thickness ranges from 30 to 100 ft and the top is between 2,400 and 2,800 ft below sea level. Formation permeability varies from approximately 10,000 md at the top to values of the order of 1,000 md at the bottom, and porosity is about 30 percent. The reservoir contains a paraffinic oil of 25" API gravity with an in situ viscosity of 160 to 180 cp. Initial oil saturation was high (85 to 90 percent). The relatively large quantity of oil in place (more than 10' bbl), and the low ultimate primary recoveries expected from this field — approximately 15 percent stock-tank oil initially in place (STOIIP) for the water-drive area and 5 percent STOIIP for the solution-gas drive area — clearly indicate ample scope for secondary recovery. Because ies-ervoir and crude characteristics made this field suitable for thermal secondary recovery, a hot-water drive project was started in the water-drive area about 10 years ago. A few years later a steam drive and an in situ combustion project were started in the solution-gas drive area. This paper deals with the performance of the steam-drive project, which was started in Sept., 1960, and which is still in operation. Design of Steam-Drive Project, An experimental investigation of the steam-drive process carried out by schenk in 19561 indicated that under schoonebeek conditions steam injection could be an attractive secondary recovery method. the findings and encouraging results of a pilot test in the Mene Grande field in venezuela,i led to the design of a steam-drive project in the schoonebeek field, Pruject Site and Pattern In 1958 the reservoir pressure in the solution-gas drive area had decreased to about 120 psi, and oil production rates of wells in this area had dropped to 7 to 10 B/D. The cumulative primary production was about 4 percent STOIIP, leaving an oil saturation of approximately 85 percent. In view of the large amount of oil left behind in the reservoir, the solution-gas drive area was selected for the planned steam-drive project. The area in the vicinity of Well S1 3 (Fig. 2) was considered to be suitable since it is at least partly isolated from the rest of the field by faults and the sand is relatively thick (about 80 ft).
Jan 1, 1969
-
Papers - Self-Diffusivities of Cadmium and Lead in the Binary-Liquid Cadmium-Lead SystemBy Andrew Cosgarea, William R. Upthegrove, Morteza Mirshamsi
The capillary-reservoir technique was used with lead-210 and cadmium-115m to determine the self-diffiLsion coefficients of both cadmium and lead in the liquid binary Cd-Pb system. The self-diffusion coefficients of pure cadmium and pure lead were obtained and were compared with the theoretical predictions. Good to excellent agrement between the experimental and predicted values was obtained. The self-diffusion coefficients of cadmium were tneasuved in alloys containing 2.50, 9.13, 17.40, 31.00, 45.00, 69.00, and 97.00 lot pct Cd by determining- the amount of cadniiutn-115m which diffused out of a small-bore capillavy into an infinite reservoir during- a given time peviod. Sinzila7-measurements were made with lead-210 to determine the self-diffusion coefficients of lead in these identical alloys. Diffusivities were determined from measurenzents performed in the temperature interval of 290" to 480°C. The results were correlated with the Ar-vhenius equation, and the maximum variation of the equation parameters (Q and Do) was also inrestigated . THE theory of diffusion in liquids, particularly liquid metals, is relatively undeveloped in contrast to that for the gaseous and solid states. Although the practical application of liquid metals as heat-transfer media has become increasingly important, few liquid-metals systems have been investigated. Experimental data of fundamental significance in this field are not readily obtained, which may explain but not justify the present lack of knowledge. What work has been completed is primarily restricted to liquid diffusion of pure metals; little work has been done in liquid-metal diffusion of binary mixtures. A review of liquid-metal diffusion theory and research is available elsewhere.1-4 In an effort to add to the knowledge of liquid-metal systems and to increase the basic understanding of the diffusion process in liquids, a study of diffusion in the binary-liquid system, Cd-Pb, was undertaken. The capillary-reservoir technique5 was employed to measure the self-diffusion coefficients of cadmium and lead in molten binary alloys. Measurements were made with seven selected compositions and over a