Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Reservoir Engineering- Laboratory Research - Waterflood Pressure Pulsing for Fractured ReservoirsBy D. L. Archer, W. W. Owens
Conventional waterflooding often is uneconomic in highly fractured reservoirs because of the gross bypassing of the reservoir oil by injected water. Imbibition and pressure pulse flooding have been used in at least one fractured reservoir in an attempt to achieve better oil recovery performance. This paper presents the results of laboratory flow tests conducted on large cores to evaluate the possible applicability of these methods (particularly pressure pulse flooding) to different types of reservoir systems. Test data were obtained on both water-wet and oil-wet systems, and on systems having two widely different levels of compressibility and flow capacity. Results indicate that pressure pulse recoveries from fractured reservoirs will likely not exceed 5 to 10 per cent pore space with maximum response achieved during the first pulse cycle. Improved recovery by this method is possible from both oil-wet and water-wet reservoirs. Comparable saturation distributions during imbibition and pressure pulse production suggest that an initial pressure pulse cycle to speed production response would not interfere with subsequent imbibition flooding in water-wet reservoirs. INTRODUCTION There is a steady increase in the number of fluid injection projects being initiated each year to improve oil and gas recovery over that obtained by primary production mechanisms. Experience gained in different geographical areas and with different recovery methods is teaching that reservoir anatomy is one of the more important factors controlling the success or failure of such projects. Fractured formations appear to be the rule rather than the exception, especially in carbonate reservoirs. Conventional methods of fluid injection, whether it is waterflooding, gas injection or miscible flooding, have limited applicability to highly fractured reservoirs because of the severe bypassing of reservoir fluids. The result is early breakthrough of the injected fluid and rapidly increasing ratios of injected to in-place fluid with an undesirable effect on return on investment. Thus, innovations to conventional methods must be developed if recovery from fractured reservoirs is to be optimized. One new method proposed for application to highly fractured reservoirs is pressure pulse waterflooding. Although pressure pulsing with gas has been suggested' and rested in at least one reservoir; the Sohio Oil Co. is generally credited with the development and testing of pressure pulsing in conjunction with waterflooding. Publications" of Sohio's waterflood operations in the Spra-berry Trend indicate that the idea for pressure pulse flooding evolved from a critical analysis of the disappointing early performance of their flood initiated in a portion of the trend in April, 1961. This flood was planned to take advtantage of imbibiltion and high pressure gradients across the reservoir matrix blocks (unfractured Mocks of the reservoir rock which are visualized to be generally surrounded 'by the fracture system) evaluated in pilot tests by the Atlantic Richfield Co.5 and Humble Oil & Refining Co.' However, the early recovery and pressure performance of this flood indicalted that high pressure gradients induced between the fracture system and the centers of the matrix blocks were forcing water into the periphery of the blocks and temporarily interfering with the counter-current flow of oil due to imbibition. Fill-up in the blocks was occurring with re-solution of the free gas phase as pressures climbed above the original reservoir bubble point. It appeared that cessation of water injection to permit the capillary forces to become dominant and that expansion of the rock and its contained fluids during pressure reduction might aid in expulsion of oil from the rock matrix into the fractures. Subsequent production performance. aflter cessation of injection, proved this hypotheslis correct. Thus, pressure pulse waterflooding was born. Pressure pulse flooding appears to have several advan'tages over imbibition type flooding in highly fractured reservoirs. First, all wells may be used for water injection which should hasten fill-up and achieve a more rapid increase in reservoir pressure. Second, because of increased injection pressures and rates, flooding gradients will force water into the reservoir matrix more rapidly than would be achieved by imbibition alone. Third, during the pressure depletion cycle of the flood, the compressibility of the system, which has been increased by resolution of the free gas phase, provides energy for the displacement of oil at a rate greater than would correspond to countercurrent flow during imbibition. Fourth, during depletion all wells may be put on production, thus contributing to higher oil withdrawal rates on a reservoir-wide basis. One possible disadvantage of pressure pulse flooding as compared to imbibition floodling, however, is that the outer periphery of each matrix block is flooded to a residual or near residual oil saturation during the Water lnjection stage. This zone of reduced permeability to oil m'ay offer greater restriction to the production of
Jan 1, 1967
-
Institute of Metals Division - Hydrogen in Cold Worked Iron-Carbon Alloys and the Mechanism of Hydrogen EmbrittlementBy E. W. Johnson, M. L. Hill
