Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Minerals Beneficiation - Destruction of Flotation Froth with Intense High-Frequency SoundBy Shiou-Chuan Sun
THE presence of an excessive amount of tough froth in the flotation of minerals, particularly coals, may create trouble in dewatering, filtering, and handling. Froth is also a nuisance in many chemical industries.' This paper presents a study on the destruction of extremely tough froths with intense high-frequency sound. The data indicate that sound waves can be employed for continuous atandsoundwavescan instantaneous defrothing. A powerful high-frequency siren was used in obtaining the data. Also tested was an ultrasonorator of the crystal type with a frequency range of 400, 700, 1000, and 1500 kc per sec and a maximum power output from its amplifier of 198 w. The results, not presented, indicate that as now designed this machine is not suitable for defrothing. Although the sound generators of the magnetostriction type2,3 and of the electromagnetic type'.' were not available, it is beelectromagneticlieved they are capable of producing the required sound intensity for defrothing. The use of ultrasonics for defrothing was suggested by Ross and McBain1 in 1944. Ramsey8 reported in 1948 that E. H. Rose mentioned a supersonic device that broke down flotation froth but with low capacity. The writer has not been able to find any published literature containing practical experiments. Theoretical Considerations The mechanism of defrothing by sound is attributed to the periodically collapsing force of the propagated sound waves and the induced resonant vibration of the bubbles. The collapse of froth is further facilitated by the sonic wind and the heat of the siren. Sound waves can exert a radiation pressure'," against any obstacle upon which they impinge. When a froth surface is subjected to the periodic puncturing of sound waves, the bubbles are broken. According to Rayleigh9 and Bergmann,12 the radiation pressure of sound, P, in dynes per sq cm is given as: P = 1/2 (r+1)i/v where r is the ratio of the specific heats of the medium through which sound is traveling and is equal to 1 on the basis of Boyle's law; i is the sound intensity in ergs per sec per sq cm, and v is the sound velocity in cm per sec. In this case, the accuracy of the formula is only approximate, because a perfect reflection can hardly result from a column of froth. In addition to the radiation pressure, the propagated sound waves cause the bubbles of the froth to have a resonant vibration.'" he vibratory motion of the bubbles causes collision and coalescence, thereby weakening if not breaking the bubble walls. Sonic wind and heat were also generated." The sonic wind can exert pressure on the froth surface, and the heat can evaporate the moisture content of the bubble walls as well as expand the enclosed air. Apparatus The defrothing apparatus, shown in Figs. 1 and 2, consists of a powerful high-frequency siren, a glass or stainless steel beaker of 2-liter capacity with 12.4 cm diam and 17.1 cm height, and a metal reflector. The beaker was placed 2 in. above the top point of the siren. The metal reflector was adjusted to reflect and focus the generated sound waves into the central part of the beaker. Fig. 2 shows the crystal probe microphone used to measure the acoustic intensity and the mandler bacteriological filter employed to introduce compressed air into the beaker for frothing. The apparatus was enclosed in a soundproof cabinet equipped with a glass window. The siren, shown in Fig. 3, consists of a rotor that interrupts the flow of air through the orifices in a stator. The rotor, a 6-in. diam disk with 100 equally spaced slots, is driven by a 2/3 hp, Dumore W2 motor at 133 rps. The frequency of the siren can be varied from 3 to 34 kc. The maximum chamber pressure is about 2 atm, yielding acoustic outputs of approximately 2 kw at an efficiency of about 20 pct. The siren itself is relatively small and can be operated in any orientation. A detailed description of the siren has been given by Allen and Rudnick.11 Collapse of Froth To study the sequence of the collapse of froth, the glass beaker was partially filled with 920 cc water, 100 g of —150 mesh bituminous coal, 0.3 cc petroleum light oil, 0.2 cc pine oil and 1.54 cc Pyrene foam compound. This mineral pulp was agitated for 5 min and then aerated through a mandler filter until the empty space of the beaker, approximately 9 cm high, was filled completely with min-
Jan 1, 1952
-
Institute of Metals Division - Growth of High-Purity Copper Crystals (TN)By E. M. Porbansky
DURING the investigation of the electrical transport properties of copper, it became necessary to prepare large single crystals of the highest obtainable purity. In an effort to meet these demands, single crystals of copper have been grown by the conventional pulling technique—as has been used for the growth of germanium and silicon crystals.' Low-temperature resistance measurements made on these crystals show that, as far as their electrical properties are concerned, they are generally of significantly higher purity than the original high-purity material. The use of these pure single crystals with very high resistance ratios has made possible the acquisition of detailed information regarding the electron energy band structure of copper2-' and has stimulated widespread effort on Fermi surface studies of a number of other pure metals. It is the purpose of this note to describe our method of preparing very pure copper crystals by the Czochralski technique. Precautions were taken to prevent contamination of the melt from the crystal growing apparatus. A new fused silica growing chamber was used to prevent possible contamination from previous groqths of other materials such as germanium, silicon, and so forth. A new high-purity graphite crucible was used to contain the melt. This crucible was baked out in a hydrogen atmosphere at -1200°C for an hour, prior to its use in crystal growth. Commercial tank helium, containing uncontrolled traces of oxygen, was used as the protective atmosphere. A trace of oxygen in the atmosphere appears to be necessary for obtaining high-purity copper single crystals. A 3/8-in-diam polycrystalline copper rod of the same purity as the melt was used as a seed. The copper rod was allowed to come in contact with the melt while rotating at 57 rpm. When an equilibrium was observed between the melt and the seed (that is, the seed neither grew nor melted), the seed was pulled away from the melt at a rate of 0.5 mils per sec. As the seed was raised, the melt temperature was slowly increased, so that the grown material diminished in diameter with increasing length. When this portion of the grown crystal was -1 in. long and the diameter reduced to less than 1/8 in., the melt was slowly cooled and the crystal was allowed to increase to - 1-1/4 in. diam as it was grown. By reducing the diameter of the crystal in this manner, the number of crystals at the liquid-solid interface was decreased until only one crystal remained. Fig. 1 shows a typical pulled copper single crystal. The purity of the starting material and the crystals was determined by the resistance ratio method: where the ratio is taken as R273ok/R4.2ok. The starting material, obtained from American Smelting and Refining Co., was the purest copper available. Most of the pulled copper crystals had much higher resistance ratios than the starting material. The highest ratio obtained to data is 8000. Table I is an example of the data obtained from some of the copper crystals. Note that Crystal No. 126 had a lower resistance ratio than its starting material and this might be due to carbon in the melt. The melt of this crystal was heated 250" to 300°C above the melting point of copper. At this temperature it was observed that copper dissolved appreciable amounts of carbon. The possible presence of carbon at the interface between the liquid and the crystal will result in reducing conditions and negate the slight oxidizing condition required for high purity as discussed below. The possible explanations of the improvement in the copper purity compared to the starting material are: improvement in crystal perfection, segregation, and oxidation of impurities. Of these, the latter seems to be most probable. A study of the etch pits in the pulled crystals showed them to have between 107 and 108 pits per sq cm. The etch procedure used was developed by Love11 and Wernick.10 The resistivity of the purest copper crystal grown was 2 x 10-10 ohm-cm at 4.2oK; from the work of H. G. vanBuren,11 the resistivity due to the dislocations would be approximately 10-l3 ohm-cm, which indicates that. the dislocations in the copper crystals would contribute relatively little to the resistivity of the crystals at this purity level. Segregation does not seem likely as the reason for purification of the material, since the resistivity of the first-to-freeze and the last-to-freeze portions are approximately the same, as was observed on Crystal No. 124. On most of the crystals that were examined, the entire melt was grown into a single crystal. If the
Jan 1, 1964
-
Logging and Log Interpretation - An Electrodeless System for Measuring Electric Logging Parameters on Core and Mud SamplesBy I. Fatt
A recently developed system for measuring electrical resistivity of liquids without use of electrodes offers some interesting possibilities in electric logging technology. The equipment as supplied by the manufacturer is satisfactory for continuous mud logging on a drilling rig or for measuring mud or filtrate resistivity in the laboratory. A simple modification of the commercially available instrument makes it suitable for measuring resistivity of core samples in the laboratory. The continuous measurement of mud resistivity on a drilling rig is a convenient means for detecting mixing of formation water with the drilling mud. Such information is useful to the geologist, the mud engineer and the logging engineer. However, continuous mud resistivity logging by conventional electrode-type resistivity cells is beset with difficulties. The mud, sand and rock chips abrade the electrodes, thereby changing the cell constant and eventually destroying the cell. Also, additives and crude oil in the mud may poison the electrodes by coating them with a nonconductive material. An electrode-type resistivity cell. therefore, may give erroneous readings under certain conditions. Electric logging companies circumvent the electrode poisoning problem by using a four-electrode resistivity cell for measurement of mud resistivity. In this cell, change in electrode area does not change the cell constant. However, the four-electrode cell is difficult to adapt for continuous reading and does not solve completely the problem of electrode abrasion by the sand and cuttings in the mud. The measurement of electric logging parameters on core samples in the laboratory encounters some of the same problems discussed in connection with mud logging. Ideally, the electrical resistivity of a core sample should be measured by placing platinum black electrodes in direct contact with the plane ends of a cylindrical or rectangular sample. Platinum black electrodes however, are much too fragile and easily abraded to be brought in contact with a rock sample. Also, oil or other constituents in the fluid contained in the sample will poison platinum black. In practice, gold-plated brass electrodes, in an AC bridge circuit operating at about 1,000 cps, are used for routine core analysis. For more precise work in research studies, a four-electrode scheme is used.',' Preparation of the samples for the four-electrode method is much too involved for routine core analysis. An apparatus for measuring resistivity of liquids without use of electrodes was described by Guthrie and Boys3 in 1879. They suspended a beaker, containing the electrolyte, by a torsion wire and rotated a set of permanent bar magnets around the vessel. The eddy currents induced in the electrolyte reacted against the rotating magnetic field to develop a torque, which was measured as a deflection of the torsion wire. In 1879 this method could not be made precise or convenient because of the lack of strong permanent magnets. The writer described a very greatly improved apparatus similar to that of Guthrie and Boys, but it was not suitable for continuous measurements or core samples.' Many electrodeless resistivity devices using radio frequency current are described in the literature.5, 6 These generally are suitable only for noting the end-point in a chemical titration. They do not measure resistivity, instead measuring a complex quantity which includes the dielectric constant and the magnetic permeability. The first description of the apparatus to be discussed in this paper was given by Relis.7 Improvements and modifications are described by Fielden,s Gupta and Hills,> and Eichholz and Bettens.10 DESCRIPTION OF APPARATUS The apparatus used in this study is based on the principle that the solution under measurement can form a loop coupling two transformer coils, as shown in Fig. 1. For a fixed AC voltage applied across Coil A, the voltage appearing across Coil B is a function of the resistance of the liquid-filled loop. The details of the voltage generating and measuring circuits are given in Refs. 7, 8, 9 and 10. A block diagram of the equipment is given in Fig. 7. Special features worth mentioning are the operating frequency of 18,000 cps and the automatic temperature compensation which results in the given resistivity readings being automatically correlated to 25°C. The liquid loop supplied by the manufacturer, shown in Figs. 1 and 2, was modified for use in core analysis (Fig. 3). The core sample under test is substituted for a section of the original loop. As shown in Fig. 3, the unit accepts only plastic-mounted cylindrical core specimens. A Hassler-type sleeve easily can be designed for the unit if unmounted cores are to be measured. EXPERIMENTAL PROCEDURE MUD LOGGING A simulated mud line was set up in the laboratory.