temperature range from 290° to 480°C. The experimental apparatus consisted essentially of the following items: constant-temperature bath, diffusion cells, capillaries, capillary-filling device, and a radioactive tracer counting system. EXPERIMENTAL APPARATUS Constant-Temperature Bath. A cylindrical steel vessel, 8 in. in diam and 15 in. deep, surrounded by an insulated heating coil was used with a sodium-potassium nitrate salt mixture heating medium. The bath was maintained slightly below the desired control temperature by the furnace-heating element; and a 250-w heater, actuated by a Bayley proportional temperature controller, was utilized for the final control of the temperature. A constant-speed mixer stirred the salt to insure a uniform temperature within the bath. Four calibrated Chromel-Alumel thermocouples were placed at various positions in the salt bath to verify the absence of temperature gradients. The observed temperature variation during any diffusion run was less than 0.l°C. The entire furnace assembly was mounted on four shock absorbers to exclude building vibrations and the stirrer propeller blades were adjusted so not to induce vibrations within the reservoir. A schematic diagram of the furnace and the constant-temperature bath is shown in Fig. 1. Diffusion Cell. The diffusion cells and associated parts were the same, except for slight modification, as the one used by walls1 in this laboratory, and are shown in detail elsewhere.' A graphite crucible, 4 in. long and 40 mm (1-1/2 in.) ID, enclosed in a 60-mm (2-1/4 in.) Pyrex tube cell about 18 in. long, was used as a container for the melt. The reservoir (molten alloy in the graphite crucible) was usually about 2 to 2-1/2 in. deep. Graphite was used because of its satisfactory nature as a refractory material and the low solubility of carbon in molten Cd-Pb alloy.677 The Pyrex cell was closed at the bottom and fitted at the top (open end) with a 2-in. Dresser coupling. A brass flange was welded to the top of the coupling. The upper part of the diffusion assembly was bolted to this flange with an O-ring seal. The lower part of the diffusion cell was supported in a 3-in. brass cylinder which was open to allow for circulation of salt around the cell. The top assembly consisted of two synchronous motors, a drive shaft, a thermocouple well, and controlled-atmosphere inlets and outlets. One motor was used for rotation of the capillaries at a rate of 1/2 rpm in the reservoir during the diffusion run. The other motor was used for the vertical positioning of the capillaries and the capillary holder by means of a simple screw drive. The capillary holder and drive assembly were lowered into the reservoir for the run and raised after the desired diffusion time at a rate of approximately 0.4 in. per min. Capillary holders were made of graphite. These
Jan 1, 1967
-
Part VI – June 1968 - Papers - Determination of Cold Rolling and Recrystallization Textures in Copper Sheet by Neutron DiffractionBy Jaakko Kajamaa
Neutron diffraction was applied to determine sheet textures by the transmission method. Cold-rolled and recrystallized copper sheets were investigated. The amount of cube texture was determined for three compositions, in which the phosphorus content was, respectively, 0, 0.005, and 0.03 wt pct. The heat treatment was in every case 8 sec at 650°C. In the two latter cases the cube texture was prevented. In addition a comparison with the X-ray diffraction transmission method was made with the 96 pct cold-rolled copper sheet. Outer parts of both (111) pole figures can be considered to be rather identical. This is seen from the fact that the intensity ratio ITD/120" was 0.45 for neutron diffraction and 0.40 for X-ray diffraction. Differences between the methods were discussed in detail. Features peculiar to neutron and X-ray diffraction in texture studies were listed and compared. In this work neutron diffraction was applied to determine sheet textures. Specifically, it was desired to ascertain whether this method can be used to reveal differences when compared to other methods. In addition, the amount of the cube texture in copper sheets was determined as a function of phosphorus content. Previous applications of neutron diffraction to texture problems include the following: nickel wires,' wire of some bcc metals,' and uranium bars.3 In the neutron diffraction technique the greatest difference is in the sample—its method of production and its volume. A sample needs no treatment and its volume is roughly 