Cold working of iron-carbon alloys was found to increase greatly the hydrogen solubility and to decrease the diffusivity at temperatures up to 400° C. These effects are increasing functions of both the carbon content and the degree of deformation. The hydrogen behavior is consistent with the idea that cotd working creates "traps", which are concluded to be microcracks in which the hydrogen is chemisorbed. Hydrogen embrittlement is explained by the Petch theory of metal crack surface energy loss due to hydrogen adsorption. HYDROGEN embrittlement of steel has been studied for many years and has been the subject of an extensive literature, but the mechanism of the effect has not been completely understood. The embrittlement is unusual in that the ductility loss is not accompanied by an increase of the yield strength, being primarily a decrease of the fracture strength alone. The loss of fracture strength is usually most severe in the temperature range between 0°and 100°C. Here the solubility of hydrogen in the iron lattice at ordinary H2 pressures is extremely low while the diffusivity is still quite high. From the relationships between the ductility and the hydrogen content, test temperature and strain rate, it is apparent that the hydrogen atoms causing the ductility loss difbse to and concentrate in small regions of the metal which are especially susceptible to the initiation and propagation of fracture. This hydrogen segregation apparently occurs after plastic straining has begun. Below 0°C the ductility loss persists only at low strain rates in confirmation of the view that the embrittlement is diffusion .controlled. The tendency of the embrittlement to disappear above 100°C can be explained by the increasing lattice solubility of hydrogen with rising temperature. A common view of hydrogen embrittlement of steel is that the hydrogen initially dissolved in the metal lattice diffuses to structural discontinuities and there precipitates as H2 gas at very high pressures which assist the external stress in causing premature failure.1,2 The idea of a high H2 pressure in equilibrium with ordinary amounts of hydrogen in steel at room temperature is due to observations of hydrogen behavior in fully annealed material, for which the Sieverts' law constant relating solute concentration to H2 pressure is extremely small. Hydrogen-embrittled steel, however, is always plastically deformed to some extent, and therefore it is important that hydrogen embrittlement be explained primarily in terms of hydrogen behavior in plastically deformed material. Such an explanation is attempted in this paper. Previous studies of hydrogen in cold-worked steel have shown that both the solubility and the diffusion rate are significantly chaned when the steel is cold worked. Darken and Smith discovered that the amount of hydrogen absorbed from acid by cold-rolled steel at 35°C is many times greater than that absorbed by hot-rolled steel. They found also that the hydrogen permeability of the steel is unaffected by cold working. Keeler and Davis4 confirmed the high apparent solubility of hydrogen in cold-worked iron-carbon alloys at temperatures up to and even beyond the recrystallization temperature. They also found that this solubility increase accompanying cold work is a sensitive function of the carbon content, being absent when no carbon is present. The present experimental study was undertaken primarily to obtain an improved understanding of the behavior of hydrogen in cold-worked steel. Data were obtained on the effects of temperature, H, pressure, carbon content, and degree of cold work on the hydrogen solubility and diffusivity in iron-carbon alloys. These data have been helpful in elucidating the nature of the cold-worked steel structure as well as in providing information on the mechanism of hydrogen embrittlement of steel. EXPERIMENTAL Cylindrical specimens for hydrogen absorption and diffusion rate measurements were prepared from three iron-carbon binary alloys and a commercial SAE 1010 steel. The iron-carbon alloys were prepared by vacuum melting electrolytic iron with graphite in a magnesia crucible. The alloys were cast in vacuum as 2 1/2-in. sq ingots weighing about 20 lb each. The ingots were hot rolled (above 1900°F) to 5/8-in.-diam round bars and then cooled in air to room temperature. The resulting metallographic structure consisted of islands of fine pearlite surrounded by free ferrite. Chemical analyses of the materials are given in Table I. The 5/8-in. diam bars were turned to diameters such that cold reduction to the desired final specimen diameters would result in either 30 or 60 pct reduction in area (RA). The machined bars were then cold worked by swaging at room temperature
Jan 1, 1960
-
Part X - The 1967 Howe Memorial Lecture – Iron and Steel Division - A Convective-Diffusion Study of the Dissolution Kinetics of Type 304 Stainless Steel in the Bismuth-Tin Eutectic AlloyBy T. F. Kassner