-
Reservoir Engineering–General - Estimation of Reservoir Anisotropy From Production DataBy M. D. Arnold, H. J. Gonzalez, P. B. Crawford
A method is presented for estimating the effective directional permeability ratio and the direction of maximum and minimum permeabilities in anisotropic oil reservoirs. The method is based on the principle that production from a well in an anisotropic reservoir results in elliptical isopo-tentials about the well, rather than circular. Bottom-hole pressure data from three observation wells surrounding a producing well are required to apply the method. The method involves fitting field pressure data to a set of general charts of isopotentials and making a few simple calculations until a solution is found. The method is based on a steady-state equation for homogeneorrs fluid pow. In addition to the method, a brief discussion of the theory underlying it is presented. INTRODUCTION The existence of a different permeability in one direction than another in oil reservoirs has been mentioned in several papers. Hutchinson' reported laboratory tests on 10 limestone cores and pointed out that one-half of them showed significant, preferential, directional permeability ratios, the average being about 16:1. Johnson and Hughesz reported a permeability trend in the Bradford field in the northeast-southwest direction with flow being 25 to 30 per cent greater in that direction. Barfield, Jordan and Moore -eported an effective permeability ratio of 144:1 in the Spraberry. Crawford and Landrum4 showed that sweep efficiencies could often vary by a factor of two to four, and sometimes considerably more, due to variations in flooding direction and patterns in anisotropic media. These findings indicate that the poss'bility of anisotropy may be worthy of consideration in the development of an oil field. In considering this, it should first be determined if anisotropy exists. If it does, the direction of the maximum and minimum permeabilities and the ratio of their magnitudes are quantities which can be of value in planning the most efficient well-spacing patterns. Past methods of determining these quantities have included analysis of oriented cores and analysis of flooding performance of pilot injection patterns. In recent work, Elkins and Skov5 resented an analysis of the pressure behavior in the Spraberry which accounted for anisotropic permeability. This work was based on the transient pres- sure distribution in a porous and permeable medium, with the solution expressed as an exponential integral function involving rock and fluid properties. The purpose of this study is to provide a method, based on steady-state equations, of estimating the direction and relative magnitude of permeabilities in an oil reservoir from field pressure data and well locations only. The method presented is based on work by Muskat6 which shows that Laplace's equation represents the steady-state pressure distribution for homogeneous fluid flow in homogeneous, anisotropic media if the co-ordinates of the system are shrunk or expanded by replacing x with it is desirable that data be obtained early in the history of a field because knowledge of an anisotropic condition would allow new wells to be spaced in such a manner that reservoir development and subsequent secondary recovery programs could be planned more efficiently. THEORETICAL CONSIDERATIONS A brief discussion of the theoretical basis on which the graphical solution was developed is presented in this section. Muskat's two-dimensional6 olution for the pressure distribution in an homogeneous, anisotropic medium with an homogeneous fluid flowing can be algebraically manipulated to show that the isobaric lines are perfect ellipses. The ratio of the major axis to the minor axis, a/b, is related to the permeability ratio, k,/k,, as follows. alb = dk,/k,--...........(1) It can also be shown that the pressure varies linearly with the logarithm of the radial distance from the producing well. However, the gradient along any ray is a function of the orientation of that ray, and a ..xiable is present when anisotropy exists which cancels out for a radial (isotropic) system. For a system such as that described, a dimensionless pressure-drop ratio was developed which is completely independent of the actual magnitude of the pressures. This was done by arranging Muskat's solution in such a way that aIl variables cancelled out except k,/k, and well positions. However, this solution depends on having a co-ordinate system with axes coinciding with the major and minor axes of the elliptical isobars. Thus, it was necessary to introduce a co-ordinate system rotation factor. The two unknown variables are then k,/k. and 0, and the two measured dimensionless pressure-drop ratios are related to the unknown variables as follows.
-
Disposal Well Design for In Situ Uranium OperationsBy V. Steve Reed, Ed L. Reed
The in situ leach mining process generates a waste stream that is high in sulfates, total dissolved solids, and radium 226. During the mining phase, the volume of the waste stream is relatively low and consists primarily of the bleed stream. During the restoration phase, larger volumes of waste water are generated. These waste streams require environrnentally sound disposal. The low net evaporation rate in the Coastal Bend area precludes pond evaporation as a feasible disposal alternative. Reverse osmosis is a practical method of reducing the volume of the waste water handled, but the concentrated waste stream from the reverse osmosis unit must be disposed properly. Deep well injection into highly saline reservoirs is considered a sound method of disposing of the liquid waste generated by in situ mining in the Gulf Coast uranium district. Thirteen injection wells have been permitted to serve the disposal needs of the leach mining industry in Texas. Of these 13, 11 have actually been drilled. Seven applications are pending. The injection zones for the permitted wells range from depths of 3050 to 6200 feet. Pressure limitations imposed on these wells range from 500 psi to 1350 psi. The following criteria are used to determine the desirability of a disposal well site: 1. A minimal number of nearby, improperly plugged borings which penetrate the disposal zone; 2. Minimal crustal disturbance; 3. Sufficient salinity of the water contained in the disposal zone; 4. Protection of oil and gas producing zones; and 5. Sand of sufficient permeability and areal extent to handle the desired volume without fracturing the reservoir. 1. Improperly plugged borings: During the early part of the century, oil wells, gas wells and test holes were drilled using cable tool equipment, often with a minimum amount of surface casing. Production casing, when it was set, was often partly removed when the holes were abandoned. Thus, wells drilled prior to 1940 frequently have less than 100 feet of surface casing and either no production casing or the upper part of the production casing removed. Additionally, these holes are often plugged only with mud. The close proximity of these holes to an injection well location are a concern in that they can provide an avenue for injection-depth fluids to migrate up the bore hole and jeopardize shallower fresh water reservoirs. Usually, where there are more than 6 or 8 poorly plugged borings in a 2 1/2 mile radius of the well site, it is preferable to examine deeper zones for disposal well potential. The deeper zones are especially attractive where the borings are not in a cluster, which renders monitoring more difficult. Often, even the deeper disposal zones are penetrated by a few improperly plugged borings. When this condition arises, the potential for leakage through the borings can be addressed in the following ways. a. Demonstration that the static head in the boring is higher than the anticipated increase in bottom hole pressure generated at the boring by the disposal well. A 100 psi differential between these two pressures is recommended. The calculated increased pressure at a boring caused by injection should be refined using annual bottom hole pressure measurements in the disposal well. Figure 1 illustrates an injection pressure map which can be overlain on the oil well map to determine the anticipated increase in pressure expected at each oil, gas or abandoned hole. b. Shallow ground water monitoring. A shallow monitor well is drilled next to the boring and both pressure and quality measurements are made periodically in the shallow well. c. Disposal zone monitoring. Recently there has been a tendency for regulators to require disposal depth monitor wells instead of shallow well monitoring. We consider disposal depth monitoring to be a less effective method of monitoring because it provides only indirect evidence of potential problems. Assumptions have to be made for the unplugged borings, such as mud weight, that are not addressed by the disposal zone monitoring program. There is little improvement with this system to that discussed in "a" above. A shallow zone monitoring program, however, yields direct evidence of a developing problem with an unplugged boring. Leakage by the boring will be detected quickly by an abnormal increase in pressure in the shallow well. Quality monitoring will detect upward migration of poor quality fluids. The pressure data provide an early warning of impending leakage; the quality monitoring will detect actual fluid migration.