105 times larger than the volume of an X-ray diffraction sample. The cold-rolled sheet was investigated both by neutron diffraction and by X-ray diffraction, because it is expected that, due to large number of defects, possible differences in the results of the two methods would be revealed. It is a well-known fact that X-ray lines show broadening when cold-worked. Analysis has shown that this is based chiefly on small crystalline size, micro-stresses, and/or faults.4'5 Neutrons are sensitive to the above-mentioned disturbing factors as well, but circumstances in diffraction are different from the X-ray case. Because the sample represents a larger volume, the result is an average over that volume. In addition, it can be assumed that the sample has preserved its original structure, because it needs no special preparation. The particular limitation of neutrons is the relatively low neutron intensity available from nuclear reactors. This decreases the resolution as compared to the X-ray diffraction methods. Furthermore, absorption mainly reduces diffracted X-ray intensity, while multiple scattering effects, i.e., secondary extinction, disturb neutron diffraction. SO neutrons and X-rays behave in a different way when interacting with matter. As in other structural investigations, one can utilize this difference in texture studies as well. One cold-rolled and three recrystallization textures in copper sheets were investigated by neutron diffraction. The samples were produced at the Outokumpu copper factory to the specifications shown in Table I. The paper is divided into five parts. The first deals with the theory of the measurement. In the second, experimental procedures are described. Results are presented in the third part. Both cold-rolled and re-crystallized samples are studied. Discussion is in the fourth part, and finally in the fifth part some conclusions are drawn. 1) THEORETICAL CONSIDERATIONS Properties peculiar to neutron diffraction are the following: a) the scattering length varies greatly between one element and another; b) many of the elements do not absorb neutrons appreciably. In this connection it is of primary interest to know the interaction of neutrons with lattice imperfections. As with X-rays this problem leads to diffraction analysis of deformed and recrystallized metals. From the physical point of view the main difference is that neutrons are scattered by nuclei (magnetic scattering is not considered here), whereas X-rays are scattered by electrons. The features peculiar to neutron and X-ray diffraction methods in texture studies are listed in Table 11. Pole figures are an important tool in performing structural analysis of deformed or recrystallized metal. Present texture research technology requires pole figures which are as precise as possible. The choice between these two methods depends on the technical information which is required. The X-ray diffraction transmission technique may give results which are not necessarily representative of the average physical state of the sample. Although foil samples normally contain enough crystallites for diffraction, they may not necessarily represent the whole structure. An example of this problem is the frequently observed difference between the "surface" and the "inside" texture of a sample. The production of foil samples may disturb the original structure of the parent material. The selection and orientation of the foil from the sample is quite arbitrary. Normally, a highly deformed piece of metal has several texture components. Different components are deformed in a slightly different manner. This is a re-
Jan 1, 1969
-
Some Dynamic Phenomena In FlotationBy W. Philippoff
ALTHOUGH Gaudin1 and more recently Sutherland2 have calculated the probability of collision of a falling mineral particle with a rising bubble, there is no published information concerning the details of the mechanism of attachment of a collector-coated particle to a bubble. During the past year the writer has developed a theory for the mechanism of attachment, which has been substantiated experimentally.' Funds for the investigation and for some of the equipment used have been supplied by the Mines Experiment Station of the University of Minnesota. Motion picture studies of the phenomena involved in the collision between mineral particles and bubbles, such as those of Spedden and Hannan,3 show that the contact can be completed within 0.3 millisec. Formulas developed for rigid bodies have hitherto been used' for the calculation