The dissolution kinetics of type 304 stainless steel in the Bi-Sn eutectic alloy have been investigated under the well-defined hydrodynamic conditions produced by the rotating-disc sample geometry. In addition, the mutual solubilities of iron, chromium, nickel, and manganese from 304 stainless steel in the eutectic alloy were determined over the temperature range 450" to 985°C. The convective -diffusion model for mass transport from a rotating disc was used to interpret the experinlental dissolution data. The dissolution process was found to be liquid-diffusion-controlled under specific conditions of temperature and Reynolds number. Liquid penetration into the 304 stainless steel resulted in a reduction of the di,ffusion-controlled mass flux and thus precluded the calculation of the diffusion coeficients of the four components from 304 stainless steel in the Bi-Sn eutectic alloy. The convective-diffusion model for diffusional limitations of electrode reactions and mass transport at the tationssurface of a rotating disc set forth by Levich 1,2 has found wide applicability in the investigation of electrochemical and dissolution phenomena in aqueous systems. Riddiford 3 and Rosner have reviewed the model and also include numerous references on work of this nature. More recently the rotating-disc system has been applied to the investigation of hetereogeneous reactions in liquid-metal systems. Shurygin and Kryuk 5 have measured the dissolution rates of carbon discs in molten Fe-C, Fe-Si, Fe-P, and Fe-Ni alloys. Shurygin and shantarin6 also studied the dissolution kinetics of iron, molybdenum, chromium, and tungsten, and the carbides of chromium and tungsten in Fe-C solutions with a rotating-disc sample geometry. In these systems it was possible to distinguish between diffusion and reaction control mainly through experimental confirmation of the velocity dependence of the dissolution rate predicted by the model. However in the absence of dependable solubility data and the virtual lack of diffusion data in these systems, a quantitative check of the magnitude and the temperature dependence of the rate was not possible. In many instances, estimates of the activation energy for solute diffusion and the diffusion coefficient based upon the experimental dissolution data are not credible. A recent study by this author7 has resulted in a critical test of the model in a liquid-metal system. The solution rates of tantalum discs in liquid tin were measured over a wide range of temperature and velocity conditions. In addition, the solubility and diffusion coefficient of tantalum in liquid tin were determined as a function of temperature. The latter data were used with the model to predict both the magnitude and the temperature dependence of the dissolution flux. In that work it was also deemed necessary to reevaluate the solution to the convective diffusion equation to incorporate the effect of the lower range of Schmidt numbers encountered in liquid-metal systems. Good agreement between the model and the experimental dissolution data in the region of diffusion control was obtained in the Ta-Sn system. The Bi-Sn eutectic alloy is used as a seal between the reactor head and the reactor vessel in the Experimental Breeder Reactor-11. The alloy is fused periodically prior to fuel-handling operations. In that connection, it was necessary to investigate the compatibility of the liquid alloy with the type 304 stainless-steel containment material. The results of a rotating-disc study in this multicomponent system are presented. EXPERIMENTAL METHOD The 5.08-cm-diam discs were machined from 0.317-cm-thick plate. Chemical analysis information for the type 304 SS material is given in Table I. The discs were ground flat on metallographic paper and given a final polish on Linde B abrasive. A thin support rod was threaded into the disc and the region around the threads was fused under an inert gas. The support rod was fitted with a quartz protection tube and then was attached to a supporting shaft which passed through a rotary push-pull vacuum seal. The disc and supporting shafts were dynamically balanced prior to insertion into the furnace tube. The apparatus is shown schematically in Fig. 1. The 58 pct Bi-42 pct Sn eutectic alloy melts were prepared from 99.995 pct pure Bi and Sn by fusing the components in a 7-cm-ID Pyrex crucible. The system in which the melts were made was evacuated to a pressure of 1 x 10-6 Torr and back-filled with purified argon several times before melting the charge. The ingot was reweighed and placed in a slightly larger-diameter Vycor crucible used in the dissolution runs. A run was started by lowering the disc into the liquid
Jan 1, 1968
-
Institute of Metals Division - Aging of Nickel Base Aluminum AlloysBy R. O. Williams
It is shown that Ni3Al precipitates homogeneously from nickel-rich alwminum alloys as plates on the (100) planes. Prior to actual precipitation a process occurs which is believed to be one of increasing short-range order. After precipitating the Ni3Al plates enlarge through competitive growth. Discontinuous precipitation can occur simultaneously with the above processes. Recent ideas of the origin of precipitation strengthening appear adequate to explain the hardness changes. REMARKABLY little appears to be known about the precipitation process in Ni-Al alloys in spite of their technical importance. This investigation originated to supply additional information about precipitation in general, this system in particular. Information on the structures and kinetics have been obtained through the use of hardness, X-rays, microscopy, calorimetry, and resistivity on high-purity alloys. PROCEDURES Six alloys, Table I, were prepared by melting carbonyl nickel and high-purity aluminum in alumina crucibles in vacuum and casting into 1-in. graphite molds. All rods were homogenized at least once at 1300°C for 24 hr prior to swaging and this was repeated on the first three alloys after 75 pct reduction. Alloy 4 could be reduced only 10 pct at 1000°C (probably in two-phase field) prior to