Jan 1, 1980
-
Industrial Minerals - Dimension Stone in MinnesotaBy G. M. Schwartz, G. A. Thiel
Dimension stone was first quarried in Minnesota in 1820 and a very active industry has grown up over the years. The main basis of the present industry is a wide variety of igneous rocks sold under the general trade name of "granite." Also of considerable importance is the Ordovician dolomite sold under the locality names, Man kato, Kasota and Winona. THE first record of the quarrying of dimension stone in Minnesota dates back to 1820 when limestone was quarried locally for part of old Fort Snel-ling. Limestone quarries were operated at Stillwater, Mankato, and Winona as early as 1854. Granite was quarried first at St. Cloud in 1868, and within a few years thousands of tons were shipped to widespread points. Rough dimension stone for large buildings furnished the first important market, but beginning in 1886 paving blocks were in demand. The largest shipment was in 1888, when 1925 cars were shipped from the St. Cloud area. Quartzite was quarried first at New Ulm in 1859 and somewhat later at Pipe-stone and elsewhere in southwestern Minnesota. The productive dolomite quarries at Kasota were opened first in 1868 and have continued as large producers of a variety of stone to the present time. At present, the industry is controlled by relatively few operators, and for that reason detailed figures on dimension stone are not released for publication. A general idea may be obtained from the data in the Minerals Yearbook for 1948. The figures for total stone produced in Minnesota are 1,804,000 tons valued at $5,090,652. Probably the largest item in the latter figure is received from dimension stone. A better idea of the situation in relation to the country as a whole may be gained by using the data for 1930 when more companies were operating in Minnesota, and complete figures were published. In that year Minnesota produced granite valued at $2,668,119 and ranked third among the states in value. Minnesota's production of granite was almost exclusively for dimension stone. In the same year Minnesota produced 300,000 tons of limestone (dolomite) valued at $840,860, and this likewise was mainly dimension stone. In finished limestone Minnesota ranked second among the states in 1930. Sandstone and minor amounts of quartzite are the only other dimension stones that have been produced in Minnesota, but the quarries are now inactive. The commercial stones of Minnesota have been described in two reports by Bowlesl and by Thiel and Dutton. The early history of quarrying in Minnesota and extensive notes on the various rocks are given by N. H. Winchell.8 Small limestone and dolomite quarries were numerous throughout the area of Paleozoic rocks in southeastern Minnesota. Early production was largely dimension stone. With the increased use of Portland cement, most of these ceased production, and today only those at Kasota and Winona remain in operation. In recent years many quarries have reopened and new ones started, but these are devoted to the production of crushed rock and agricultural lime. As the application of modern quarrying and finishing methods increased, small companies in the granite business have dropped out, and the remaining companies have modernized their plants, purchased old quarries, and opened up new ones, thus furnishing a wide variety of granites suitable for most of the customary uses. It is the purpose of this review to present notes on the geology and operations of each of the quarries now operating within the state. Granites and Related Igneous Rocks The term granite as used in this report includes granites, gneisses, diorites, gabbros, and other igneous rocks. The granites of greatest economic importance are found in three widely separated regions, see Fig. 1. 1—Central Minnesota in the region of the city of St. Cloud, 2—the upper Minnesota River valley region, 3—the northeastern portion of the state, commonly referred to as the Arrowhead region. The St. Cloud Region: The rocks of the St. Cloud region are mainly granites and related rock types such as monzonites and quartz diorites. The stones may be grouped into three major types, namely, pink granite, red granite and gray granite. Most of the pink granite occurs in the area to the southwest of St. Cloud. The rock is best described as stone with large pink crystals set in a finer grained black and white background. The minerals of the matrix occur in remarkably uniform sizes, and the pink crystals are sufficiently uniform in their dis-
Jan 1, 1953
-
Iron and Steel Division - Reduction Kinetics of Magnetite in Hydrogen at High PressuresBy W. M. McKewan
Magnetite pellets were reduced in flowing hydrogen at pressures up to 40 atm over a temperature range of 350° to 500°C. The rate of weight loss of oxygen per unit area of the reaction surface was found to be constant with time at each temperature and pressure. The reaction rate was found to be directly proportional to hydrogen pressure up to 1 atm and to approach a maximum rate at high pressures. The results can be explained by considering the reaction surface to be sparsely occupied by adsorbed hydrogen at low pressures and saturated at high pressures. PREVIOUS investigation1,2 have shown that the reduction of iron oxides in hydrogen is controlled at the reaction interface. Under fixed conditions of temperature, hydrogen pressure, and gas composition, the reduction rate is constant with time, per unit surface area of residual oxide, and is directly proportional to the hydrogen pressure up to one atmosphere. The reduction rate of a sphere of iron oxide can be described3 by the following equation which takes into account the changing reaction surface area: where ro and do are the initial radius and density of the sphere; t is time; R is the fractional reduction; and R, is the reduction rate constant with units mass per area per time. The quantityis actually the fractional thickness of the reduced layer in terms of fractional reduction R. It was found in a previous investigation2 of the reduction of magnetite pellets in H2-H,O-N, mixtures, that the reaction rate was directly proportional to the hydrogen partial pressure up to 1 atm at a constant ratio of water vapor to hydrogen. Water vapor poisoned the oxide surface by an oxidizing reaction and markedly slowed the reduction. The enthalpy of activation was found to be + 13,600 cal per mole. It was also found that the magnetite reduced to meta-stable wüstite before proceeding to iron metal. The following equation was derived from absolute reaction-rate theory4,8 to expfain the experimental data: where Ro is the reduction rate in mg cm-2 min-'; KO contains the conversion units; Ph2 and PH2O are the hydrogen and water vapor partial pressures in atmospheres; Ke is the equilibrium constant for the Fe,O,/FeO equilibrium; Kp is the equilibrium constant for the poisoning reaction of water vapor; L is the total number of active sites; k and h are Boltzmann's and Planck's constants; and AF is the free energy of activation. Tenenbaum zind Joseph5 studied the reduction of iron ore by hydrogen at pressures over 1 atm. They showed that increasing the hydrogen pressure materially increased the rate of reduction. This is in accordance with the work of Diepschlag,6 who found that the rate of reduction of iron ores by either carbon monoxide or hydrogen was much greater at higher pressures. He used pressures as high as 7 atm. In order to further understand the mechanism of the reduction of iron oxide by hydrogen it was decided to study the effect of increasing the hydrogen pressure on rebduction rates of magnetite pellets. EXPERIMENTAL PROCEDURE The dense magnetite pellets used in these experiments were made in the following manner. Reagent-grade ferric oxide was moistened with water and hand-rolled into spherical pellets. The pellets were heated slowly to 550°C in an atmosphere of 10 pct H2-90 pct CO, and held for 1 hr. They were then heated slowly to 1370°C in an atmosphere of 2 pct H2-98 pct CO, then cooled slowly in the same atmosphere. The sintered pellets were crystalline magnetite with an apparent density of about 4.9 gm per cm3. They were about 0.9 cm in diam. The porosity of the pellets, which was discontinuous in nature, was akrout 6 pct. The pellets were suspended from a quartz spring balance in a vertical tube furnace. The equipment is shown in Fig. 1. Essentially the furnace consists of a 12-in. OD stainless steel outer shell and a 3-in. ID inconel inner shell. The kanthal wound 22 in. long, 1 1/2, in. ID alumina reaction tube is inside the inconel inner shell. Prepurified hydrogen sweeps the reaction tube to remove the water vapor formed during the reaction. The hydrogen is static in the rest of the furnace. The sample is placed at the bottom of the furnace in a nickel wire mesh basket suspended by nickel wire from the quartz spring. The furnace is then sealed, evacuated, and refilled with argon several times to remove all traces of oxygen. It is then evacuated, filled with
Jan 1, 1962
-
Technical Notes - An Investigation of the Use of the Spectrograph for Correlation in Limestone RockBy F. W. Jessen, John C. Miller
In many areas where carbonate rocks form important parts of the stratigraphic sequence, stratigraphers have experienced varying degrees of difficulty in differentiating and correlating limestone and dolomite units in both surface and subsurface work. With early Paleozoic rocks of the Mid-Continent, insoluble residues yield a remarkable amount of strati-graphic data and relatively good correlations may be carried over broad distances.' Unfortunately, neither such information nor electric logs and radioactive logs have been particularly helpful in interpreting the limestone sections of the Permian Basin of West Texas. This is because: (1) the variations in the sections may be very slight; (2) no completely satisfactory method of interpretation has been developed; and (3) the measurements themselves are not sensitive enough for small variations. Also, such logs are influenced by the fluid content. Paleontology and micro-paleontology remain the ultimate arbiters. As a routine tool, however, paleontol-ogical examination is slow and tedious. Chemical analysis may be used, but this, too, is extremely slow. Although rocks are not classified according to chemical composition, there is considerable variation with rock types. Correlation by chemical composition has two advantages, first, the characteristics determined are subject to minimum human error and interpretation, and secondly, the lithologic changes are not masked by fluid content as in the case of electric and radioactive logs. Some fossils concentrate certain elements which tentatively might be used to date rock units.' Rapid chemical analysis by spec-trographic means could be used as an adjunct to other means employed in correlation work, or might, in itself, present a suitable method. PURPOSE OF THIS INVESTIGATION Sloss and Cooke' have published data concerning spectrographic analysis of limestone rocks specifically for purposes of direct correlation of a single formation. These authors found satisfactory evidence that differences in percentage of four elements (Mg, Fe, Al, and Sr) in the Mississippian limestones of northern Montana were useful in carrying out correlation of this formation over a distance of approximately 50 miles. It was concluded from the preliminary work that the spectrochemical method offered possibilities of solution of some problems of correlation heretofore not possible. Since the work of Sloss and Cooke' was confined to one particular limestone zone, extension of the use of the method to examine two or more geologic formations would aid materially in the over-all problem of correlation of such rocks. Equipment is now available commercially with which very rapid spectrographic analyses may be made, and hence the problem was to determine whether the variations existing in the minor constituents of limestones were sufficient for use in possible correlation. Qualitative and semi-quantitative investigations were made to determine whether significant changes in the chemical condition occurred. It was a further purpose to investigate the geologic time-boundaries to see whether significant chemical variation could be found corresponding to the paleontological breaks. It was desirable to attempt correlation of a thick section of limestone or dolomite rock and to have as much information as possible on the section. Furthermore, it was felt that examination of formations more difficult to correlate by other means would enhance the value of the method should definite points of correlation be found. Samples were chosen from the Chapman-McFarlin Cogdell No. 25 well in the Cogdell field, Kent County, Tex., and from the General Crude Oil Co., Coleman No. 193-2 well in the Salt Creek field, Kent County, Tex. These fields belong to the famous series of "Canyon" reef fields of West Texas. Cores from the above wells were available from the United States Geological Survey, Austin, Tex. THE SPECTROGRAPHIC METHOD The choice of procedure to be followed in this investigation was based on the anticipated requirements peculiar to the problem. Since the problem was primarily to investigate the possibilities of applying the spec-trograph to problems of correlation in thick carbonate sections, a precise quantitative analysis did not appear necessary. A qualitative analysis to show the possible absence of presence of any element, or a semi-quantitative analysis of the elements present to show the relative changes in magnitude of selected elements was required. Both types of analysis were employed. The two most widely applied methods of semi-quantitative estimates are those of Harvey and of Slavin4,5 though various other procedures have been described.6 while the Harvey method has been modified by Addink,7 this refinement did not seem necessary to the present problem. Essentially, the procedure employed is a variation of the total energy method of Slavin with two exceptions: (1) stressing matrix effect, and (2) using densitometer measurements. As measured by a densito-