of the motion of bubble and particle, but it is obvious that a bubble cannot be regarded as a rigid body. On the contrary, Spedden and Hannan's pictures show a great degree of deformation during the collision. The time of attachment was calculated as the time the particle drifted past the bubble. Time of Collision The theory presented in this paper enables calculation of the time of collision; using the concept that the bubble, or more generally, a liquid-air interface, acts as an elastic body. The elasticity, defined as the restoring force on a mechanical deformation, is caused by, the surface tension and is the result of the principle of the minimum of free surface energy. It is well known that an elasticity together with a mass determines a frequency of vibration. The vibrations of jets and drops caused by the elasticity of the interface are known to comply exactly with the classical theory of capillarity.5 However, the vibrations of isolated bubbles, as distinct from foams, have not been investigated previously. The following equation, presented elsewhere,' has been deduced for these frequencies: [3fB = 9.20•'./V•Vn- (n-1) • (n+2) /8[1]] in which fB is the frequency of a harmonic of the bubble in cycles per second, V the volume of the bubble in cc, n a number determining the order of the harmonic, and n = 2 the basic vibration. The first (basic) harmonic describes a change of the spherical bubble to an ellipsoidal bubble. The higher harmonics are more complicated, for the circumference of the bubble is divided approximately into as many parts' as the order of the harmonic. As an example, Spedden and Hannan's published motion picture of, a vibrating bubble corresponds to the sixth harmonic. Eq 1 shows that only the first and third harmonics are simple multiples (1 and 3), all the others being irrational fractions of the basic frequency. This means that the shape of the vibration can change with time and is in general unsymmetric in respect to the time axis. Such conditions prevail when there is a distributed elasticity or mass, as in the case of vibrating membranes or rods. The constant 9.20 is valid for water at room temperature, but a general solution involving the physical constants of the liquid has not been found. The case of the floating particle is much easier to treat I than that of the bubble. It can be assumed that the elasticity is caused exclusively by the interface and that the mass is concentrated in the particle together with some adhering water. The following expression for the frequency of a system, of one degree of freedom can be applied: [1E/m[2] fP = 27] Here f, is the frequency of the particle vibration in cycles per second, E the elasticity in dynes per cm, and m the mass in grams. The classical theory of impact phenomena gives the time of collision during the striking of a spring (in this case the surface of the bubble) by a mass, as: [t~ = 2/f = 7r\/m/E[3]] It is now possible to develop an expression for the elasticity of a floating cylindrical particle. The force equilibrium of a cylinder floating end on at the air-liquid interface is given by the well-known equation (Poisson' 1831) [aP = 4 D2.pL•g•h +7rD•y sin a[4]] which accounts for the buoyancy and the action of the surface tension where P is the force acting on the particle in dynes (weight-buoyancy), D the diameter of the cylinder in cm, pL the density of the liquid in grams per cc, g the acceleration of gravity = 981 cm per sec2, h the depression of the cylinder below the surface of-the liquid in cm, y the surface tension in dynes per cm and a the supporting angle' or the one required to insure equilibrium, a being smaller than the contact angle ?. Although demonstrated by Poisson, it has not
Jan 1, 1952
-
Part VIII – August 1968 - Papers - Ultrasonic Attenuation Studies of Mixed Microstructures in SteelBy W. F. Chiao