Jan 1, 1956
-
Institute of Metals Division - Recrystallization of Single Crystals of AluminumBy Bruce Chalmers, D. C. Larson
Aluminum crystals with longitudinal-axis orientations of (111) . (110), and (100) were deforined in tension and annealed. The conditions of deformation were controlled so that the re crystallization nuclei originated in either the heavily deformed regions at saw cuts {artificial nucleation) or in the lightly deformed matrix (spontaneous nucleation). The artificial-nucleatioln experiments showed that in lightly deformed (110) and (100) crystals low-angle twist boundaries are most mobile, while in (111> crystals and heavily deformed (110) and (100) crystals high-angle tilt boundaries with near (111) rotations are favored. The spontaneous-nucleation experiments showed the existence of preferred orientations in the (111) crystals. The nonrandomness of the grain orientations is quantitatively determined through a comparison with the results which would he obtained from a randowl set of grain ovientations. PREVIOUS recrystallization studies have been performed on single crystals deformed in tension.1 7 The crystals used in these studies usually had random tensile-axis orientations and the extent of deformation was not a primary consideration. The present study concerns the recrystallization of single crystals with tensile-axis orientations of (Ill), (110), and (100). The emphasis of this work is on the influence of the tensile-axis orientation and the degree of deformation on both the nucleation and growth processes. The multiple-slip orientations were chosen because secondary slip or slip intersection promotes nucleation.1,5,8 These crystals recrystallize at lower strains than the crystals which are oriented for single slip. Also, the greatest variation in deformation behavior is exhibited by the multiple-slip orientations. The stress-strain curves for crystals with tensile-axis orientations of (111) are higher than the stress-strain curves for poly-crystals, and the stress-strain curves for crystals with tensile-axis orientations of (100) are lower (at large strains) than the stress-strain curves for the crystals which deform initially in single slip.g The recrystallization nuclei originated in either 1) the homogeneously* deformed matrix of the crys- tals or 2) the heavily and inhomogeneously deformed regions at saw cuts. The nuclei will be referred to hereafter as spontaneous and artificial nuclei, respectively. The two terms do not imply a difference in the nature of the nuclei; they imply simply a difference in the mode of introduction of the nuclei. During spontaneous nucleation very few (always less than ten) grains nucleate, while during artificial nucleation large numbers of grains nucleate. Only a fraction of the artificially nucleated grains penetrate very far into the deformed matrix during annealing. The grains that penetrate the farthest into the deformed matrix will be referred to as the dominant grains. EXPERIMENTAL PROCEDURE The thirty-five crystals used in this investigation were grown from the melt in milled graphite boats at a rate of 1.6 cm per hr. The crystals had dimensions of approximately 6 by 12 by 80 or 6 by 6 by 80 mm and the aluminum was of 99.992 pet purity. The as-grown crystals were annealed at 610°C for 24 hr and furnace-cooled. They were then heavily etched and electropolished in a solution of five parts methanol to one part perchloric acid. The crystal orientations were obtained by back-reflection Laue photographs and were accurate to ±2 deg. The tensile-axis orientations were (loo), (110), and (111). Two of the side faces of the (111) crystals were (110) lanes. The (110) crystals had both {100) and {110) side faces and the (100) crystals had (100) side faces. The crystals were deformed at a strain rate of 0.003 per min. Shear stress and shear strain were obtained by multiplying and dividing the tensile stress and strain, respectively, by the Schmid factor, m. For the (111) crystals m = 0.272 and for the (110) and the (100) crystals m = 0.408. The Schmid factor is effectively constant during deformation for all orientations. The deformed crystals were sawed into 1-in.-long specimens while the crystals were totally enclosed in a graphite boat. The sawing was performed very carefully in order to limit the plastic deformation to the sawed regions. The specimens were electropolished in the solution mentioned above to remove the sawed-end deformation as well as controlled amounts of surface material. A special stainless-steel grip was used to hold the specimens during the electropolishing treatment. The gripping faces were flat, with no teeth, to prevent the introduction of extraneous de-
Jan 1, 1964
-
Minerals Beneficiation - Flotation and the Gibbs Adsorption EquationBy R. Schuhmann, J. Th. Overbeek, P. L. De Bruyn
THE technique of concentrating valuable minerals from lean ores by flotation depends upon the creation of a finite contact angle at the three-phase contact, mineral-water-air. If the mineral is completely wetted by the water phase, contact angle zero, there is no tendency for air bubbles to attach themselves to the mineral. However, when the contact angle is finite, the surface free energy of the system, water-air bubble-mineral particle, can be diminished by contact between the bubble and the particle, and if not too heavy the mineral will be levitated in the froth. With a few exceptions, all clean minerals are completely wetted by pure water. Thus the art of flotation consists in adding substances to the water to make a finite contact angle with the mineral to be floated, but to leave the other minerals with a zero contact angle. The contact angle concept and experimental measurements of contact angles have played important roles in flotation research for several decades.'-" Nevertheless, there remain unanswered some basic questions as to the scientific significance of the contact angle and the nature of the processes by which flotation reagents affect contact angles. The contact angle is a complex quantity because the properties of three different phases, or rather of three different interfaces, control its magnitude. Considering the interfaces close to the region of ternary contact to be plane, the relation among the contact angle and the three binary interfacial tensions is easily derived. The condition for equilibrium among the three surface tensions, Fig. 1, or the requirement of minimum total surface free energy leads to Young's equation, Eq. I: ysa — ysl = yLA cos 0 [1] According to this equation, the contact angle has one well-defined value. Actually it is found in many experiments that the value of the contact angle depends on whether the air is replacing liquid over the solid (receding angle) or the liquid is replacing air (advancing angle). The receding angle is always the smaller of the two.4 Two explanations have been offered for this experimental fact. According to some investigators,5-8 roughness of the surface causes apparent contact angles that are different for the receding and the advancing cases although the actual local contact angle may be completely determined by Eq. 1. The other explanation involves the hypothesis that the solid-air interface after the liquid has just receded is different from the same interface when no liquid has previously covered it.1,4 Adsorption of constituents of the air or liquid might play a role here. In this discussion the difference between advancing and receding contact angle will be neglected and plane surfaces where Eq. 1 describes the situation will be considered. But there is still a fundamental obstacle to the application of Young's equation. The surface tension of the liquid (rla) can easily be determined, but the two surface tensions of the solid (rsa and ySL) cannot be measured directly. Eq. 1, however, is not without value. By contact angle measurements it is possible to establish how ysl — ysl varies with the addition of solutes to the liquid phase. Also, Eq. 1 affords a convenient starting point for calculating net forces and energy changes involved in the process of bubble-particle attachment.1,2 . If for the moment surface tension of the liquid (yLa) is considered a constant, an increase in ysa — ysL, will tend to decrease the contact angle. A decrease in ySA — ysl, corresponds to an increase of the contact angle. In cases where ySA — ySL > yLa the contact angle is zero; it will only reach finite values when ysa — ysa has been decreased below YLA. Thus on the basis of Young's equation and contact angle measurements alone, it can be learned how flotation reagents affect the difference Ysa — ysl, but no conclusions can be drawn as to the effects of reagents on the individual surface tensions ysa, and ysL, not even as to signs or directions of the surface tension changes resulting from reagent additions. A quantitative relationship between the surface tension or interfacial tension and the adsorption occurring at a surface or an interface is given by the Gibbs equation, which for constant temperature and pressure reads dy = — 2 T, du, [2] where dy is the infinitesimal change in surface tension accompanying a change in chemical potential
Jan 1, 1955
-
Industrial Minerals - Dimension Stone in MinnesotaBy G. M. Schwartz, G. A. Thiel
Dimension stone was first quarried in Minnesota in 1820 and a very active industry has grown up over the years. The main basis of the present industry is a wide variety of igneous rocks sold under the general trade name of "granite." Also of considerable importance is the Ordovician dolomite sold under the locality names, Man kato, Kasota and Winona. THE first record of the quarrying of dimension stone in Minnesota dates back to 1820 when limestone was quarried locally for part of old Fort Snel-ling. Limestone quarries were operated at Stillwater, Mankato, and Winona as early as 1854. Granite was quarried first at St. Cloud in 1868, and within a few years thousands of tons were shipped to widespread points. Rough dimension stone for large buildings furnished the first important market, but beginning in 1886 paving blocks were in demand. The largest shipment was in 1888, when 1925 cars were shipped from the St. Cloud area. Quartzite was quarried first at New Ulm in 1859 and somewhat later at Pipe-stone and elsewhere in southwestern Minnesota. The productive dolomite quarries at Kasota were opened first in 1868 and have continued as large producers of a variety of stone to the present time. At present, the industry is controlled by relatively few operators, and for that reason detailed figures on dimension stone are not released for publication. A general idea may be obtained from the data in the Minerals Yearbook for 1948. The figures for total stone produced in Minnesota are 1,804,000 tons valued at $5,090,652. Probably the largest item in the latter figure is received from dimension stone. A better idea of the situation in relation to the country as a whole may be gained by using the data for 1930 when more companies were operating in Minnesota, and complete figures were published. In that year Minnesota produced granite valued at $2,668,119 and ranked third among the states in value. Minnesota's production of granite was almost exclusively for dimension stone. In the same year Minnesota produced 300,000 tons of limestone (dolomite) valued at $840,860, and this likewise was mainly dimension stone. In finished limestone Minnesota ranked second among the states in 1930. Sandstone and minor amounts of quartzite are the only other dimension stones that have been produced in Minnesota, but the quarries are now inactive. The commercial stones of Minnesota have been described in two reports by Bowlesl and by Thiel and Dutton. The early history of quarrying in Minnesota and extensive notes on the various rocks are given by N. H. Winchell.8 Small limestone and dolomite quarries were numerous throughout the area of Paleozoic rocks in southeastern Minnesota. Early production was largely dimension stone. With the increased use of Portland cement, most of these ceased production, and today only those at Kasota and Winona remain in operation. In recent years many quarries have reopened and new ones started, but these are devoted to the production of crushed rock and agricultural lime. As the application of modern quarrying and finishing methods increased, small companies in the granite business have dropped out, and the remaining companies have modernized their plants, purchased old quarries, and opened up new ones, thus furnishing a wide variety of granites suitable for most of the customary uses. It is the purpose of this review to present notes on the geology and operations of each of the quarries now operating within the state. Granites and Related Igneous Rocks The term granite as used in this report includes granites, gneisses, diorites, gabbros, and other igneous rocks. The granites of greatest economic importance are found in three widely separated regions, see Fig. 1. 1—Central Minnesota in the region of the city of St. Cloud, 2—the upper Minnesota River valley region, 3—the northeastern portion of the state, commonly referred to as the Arrowhead region. The St. Cloud Region: The rocks of the St. Cloud region are mainly granites and related rock types such as monzonites and quartz diorites. The stones may be grouped into three major types, namely, pink granite, red granite and gray granite. Most of the pink granite occurs in the area to the southwest of St. Cloud. The rock is best described as stone with large pink crystals set in a finer grained black and white background. The minerals of the matrix occur in remarkably uniform sizes, and the pink crystals are sufficiently uniform in their dis-
Jan 1, 1953
-
Institute of Metals Division - Surface Areas of Metals and Metal Compounds: A Rapid Method of DeterminationBy S. L. Craig, C. Orr, H. G. Blocker
WITHIN recent years gas adsorption methods have been developed for measuring the surface area of finely divided materials and have become extremely valuable in research on the corrosion and the catalytic activity of metals. Rather elaborate apparatus is required, and a single determination is so time-consuming that these methods have not been utilized to the fullest extent; the methods are un-suited for most routine control work such as that encountered in powder metallurgical operations and in processes employing metal catalysts. These difficulties are largely eliminated, and surface area is reduced to a routine determination if the liquid-phase adsorption of a surface-active agent such as a fatty acid can be used. When the affinity of the fatty acid carboxyl group for the solid surface is greater than its affinity for the solvent, a unimolec-ular layer of orientated fatty acid molecules will be formed at the solid-liquid interface in a manner similar to that of a compressed fatty acid film on a water surface. The measurement of surface area is then reduced to a measurement of fatty acid adsorption. This propitious circumstance, first investigated by Harkins and Gans,¹ has been employed with somewhat inconclusive results by a number of investigators in evaluating the surface properties of metals, metal catalysts, and metal oxides. The specific surface area values for nickel and platinum catalysts, determined from the adsorption of a number of fatty acids from various solvents, were found by Smith and Fuzek² to agree with values calculated by the gas adsorption technique of Brunauer, Emmett, and Teller," he so-called BET technique. And recently Orr and Bankston4 have also reported good agreement between nitrogen gas and stearic acid adsorption results in the measurement of the surface areas of clay materials. On the other hand, Ries, Johnson, and Melik5 found only order-of-magnitude agreement between these two methods in studying supported, cobalt catalysts having specific surface areas as great as 420 sq m per g; the reason is partially attributable to the very porous nature of the materials. Greenhill,6 investigating the adsorption of long-chain, polar compounds in organic solvents on a number of metal powders, concluded that a uni-molecular layer of stearic acid was formed on exposure of the solid to the acid solution and that the presence of an oxide or another film did not alter this result. Furthermore, the adsorption process appeared to be the same whether or not the sample was degassed prior to exposure to the solution. Greenhill estimated the surface area of one of the powders he investigated from microscopic diameter measurements, and obtained a rough check with surface area evaluation. Russell and Cochran7 found moderate agreement for alumina surface area results by fatty acid and gas adsorption methods. In addition, they also found that the prolonged heating and evacuating pretreatments previously used by investigators were unnecessary. The present work, however, considerably extends these previous investigations, shows that fatty acid adsorption can be used to determine the surface area of a variety of metals and metal compounds, offers further confirmation of the correctness of gas adsorption methods, and presents a simplified technique for the determination of the metal surface area which is suitable for routine work. Experimental Technique Basically, the fatty acid adsorption method is quite simple. It consists of exposing a sample of the material of which the surface area is desired to a fatty acid solution of known concentration. By analysis of an aliquot of the solution, the concentration after adsorption has occurred may be determined. The difference between the initial quantity of acid in solution and the final quantity is that quantity of acid adsorbed by the sample. The specific surface area of the adsorbent material may be calculated from the quantity adsorbed and the weight of the sample. In agreement with the findings of others as outlined above, it was found entirely unnecessary to degas or pretreat the nonporous materials employed other than by drying them thoroughly. However, precaution was necessary so that the dried sample entered the fatty acid solution with little exposure to moisture. The effect of moisture on the interaction of stearic acid with finely divided materials has been thoroughly investigated by Hirst and Lancaster." They found the presence of water merely reduced the amount of acid adsorbed by powders such as TiO2, SiO2, Tic, and Sic. With reactive materials such as Cu, Cu2O, CuO, Zn, and ZnO, however, water was found to initiate chemical reaction. Only with ZnO was reaction observed when the solid and the solu-
Jan 1, 1953
-
Part IX – September 1968 - Papers - Convection Effects in the Capillary Reservoir Technique for Measuring Liquid Metal Diffusion CoefficientsBy J. D. Verhoeven
In the past 15 years a considerable amount of experimental and theoretical work has been done concerning the onset of convection in liquids as a result of interm1 density gradients. This work, which has been doue in many different fields, is reviewed here and extended slightly to give a rrlore quantitative understanding to the probletrz of conzection in liquid metal dlffusion experinletzts. In liquid metal systems the capillary reservoir technique is currently used, almost exclusively, to measure diffusion coefficients. In this technique it is necessary that the liquid be stagnant in order to avoid mixing by means of convection currents. Convective mixing may result from: 1) convection produced as a result of the initial immersion of the capillary; 2) convection produced in the region of the capillary mouth as the result of the stirring frequency used to avoid solute buildup in the reservoir near the capillary mouth; 3) convection produced during solidification as a result of the volume change; and 4) convection produced as a result of local density differences within the liquid in the capillary. The first three types of convection have been discussed elsewhere1-a and are only mentioned for completeness here. This work is concerned only with the fourth type of convection. Local density differences will arise within the liquid as a result of either a temperature gradient or a concentration gradient. It is usually, but not always, recognized by those employing the capillary reservoir technique that the top of the capillary should be kept slightly hotter than the bottom and that the light element should be made to migrate downward in order to avoid convection. In the past 15 years a considerable amount of work, both theoretical and experimental, has been done in a number of different fields which bear on this problem. This work is reviewed here and extended slightly in an effort to give a more quantitative understanding of the convective motion produced in vertical capillaries by local density differences. The Stokes-Navier equations for an incompressible fluid of constant viscosity in a gravitational field may be written as: %L + (v?)v = - ?£ + Wv - g£ [1] where F is the velocity, t the time, P the pressure, p the density, v the kinematic viscosity, g the gravitational acceleration, and k a unit vector in the vertical direction. A successful diffusion experiment requires the liquid to be motionless, and under this condition Eq. [I] becomes: where a is the thermal expansion coefficient [a =-(l/po)(dp/d)], a' is a solute expansion coefficient [a' = -(l/po)(dp/d)], and the solute is taken as that component which makes a' a positive number. Combining with Eq. [3] the following restriction is obtained: Since there is no fixed relation between VT and VC in a binary diffusion experiment, Eq. [5] shows that the condition of fluid motionlessness requires both the temperature gradient and the concentration gradient to be vertically directed. Given this condition of a density gradient in the vertical direction only, it is obvious that, as this vertical density gradient increases from negative to positive values, the motionless liquid will eventually become unstable and convective movement will begin. The classical treatment of this type of instability problem was given by aleih' in 1916 for the case of a thin fluid film of infinite horizontal extent; and a very comprehensive text has recently been written on the subject by handrasekhar.' It is found that convective motion does not begin until a dimensionless number involving the density gradient exceeds a certain critical value. This dimensionless number is generally referred to as the Rayleigh number, R, and it is equal to the product of the Prandtl and Grashof numbers. For the sake of clarity a distinction will be made between two types of free convection produced by internal density gradients. In the first case a density gradient is present in the vertical direction only, and, since the convection begins only after a critical gradient is attained, this case will be called threshold convection. In the second case a horizontal density gradient is present and in this case a finite convection velocity is produced by a finite density gradient so that it will be termed thresholdless convection. Some experimentalists have performed diffusion experiments using capillaries which were placed in a horizontal or inclined position in order to avoid convection. These positions do put the small capillary dimension in the vertical direction and, consequently, they would be less prone to threshold convection than the vertical position. However, if the diffusion process produced a density variation, as it usually does, it would not be theoretically possible to avoid thresh-