Ultrasonic attenuation, a, measurements in the frequency range of 5 to 55 mc per sec have been studied to determine their quantitative relationship with the following three variables of mixed microstructures in steels: 1) the volume percent, XF, of polygonal fer-rite in mixed structures of martensite and polygonal ferrite in Fe-Mo-B alloys: 2) volume percent, XA, of retained austenite plus martensite aggregates in high-carbon steel; and 3) substructural differences between 100 pct bainitic ferrite structures formed at various temperatures. The quantitative relationship obtained in the first two conditions by plotting a us the known structural parameters can be expressed, respectively, as: where al, a 2 and C1, Cz are constants. In the third condition the nature of the attenuation depends on the state of dislocations generated at the transformation temperatures and also on the alloy composition. From these measured results, the mechanism of ultrasonic attenuation caused by these mixed microstructures can also be studied. MUCH interest has recently been shown in the application of ultrasonic attenuation and wave velocity measurements to the study of the microstructural characteristics of steels. The general aims of most of the investigations in this field can be grouped into two categories: one is to study the mechanisms of ultrasonic losses caused by the characteristic phases in the microstructure of steel,''' and the other is to develop nondestructive test methods and applications for quality control.~' 4 Apparently no work has been done on the evaluation of ultrasonic attenuation meas -urements as a means of quantitative determination of a given phase in the microstructure of a steel. It is well-established that the decomposition of austenite results in four main microstructural constituents—polygonal ferrite, pearlite, bainite, and martensite—and that each phase has different mechanical properties. Thus, when a steel consists of mixed microstructures, the mechanical properties can often be related to a quantitative measure of the volume percent of each phase present. This study relates ultrasonic attenuation measurements to: 1) the volume percent of polygonal ferrite in mixtures of martensite and polygonal ferrite in Fe-Mo-B alloys; 2) the substructural differences between 100 pct bainitic ferrite structures formed at various temperatures; and 3) the vol- ume percent of austenite in austenite plus martensite aggregates in a high-carbon steel. The choice of the specimen materials was based on the laboratory stocks which were suitable to produce the required mixed microstructures for this study. EXPERIMENTAL PROCEDURES Materials and Heat Treatment. Polygonal Ferrite Plus Martensite Structures. This mixture of phases was produced in a vacuum-melted Fe-Mo-B alloy. The alloy was hammer-forged at 1900" ~ to a -f-in.-sq bar. By isothermally heat treating the alloy at 1300° F for various times and then water quenching, variations in the amount of polygonal (or proeutectoid) ferrite can be controlled in a microstructure in which the balance of the material is martensite. In the present work, four different times of isothermal transformation were adopted; after heat treatment, the four specimens were machined for ultrasonic measurements. The compositions, heat treatments, and dimensions of the four specimens are listed in Table I. 100 pct Bainite Structures Formed at Different Temperatures. It has been well-established by Irvine et al.= that the presence of molybdenum and boron in ferrous alloys can retard the formation of polygonal proeutectoid ferrite and expose the bainitic transformation bay, so that a more acicular or bainitic ferrite can be obtained over a wide range of cooling rates. Their investigation6 also showed that the mechanical properties of fully bainitic steels are usually closely dependent on the substructural characteristics of the steels. For studying the substructural characteristics in completely bainitic structures, six Fe-Ni-Mo alloys, of which five were free from carbon addition and one with 0.055 pct C addition, were selected so that a wide range of hardness values for 100 pct bainitic ferrite structures could be produced by normalizing at 1900" F followed by air cooling. The different bainitic transformation temperatures were recorded during air cooling. All of the alloys were vacuum-melted and then forged at 1900" F to square bars. Data on the six specimens of these structure series are summarized in Table 11. Austenite Plus Martensite Structures. The high-carbon steel used to study austenite plus martensite structures was vacuum-melted and then forged into Q-in.-sq bar. The series of mixed structures of austenite plus martensite was produced by quenching the specimens from the austenitizing temperature to room temperature and then refrigerating them at various temperatures within the range of martensite transformation to produce different amounts of retained austenite. Data on the four specimens of this series are listed in Table 111. Quantitative Analysis of the Microstructures. The microstructures containing martensite plus polygonal ferrite were analyzed by the point-counting technique.