Jan 1, 1969
-
Producing - Equipment, Methods and Materials - Design Techniques for Chemical Fracture-Squeeze TreatmentsBy J. A. Knox, R. M. Lasater, J. M. Tinsley
Chemical squeeze treatments have been used to provide temporary relief from certain production problems. The chemical fracture-squeeze technique, combining the effects of a fracturing treatment and a squeeze operation, has been more successful than conventional squeeze operations. Knowledge derived from well stimulation and reservoir engineering research provides a means for predicting the theoretical effective life of such a treatment. Analysis of theoretical equations and concepts developed allows selection of improved treatment techniques based on specific formation conditioins. Theory used in this analysis was developed as an extension of previous electrical model studies made to establish the expected flow and pressure profiles adjacent to a fracture system. The chemical fracture squeeze technique can be utilized in the economic application of corrosion inhibitors, emulsion breakers and paraffin and scale inhibitors. Application of this technique is shown to be effective. The slow return rate of injected chemicals, controlled by the resultant flow profiles and treatment variables, permits extended periods of chemical effectiveness. Results of field treatments are given, showing that the concepts outlined above for chemical fracture-squeeze treatments are valid and that applying this technique can help alleviate many current production problems. INTRODUCTION Much progress has been made in the last 10 to 15 years in developing chemicals for use in stimulating wells, maintaining production and protecting well equipment from damage due to corrosion. Not too many years ago, some wells seemed to dry up or wear out. In many cases the wells were produced as long as possible without any attempt at maintaining productivity. Even with the advent of new and better stimulation techniques, a rapid decline in production was observed. Methods of removing and, in some instances, preventing damage have been developed. Among thosc factors responsible for uneconomical production are scale, paraffin, corrosion, bacteria, water blocks and emulsions. Soluble scale-prevention chemicals have been developed1,2 that can be placed in a formation along with frac- turing sand. As the water produces back across this bed, the solid material dissolves slowly and can provide long-term protection from scale. However, bottom-hole temperature and salinity of produced water vary widely and both these factors influence the rate of solubility. Scale inhibitor composition is also a controlling factor. Some of the solid material may be crushed, increasing the surface area exposed to water and increasing the rate at which it dissolves. Some of the material may never be contacted by water and can be lost. However, this type of treatment has been very successful in many instances and has helped maintain economical production for extended periods of time. Liquid scale inhibitors, which are more widely applicable and more stable, have been developed in recent years; however, because they are liquids, their use has been restricted to treatment down the annulus, using metering pumps to provide proper concentrations in the produced fluid. This has prevented use in wells containing packers, in dually completed wells and in gas-lift and flowing wells. Wells that operate with an open annulus may also experience severe corrosion problems due to introduction of oxygen. Paraffin inhibitors3 have been developed that can be fractured into a well as particulate solids to be slowly dissolved in the produced fluid. These materials are not usually effective in wells with a bottom-hole temperature in excess of 120F since solubility rate may be too fast if that temperature is exceeded or if aromatic content of the oils is unusually high. Corrosion inhibitors have been developed that can be fractured' into a well for long-term feedback, but development of a material with proper solubility or feed rate has been difficult. Corrosion inhibitors are available in many different forms. Liquids have been lubricated down the annulus or sticks or pellets dropped down tubing. Inhibitor squeeze treatments5 devcloped a few years ago led to development of inhibitors with particularly strong film-forming properties.6,7 This technique basically involves displacing a highly concentrated solution of the inhibitor into the formation through the tubing. Kerver and Hanson8 studied the adsorption properties of inhibitors on various types of formations. They showed that, even though the inhibitor was displaced radially into the true permeability, it could be produced back for a long period of time because of slow desorption from the rock. Methods developed for monitoring the return of these inhibitors generally have established 1 to 6 months as the effective limit before retreatment is necessary.9 Inhibitors displaced into the interstices of the formation sometimes cause emulsions that either hamper production or cause treating problems on the surface.
-
Research on Phase Relationships - Multiple Condensed Phases in the N-Pentane-Tetralin-Bitumen SystemBy J. S. Billheimer, B. H. Sage, W. N. Lacey
A restricted ternary system made up of n-pentane, tetralin, and a purified bitumen was investigated at 70, 160, and 220 °F. Most of the experimental observations were at atmospheric pressure or at 200 psi." However, some experimental measurements were carried out at a pressure of approximately 8000 psi. It was found that the purified bitumen was precipitated from its solution or dispersion in tetralin by the addition of n-pentane and that the separation occurred at lower weight fractions of n-pentane at the lower temperatures. The bitumen-tetralin solutions show some colloidal characteristics at temperatures below 160 °F when near compositions at which the bitumen separates as a solid phase. At states remote from the phase boundaries and at temperatures above 160 °F these characteristics become less evident. Under these latter circumstances the mixtures tend to follow the behavior of true solutions, particularly in regard to the approach to heterogeneous equilibrium. An increase in pressure appears to increase the solubility of bitumen in tet-ralin-n-pentane solutions. This effect is more pronounced at temperatures above 160 °F than at lower temperatures. INTRODUCTION Asphaltic phases of plastic or solid nature have appeared in numerous instances during the recovery of petroleum from underground reservoirs. Such depositions occurring underground appear to have caused adverse production histories for particular wells or zones. Because of this field experience, it is desirable to understand the factors which influence the formation or separation of the asphaltic phases from petroleum. The problem is unusually complex because the number of true components involved is very large and the details of the phase behavior encountered are difficult to ascertain experimentally. The literature relating to asphalts, asphaltines, and bitumen is voluminous and widespread.' Only those references which are directly pertinent to the work at hand are cited. The separation of an asphaltic phase, hereinafter called bitumen? from naturally occurring hydrocarbon mixtures has been the subject of several investigations.2'3'4'5'6 It has been found that as many as four phases4 may be produced from a crude oil by the solution of a natural gas and propane at a pressure of 1500 psi and a temperature of 70 °F. The separation of bitumen from such naturally occurring mixtures results in at least one liquid phase which is substantially free of high molecular weight components.³ The influence of the solution of lighter hydrocarbons on the separation of bitumen from a Santa Fe Springs crude oil has been investigated. The results indicate that in the case of the methane-crude oil system, the quantity of plastic or solid phase separated reaches a maximum between 0.14 and 0.19 weight fraction methane and then decreases until negligible at higher weight fractions of methane. Similiar behavior was encountered in the case of mixtures of ethane and crude oil. The decrease in the quantity of the solid phase with an increase in the weight fraction of the lighter component appears to result from the formation of an additional liquid phase6 in which the bitumen is relatively soluble. The formation of this additional phase probably occurs at a weight fraction of methane close to that at which the quantity of separated solid reaches a maximum. A comparison of the deposition of bitumen in the field with the separation of asphalts from lubrication oil has been made' and apparently the phenomena are similar. The phase behavior of bitumen also appears to be comparable to that of coal tar."' The chemical and physical characteristics of asphalts and bitumen have been the subject of extended investigations which have been reviewed in some detail by Katz.¹º The conclusion was reached that the dispersion of bitumen in a number of organic liquids was not entirely colloidal since it was impossible to isolate individual dispersed particles even with the electron microscope. However, the evidence appeared to indicate that at states close to phase boundaries the extent of the dispersion of the phases influenced the equilibrium to a greater extent than is encountered in many simpler systems. From earlier study of field samples it became apparent that the phase behavior of bitumen-hydrocarbon systems was unusually complex. It was difficult to characterize in detail the phase behavior involved in naturally occurring hydrocarbon systems, even after a relatively extended investigation. For this reason, the study of a somewhat simpler system which still behaved in a similar manner became desirable. Three major constituents were necessary as-follows: a bituminous solid, a liquid constituent which was a reasonably good solvent, and a constituent in which bitumen was largely insoluble. A sam-
Jan 1, 1949
-
Institute of Metals Division - Properties of Chromium Boride and Sintered Chromium BorideBy S. J. Sindeband
Prior to discussing the metallurgy of sintered chromium borides, it is pertinent to outline some of the reasoning behind this investigation and the purposes underlying the work. This study was initiated as an aproach to the ubiquitous problem of a material for service at high temperatures under oxidizing atmospheres, and it was undertaken with a view to raising the 1500°F (816°C) ceiling to 2000°F (1093°C) or better. For the reason that no small, but rather a major, lifting of the high temperature working limit was being attempted, it was felt appropriate that a completely new approach be taken to this problem. A summary of the thinking behind this approach was published recently by Schwarzkopf.' In briefest terms, it was postulated that the following requirements could be set up for a material which would have high strength at high temperatures. 1. The individual crystals of the material must exhibit high strength interatomic bonds. This automatically leads to consideration of highly refractory materials, since their high energy requirements for melting are related to the strength of their atom-to-atom bonds. 2. On the polycrystalline basis, high boundary strength, superimposed on the above consideration, would also be a necessity. Since this implies control of boundary conditions, the powder metallurgy approach would hold considerable promise. Such materials actually had been fabricated for a number of years, and the cemented carbide is the best example of these. Here a highly refractory crystal was carefully bonded and resulted in a material of extremely high strength. That this strength was maintained at high temperature is exhibited by the ability of the cemented carbide tool to hold an edge for extended periods of heavy service. Nowick and Machlin2,3 have analytically approached the problem of creep and stress-rupture properties at high temperature and developed procedures whereby these properties can be approximately predicted from the room temperature physical constants of a material. The most important single constant in the provision of high temperature strength and creep resistance is shown to be the Modulus of Rigidity. On this basis, they proposed that a fertile field for investigation would be that of materials similar to cemented carbides, which have Moduli of Rigidity that are among the highest recorded. The cemented carbide, however, does not have good corrosion resistance in oxidizing atmospheres and without protection could not be used in gas turbines and similar pieces of equipment. It would be necessary then to attempt the fabrication of an allied material based upon a hard crystal which had good corrosion resistance as well. It was upon these premises that the subject study was undertaken and at an early stage it was sponsored by the U.S. Navy, Office of Naval Research. Since then, it has been carried on under contract with this agency. Chromium boride provided a logical starting point for such research, since it was relatively hard, exhibited good corrosion resistance, and, in addition, was commercially available, since it had found application in hard-surfacing alloys with iron and nickel. That chromium boride did not provide a material that met the ultimate aim of the study results from factors which are subsequently discussed. This, however, does not detract from the basis on which the study was conceived, nor from the value of reporting the results which follow. Chromium Boride While work on chromium boride proper dates back to Moissan,4 there has been a dearth of literature on borides since 1906. Subsequent to Moissan, principal investigators of chromium boride were Tucker and Moody,5 Wede-kind and Fetzer,6 du Jassoneix,7,8,9 and Andrieux." These investigators were generally limited to studies of methods of producing chromium boride and detennining its properties. Some study, however, was devoted to the chromium-boron system by du Jassoneix,7 who did this chemically and metal-lographically. This system is not amenable to normal methods of analysis by virtue of the refractory nature of the alloys involved, and the difficulties of measurement and control of temperature conditions in their range. Dilatometric apparatus is nonexistent for operation at these temperatures. Du Jassoneix made use of apparent chemical differences between two phases observed under the microscope and reported the existence of two definite compounds, namely: Cr3B2 and CrB. These two compounds, he reported, had quite similar chemical characteristics, but were sufficiently different to enable him to separate them. The easiest method for producing chromium boride is apparently the thermite process, first applied by Wede-
Jan 1, 1950
-
Coal - Progress in Longwall MiningBy M. Schmellenkamp
By comparing two longwall operations, one begun in 1956 and the other in 1960, the author is able to demonstrate the increases in production and performance made possible by longwall mining. These achievements have been brought about by continuous development of longwall mining equipment and associated roof supports. Because of this progress, longwall mining is able to provide, under proper conditions, high production per man-shift, remarkable cost savings, dependable roof control, safe working conditions and truly continuous production. It may seem odd that the title of this paper is not simply "Longwall Mining" but instead "Progress in Longwall Mining." However, the word "Progress" definitely has its place in longwall mining. If it had not been for progress in the development of longwall mining equipment and roof supports, the longwall mining method would not be able to compete in production and performance with modem coal mining machines. The longwall mining method was practiced at the beginning of the century and there were several successful operations in coal fields in Illinois. In those early days of longwall mining, the coal was undercut by hand 2 to 2.5 ft at the bottom of the seam and packwalls were built in the gob to support the roof. The roof eventually subsided and the weight of the subsiding roof was used to ride the face and break the undercut coal. Utilizing natural weight to soften the coal face is still practiced in modern longwall mining; however, the packwalling method has been replaced by the caving method and the roof is now supported by yielding steel roof supports and forepoling steel headers. The purpose of these yielding-type roof supports is to provide a safe working area for the crew along the entire longwall face, to permit continuous mechanical mining across the prop free face, and to provide a strong resistance for the roof by forming an even breaking line at the gob for the roof to cave. Roof supports and associated forepoling headers should be kept as close as possible to the face in order to prevent a caving between face and supports, especially under friable roof. This means that the coal should be extracted in small slices, allowing only a narrow roof area to be exposed and unsupported. The coal planer with its relatively high cutting velocity of 75 ft per min provides such an extraction of coal and has proved its high performance under difficult mining conditions. Since 1951, several longwall faces in southem West Virginia and Pennsylvania which have been equipped with the coal planer and friction-type manual roof supports have been successfully operated. Compared to today's longwall mining, these longwall faces required such a large crew, primarily to handle the roof supports, that the actual high production per shift was charged with too high a labor cost, thereby decreasing the tons per man. Yet, even then the longwall faces outperformed the conventional mining system under the same conditions. In order to demonstrate the progress that has been made in the development of longwall mining, a comparison will be made between a longwall face in Arkansas which was installed in 1956 and a modemized longwall face started in 1960 in southern West Virginia. LONGWALL MINING IN 1956 The 320-ft longwall face was developed in a 32-in. thick coal seam near Greenwood, Ark. The method of mining the 320-ft coal block was the advancing system in which three entries on either side of the face were driven ahead of the advancing longwall face. The face was equipped with a coal planer and a Panzer conveyor; timbering was done with wooden timbers and cribs. The roof supports were set without any pattern. The crew to operate the planer and to handle the roof supports (timbers and cribs) consisted of 15 men per shift. During a period of approximately eight monthsof single shift operating time, the average tonnage produced in this relatively low seam amounted to about 263 tons of clean coal per shift. To show the development in the coal plow from then until now, it should be pointed out that the standard plow was used in this operation. The plow was equipped with rigid bottom bits which could not be adjusted if the plow started to climb, thereby leaving bottom coal to be recovered by pick hammers end causing delays in production. The height of the plow
Jan 1, 1963
-
Producing-Equipment, Methods and Materials - Emulsion Control Using Electrical Stability PotentialBy J. U. Messenger
A technique is described whereby the resistance of an emudian to breaking can be quantitatively determined. Produced ailfield emulsions are usually the water-in-oil type and, accordingly, do not conduct an electrical current. However, there is a threshold of A-C voltage pressure above which an emulsion will break and current will flow. The more stable an emulsion, the higher the required voltage. A Fann Emulsion Tester, modified so that low voltages (0 to 10 v) can be accurately measured, is suitable. This technique has application in evaluating the effect of a demuksifier on the stability of an emulsion. Emulsions can, in essence, be titrated with demulsifiers by adding a quuntity of demulsifier, stirring, and measuring the voltage required to cause current to flow. Any synergistic effect of two or more materials added simultaneously can be followed accurately. A demulsifier that significantly lowers the threshold voltage (from 100 to 400 v to 0 to 10 v for the emulsions in this study) is effective and can cause the enlulsion to break. A demulsifier that will bring about this drop in the threshold voltage at low concentration ir very desirable. The technique is also well adapted for rapidly screening demulsifiers. INTRODUCTION Stable emulsions in produced reservoir fluids resulting from certain well stimulation and completion procedures are common problems. The use of suitable demulsifiers can often mitigate these difficulties. At the present time, a rapid and efficient method for selecting satisfactory demulsifiers is not available. It is badly needed. Reliance is now placed primarily on trial-and-error procedures. A new test method has been developed which permits a more rapid and precise selection of demulsifiers. It involves measuring the electrical stability potential of an emulsion before and after a demulsifier has been added. This paper describes this method and shows where it should have application in field emulsion problems. NATURE OF OILFIELD EMULSIONS Two immiscible components must be present for an emuhion to form; we are concerned here with crude oil and water. An emulsifier must be present for tin emulsion to be stable. J Emulsifiers can be substances which are soluble in oil and /or mter and which lower interfacial tension. They can be colloidal solids such as bentonite, carbon, graphite, or asphalt which collect at the interface and are preferentially wet by one of these phases. Unrefined crude oils can contain both types of emulsifiers, A popular theory is that, of the two phases in an emulsion, the dispersed phase will be the one contributing most to the interfacial tension.' Usually this phase contains the least amount of emulsifier. The stability of a water-in-oil emulsion is affected by the fol1owing: l) viscosity; (2) particle or droplet size; (3) interfacial tension between the phases; (4) phase-volume ratios; and (5) the difference in density between the phases. A stable emulsion is usually characterized by high-viscosity, small droplets, low interfacial tensions, small differences in density between its phases, and slow separatian of the phases. It also has low conductivity (high electrical stability potential). Water-in-oil and oil-in-water emulsions"' are both common; however, oil field emulsions are predominantly water-in-oil emulsions. The emulsions which commonly occur during oompletion and stimulation operations contain a combination of several of the following: acids, fracturing fluids (oil, water, acid), and formation water and oil. Produced emulsions usually contain formation water and oil. Emulsions form in oil wells because oil and water are mixed together at a high rate of shear in the presence of a naturally occurring or unavoidably produced emulsifier. During the completion and stimulation of productive zones, and while formation fluids are being produced, oil and water are very often commingled. These mixtures are formed into emulsions by agitation which occurs when the fluids are pumped from the surface into the matrix of the formation or produced through the formation to the surface. Restrictions to flow (such as perforations, pumps, and chokes)".'" increase the level of agitation; tight emulsions are more likely to form under these conditions. Often an emulsified droplet is an emulsion itself.'" Therefore, emulsion-breaking problems can be quite complex. The complexity can be even greater if a third phase (gas) is included. Demulsifiers operate by tending to reverse the form of the emulsion. During this process, droplets of water become bigger, viscosity is lowered, color becomes darker, separation of the phases faster and electrical stability potential approaches zero. Any of these effects could be followed as a means of determining emulsion stability. However, electrical stability potential is the most reproducible and most easily measured parameter for following the stability of a water-in-oil emulsion.