Jan 1, 1969
-
Part XII – December 1968 – Papers - Controlled Microstructures of Al-Cu AI2 Eutectic Composites and Their Compressive PropertiesBy M. I. Jacobson, A. S. Yue, A. E. Vidoz, F. W. Crossman
An equation governing the concept of constitutional supercooling under the combined effect of concentration and temperature gradients was used to produce platelike Al-CuAl2 eutectic composites for mechanical properties studies. Compression specimens were prepared from a single-colony Al-CuA12 eutectic composite ingot, 2 in. in diam and 12 in. long. The specirrzens were cut such that the platelets were oriented parallel, 45 deg, and perpendicular to the compression direction. Since the ingot was of eutectic composition, The aluminum-rich matrix could dissolve 5. 7 wt pct Cu in solid solution, and therefore could be strengthened by precipitation hardening. Specimens were tested at room temperature and elevated temperatures in the unidirectionally solidified, solution-treated, and solution-treated plus aged conditions. The results were compared with those for the conventionally cast and extruded specimens. For the controlled material, the highest strengths were obtained with platelets oriented parallel to the compression axis. In the unidirectionally solidified condition, 0.2 pct offset yield strength was 32,000 psi; however, this was increased to 59,000 psi by solution treatment, and further increased to 90,500 psi by solution treatment and aging. The attainment of high compressive strengths in the Al-CuAl2 eutectic composites was interpreted in terms of the buckling of elastic CuAl2 platelets in the plastically deformed a aluminum matrix. SINCE the discovery of high-strength whiskers,' scientists and engineers have made significant progress toward incorporating these whiskers into metallic matrices, forming composites for basic studies and structural application. The general procedure is to produce the whiskers first and then to bind them together with a ductile matrix. The production of whisker-reinforced composites requires tedious handling techniques,, particularly when it is desired to align the whiskers unidirectionally. Furthermore, the interfacial bond between the whisker and the matrix is frequently poor3 so that the resulting composite has strengths lower than expected. These disadvantages are generally true for any metallic composite produced by physically mixing the components. It is possible to eliminate these shortcomings by growing whiskers directly in the matrix material by eutectic solidification.4-8 In eutectic solidification, the matrix phase and a whisker phase are grown approximately simultaneously from a liquid of the same overall composition at the eutectic temperature. If the solidification process is controlled by varying the freezing rate, the temperature gradient, and the impurity content, platelike or filamentlike whiskers are produced parallel to the growth direction. The morphology of the grown-in reinforcement, i.e.. plates or rods, generally depends on the volume fraction9 of the dispersed phase present in the eutectic mixture. Since the unidirectional eutectic solidification is a one-step process, i.e., the liquid-solid transformation process, an excellent interfacial bond between the matrix and whisker is obtained. An additional advantage is that no special handling technique for whiskers is needed. In recent years, many investigators10-13 have studied the effects of growth variables on the micromorpholo-gies of binary eutectic alloys produced by controlled solidification. The study of their mechanical properties was initiated by Kraft and coworkers14-16 who found that the strength of cast A1-CuA12 eutectic alloy can be increased threefold by unidirectional solidification. In the A1-AL3Ni system, a strength of 50,000 lb per sq in, was reported for the unidirectionally solidified eutectic alloy, a value five times higher than for conventionally cast material. Thus, the unidirectionally solidified eutectics can be used as fiber-reinforced composite materials. In this paper, we shall first use an equation17 as a guide for the production of eutectic composites in general and the Al-33 wt pct Cu eutectic in particular. Experimental data supporting the theoretical prediction are given. Second, the compressive properties of the grown A1-33 wt pct Cu eutectic were thoroughly investigated in terms of platelet orientations, thermo-mechanical treatment, and temperature. The experimental data are interpreted in terms of a buckling model of fibers in elastic fiber-plastic matrix metallic composites. EXPERIMENTAL PROCEDURE Crystal Growth. The following experimental procedure was adopted for the production of controlled microstructures in the A1-33 wt pct Cu eutectic alloy. The controlled solidification was accomplished with a movable resistance-wound radiation furnace. Fig. 1 is a schematic drawing of the solidification apparatus. A water-cooled chiller was placed into a degassed high-purity graphite crucible containing the charge. Rubber stoppers wrapped with aluminum foil were used to seal both ends of the quartz tube through which a dried argon atmosphere was passed under a slight positive pressure. At both ends of the quartz tube, radiation shields were used to minimize heat loss. The quartz tube was held in place by two steel clamps and the furnace was drawn vertically by means of a steel cable against the steel truss which permits the furnace to move without touching the tube. The drive mechanism consisted of two pulleys, a counter weight.