Jan 1, 1966
-
Institute of Metals Division - Magnetism in a High-Carbon Stainless SteelBy S. M. Purdy
Under certain conditions of hot rolling and air cooling from the hot-rolling temperature, bars of a high carbon (0.40 pct C) chrome-nickel austen-itic alloy were found to show magnetism even though no ferrite or martensite could be detected by microscopic or X-yay methods. The appearance of magnetism in such alloys may come from chromium impoverishment of the austenite grains near the precipitated carbide particles. SPORADICALLY, hot-rolled bars of Silchrome 10, an exhaust valve steel, have been found to be magnetic. Because of the analysis of the alloy—0.40 pct C, 18 pct Cr, 8 pct Ni, 3 pct Si —magnetism is unexpected. Preliminary investigation showed neither martensite nor ferrite to be present; only austenite and Cr23C6. Since a literature search was fruitless, a brief study was made of the appearance of magnetism in this alloy. The only basic difference between the two heats is the nitrogen content. Permeability was measured using a Severn magnetic gauge. This instrument consists of a magnet mounted on a counterbalanced arm. A set of calibrated plugs is placed in contact with one pole of the magnet. The specimen is placed close to the other pole of the magnet. If the specimen pulls the magnet away from the plug, it has a permeability greater than that marked on the plug. This technique is swift and reproducible. Previous experience has shown that the permeabilities obtained corresponded to those obtained on a permeater with a field strength of 100 oe. Specimens from both heats were annealed at temperatures between 1700 and 2300°F. One set of specimens was water cooled and another furnace cooled. All the water-quenched specimens were non-magnetic; the furnace cooled ones were magnetic as shown in Table I with no difference being observed between the two heats. Microstructural examination of the specimens showed the expected increase in carbon solubility with increasing temperature. Carbide solution was complete at 2200°F. The specimens heated to 1900°F or below showed some carbide precipitation from the hot-rolled structure. A furnace cooled specimen from a given temperature showed less carbide out of solution than the water-quenched specimen from the next temperature below; e.g., the specimen furnace cooled from 2100°F showed less carbide out of solution than the water-quenched specimen from 2000" F. These studies indicated that the appearance of magnetism was not related to the quantity of carbon in or out of solution and it was related to precipitation at temperatures below 1700" F. A set of samples annealed and water-quenched from 2100° F was aged for 4 hr at temperatures between 1000" and 1600°F; all were non-magnetic. A second set of samples, similarly annealed, was aged 1 to 24 hr at 1200°F with the results shown in Table II. None of the latter set of specimens showed magnetism until they had been aged about 8 hr. Magnetism was quite strong after aging 24 hr. X-ray diffraction studies on several of the magnetic specimens showed that the austenite had a lattice parameter of 3.58A and that the carbide was Cr23C6. Several of these samples were electrolytically digested in 10 pct HCl in ethanol, with a current density of 0.1 amp per sq cm. None of the particles in the residue were magnetic. Accidentally, one cell was run at 1 amp per sq cm; e.g., magnetic particles were found in this residue. After careful separation, the magnetic particles were mounted on a quartz fiber and their diffraction pattern determined using a 5.73-in. Debye-Sherrer camera with CrK radiation. These particles showed a fcc structure with a lattice parameter of 3.57A. Prolonged exposure, up to 16 hr, produced no other lines on the film. The following facts seemed to be established at this time: 1) Austenite was the magnetic phase. 2) Neither ferrite nor martensite could be detected. 3) Magnetization could be produced by aging at 1200°F. One explanation of these data is that the carbide precipitation impoverishes the region immediately around the carbide particle of carbon and chromium and increases the proportion of nickel. All of these serve to increase the Curie temperature of the region around the carbide particle. If the composition change is enough, the Curie temperature will rise above room temperature. If the volume of the affected region is great enough, the magnetism will become detectable. At low aging temperatures, composition changes are great enough but the overall volume of impoverishment is quite small
Jan 1, 1962
-
Research on Phase Relationships - Multiple Condensed Phases in the N-Pentane-Tetralin-Bitumen SystemBy W. N. Lacey, B. H. Sage, J. S. Billheimer
A restricted ternary system made up of n-pentane, tetralin, and a purified bitumen was investigated at 70, 160, and 220 °F. Most of the experimental observations were at atmospheric pressure or at 200 psi." However, some experimental measurements were carried out at a pressure of approximately 8000 psi. It was found that the purified bitumen was precipitated from its solution or dispersion in tetralin by the addition of n-pentane and that the separation occurred at lower weight fractions of n-pentane at the lower temperatures. The bitumen-tetralin solutions show some colloidal characteristics at temperatures below 160 °F when near compositions at which the bitumen separates as a solid phase. At states remote from the phase boundaries and at temperatures above 160 °F these characteristics become less evident. Under these latter circumstances the mixtures tend to follow the behavior of true solutions, particularly in regard to the approach to heterogeneous equilibrium. An increase in pressure appears to increase the solubility of bitumen in tet-ralin-n-pentane solutions. This effect is more pronounced at temperatures above 160 °F than at lower temperatures. INTRODUCTION Asphaltic phases of plastic or solid nature have appeared in numerous instances during the recovery of petroleum from underground reservoirs. Such depositions occurring underground appear to have caused adverse production histories for particular wells or zones. Because of this field experience, it is desirable to understand the factors which influence the formation or separation of the asphaltic phases from petroleum. The problem is unusually complex because the number of true components involved is very large and the details of the phase behavior encountered are difficult to ascertain experimentally. The literature relating to asphalts, asphaltines, and bitumen is voluminous and widespread.' Only those references which are directly pertinent to the work at hand are cited. The separation of an asphaltic phase, hereinafter called bitumen? from naturally occurring hydrocarbon mixtures has been the subject of several investigations.2'3'4'5'6 It has been found that as many as four phases4 may be produced from a crude oil by the solution of a natural gas and propane at a pressure of 1500 psi and a temperature of 70 °F. The separation of bitumen from such naturally occurring mixtures results in at least one liquid phase which is substantially free of high molecular weight components.³ The influence of the solution of lighter hydrocarbons on the separation of bitumen from a Santa Fe Springs crude oil has been investigated. The results indicate that in the case of the methane-crude oil system, the quantity of plastic or solid phase separated reaches a maximum between 0.14 and 0.19 weight fraction methane and then decreases until negligible at higher weight fractions of methane. Similiar behavior was encountered in the case of mixtures of ethane and crude oil. The decrease in the quantity of the solid phase with an increase in the weight fraction of the lighter component appears to result from the formation of an additional liquid phase6 in which the bitumen is relatively soluble. The formation of this additional phase probably occurs at a weight fraction of methane close to that at which the quantity of separated solid reaches a maximum. A comparison of the deposition of bitumen in the field with the separation of asphalts from lubrication oil has been made' and apparently the phenomena are similar. The phase behavior of bitumen also appears to be comparable to that of coal tar."' The chemical and physical characteristics of asphalts and bitumen have been the subject of extended investigations which have been reviewed in some detail by Katz.¹º The conclusion was reached that the dispersion of bitumen in a number of organic liquids was not entirely colloidal since it was impossible to isolate individual dispersed particles even with the electron microscope. However, the evidence appeared to indicate that at states close to phase boundaries the extent of the dispersion of the phases influenced the equilibrium to a greater extent than is encountered in many simpler systems. From earlier study of field samples it became apparent that the phase behavior of bitumen-hydrocarbon systems was unusually complex. It was difficult to characterize in detail the phase behavior involved in naturally occurring hydrocarbon systems, even after a relatively extended investigation. For this reason, the study of a somewhat simpler system which still behaved in a similar manner became desirable. Three major constituents were necessary as-follows: a bituminous solid, a liquid constituent which was a reasonably good solvent, and a constituent in which bitumen was largely insoluble. A sam-
Jan 1, 1949