Jan 1, 1969
-
Institute of Metals Division - Influence of Composition on the Stress-corrosion Cracking of Some Copper-base AlloysBy D. H. Thompson, A. W. Tracy
Season-cracking is a type of failure of brass that results from the simultaneous effect of stress and certain corrodants. The object of this paper is to present data that will aid in a more complete understanding of the mechanism of season-cracking and related phenomena. Results presented show that certain high copper alloys are susceptible to season-cracking or stress-corrosion cracking, and possible explanations are discussed. Starting at least as far back as 1906, many papers have been devoted to this subject but the symposium1 held in Philadelphia in 1944 is the richest source of information. In order to study season-cracking, several of the many variables were held constant so as to learn the effects of others. Season-cracking is generally understood to refer to the corrosion cracking of brass having internal stresses;²,³ it is a special case of the general stress-corrosion cracking. Inasmuch as applied stresses are more readily produced and controlled, they were used exclusively in this research and the resulting phenomenon must he called stress-corrosion cracking.²,³ Only constant tensile stresses were used. The agents believed to be most frequently responsible for season-cracking are ammonia. amines and compounds containing then]. Both moisture and oxygen also appear to he necessary. Therefore, an atmosphere containing ammonia, water-vapor and air was selected for these tests. Briefly, the work consisted of exposing sheet metal specimens, having a reduced section ¼ by 0.050 in., of copper-base alloys to the effect of static tensile stresses between 5,000 and 20,000 psi and simultaneous contact with a. continuously renewed atmosphere containing 80 pct air, 16 pct ammonia and 4 pct water vapor at 35°C. The gas mixture and the speci- mens were maintained above the dew-point. The time-to-failure in minutes was the primary measure of results. In order to limit the experiment to finite time, it was considered that a specimen which had neither failed nor undergone microscopically detectable cracking in 40,000 min. (4 weeks) while under a stress of 10,000 psi or more could be considered immune to cracking. This is merely a convenient limit and is not to be considered proof of immunity. Supplementary tests in the absence of stress using weight loss or microscopical appearance as measures of attack were made. Apparatus The apparatus used in this research is shown in Fig 1. To facilitate the description it may conveniently be divided into six parts: stress-producing units, test chamber, gas train, electrical controls, timers and gas analysis device. A stress-producing unit is shown in an exploded view at the left in Fig 2. At the right is an assembled unit with a specimen in place in the lower portion; it is this part that remains in the ammonia atmosphere during a test. The upper part contains a spring, a central threaded rod, a large nut and necessary washers, pins, and so forth. Stress is produced in the specimen by screwing down the top nut against the spring, thus putting a tensile load on the central rod and so on the specimen. The wrench that turns the nut by extending through the upper cap, is seen at the upper right of the figure. The magnitude of the load is gauged by measuring from the pin that extends through the side of the tube, to a fixed point on the large flange. Measurement is made with a vernier beam caliper, shown at the right of the figure. The necessary spring compression to give a desired stress is calculated from the calibration curve of the spring and the dimensions of the specimen. The test chamber, center Fig 1, consists of a thermally insulated steel box 32 in. long by 10 in. high by 7 in. wide. A horizontal baffle reaching nearly to each end divides the chamber equally. Below this baffle are inlets for air and ammonia, a heating coil and a fan. Thus the gases are warmed and mixed in the lower level and flow past the specimens in the upper level. A thermo-regulator and thermometer project into the upper space. The top is pierced by 12 ports flanked by 3/8 in. threaded studs. A test starts when a port is opened and a unit containing a stressed specimen is thrust through it and bolted down against a neoprene gasket. The test chamber is held at 35°C. The gas train, right rear Fig 1, carries ammonia and air continuously to the test chamber. Tank ammonia passes through two reducing valves, a needle valve, a flow meter and into the test chamber. The air from either the plant compressor or a small laboratory compressor passes through wool towers and flow controls to the flow-meter. It then bubbles through water at 34°C and through a heated line to the test chamber. Electrical controls, left rear, Fig 1, provide rectifiers and mercury relays for the test-chamber and humidifier-heating-control circuits and outlets for
Jan 1, 1950