fracture but 1/4-in. samples quenched from 1100°C were readily reduced cold. Alloy 5 was reduced 15 pct cold but failed on the next pass while alloy 6 of essentially the same aluminum content failed inter-granularly without apparent flow up to 1000°C. The alloys were heated in hydrogen at the elevated temperatures and formed thin, coherent aluminum oxide coatings which provided excellent oxidation resistance at lower temperatures. However, freshly prepared surfaces showed considerably less resistance at 500"to 700°C in air and apparently resulted in internal oxidation. As a consequence, low-temperature agings were carried out in evacuated tubes. RESULTS The isothermal hardening behavior of these alloys at 500"and 565C is given in Figs. 1 and 2. These results were obtained from samples cold worked 75 pct, recrystallized at 1000°C (1100°C for the 7.8 pct Al) and quenched in water. This recrystallization was used to give smaller grain sizes so as to obtain more uniform hardness values and the points represent an average of five readings. The electrical resistivity was measured on 1/16-in. wires quenched from 1000°C during aging at 495°C to give Fig. 3. The energy release and its rate are given in Fig. 4 for the 6.9 pct Al alloy during aging around 500°C. Inasmuch as this was a single run, its accuracy is not known but certainly the general shape and magnitudes are correct. The method used to obtain these results is described elsewhere.' Data for the aging at 600°, 700°, and 800°C of these alloys cold worked 50 pct are given in Fig. 5. Supplementary information from microscopy and X-ray diffraction have been included to indicate recrystallization, discontinuous precipitation and the appearance of superlattice lines from the Ni3Al. The hardness of these alloys as annealed, aged, cold worked, and cold worked and aged is given vs composition in Fig. 6. Those samples which were isothermally aged, Figs. 1 and 2, were reaged at 532°C and at successively higher temperatures for the indicated times to give the data of Fig. 7. These results as well as certain others, support the idea that the level of hardness reached for temperatures above 600°C are equilibrium values more or less independent of path. This being the case, the breaks in the curves would be the complete solution of the Ni,Al. The electrical resistivity versus temperatures for some of these alloys, both aged and unaged, is given in Fig. 8 along with those data from heating slowly (10 deg per day) to high temperatures. Interesting points include the lowering of the Curie temperature (the change in slope), the lack of any indications of a solubility limit and the large temperature coefficient for the Ni3Al. A slight break for Ni3Al around 100C shows up but this is not a Curie temperature as Ni3Al is not ferromagnetic down to -190°C. Metallographically both the nickel-rich solid solution and the Ni3Al appear very much like pure nickel. Profuse twin boundaries are present both
Jan 1, 1960
-
Part X - The 1967 Howe Memorial Lecture – Iron and Steel Division - Kinetics of Chlorination of Metal SulfidesBy F. E. Pawlek, J. K. Gerlach
The chloridizing roasting of ores is applied when metal sulfides and oxides are to be converted into soluble or volatile compounds. The chlorine required is either obtained from the admixed chlorides of sodium or calcium or added in the gaseous state. In the first part of the investigations the reaction rate of the chlorides of sodium or calcium with gas mixtures of SO,-0, or SO ,-O2 ,-SO , was measured. The rate for reactions with gas mixtures SO2-O2 is ThE chloridizing roasting of ores is applied when metal sulfides and oxides are to be converted into soluble or volatile compounds. At present the process is mainly applied to produce nonferrous metals which occur in pyrite cinders in small concentrations. Thereby the nonferrous metals are converted into water-soluble, acid-soluble, or volatile compounds whereas all the iron remains as insoluble oxide. The chlorine required is either obtained from the admixed chlorides of sodium or calcium or added in the gaseous state. The reactions occurring during the roasting process can be divided into two groups: solid-solid reaction and gas-solid reaction. The reactions between solids proceed by means of solid-state diffusion and are therefore of low velocity. The heterogeneous reactions between solids and gases of the roasting atmosphere5 are high-velocity processes and determine the velocity of the chloridizing roasting. These gas-solid reactions shall be the subject of the paper presented. In order to investigate the still little-known processes which occur during the chloridizing roasting 6-' the complex reaction is split into several partial steps. First the reactions of NaCl and CaCl, with gas mixtures of SO2 and 0, have been investigated at temperatures between 500" and 600°C by measuring the weight increase of the samples. The gas mixtures used in this series of experiments had first variable compositions, then the amount of SO 2 had been increased. Furthermore the influence of Fe 2 O3 admixtures upon these reactions, the behavior of pure Fe 2 O3 with the gaseous reactants, and the chlorination of the sulfides of lead, copper, nickel, and zinc have been investigated. FORMATION OF GASEOUS CHLORINE Pyrite cinders are never completely roasted and therefore contain still a small amount of sulfide sulfur. When heated again in air, this sulfur is converted into SO,. Accordingly the formation of chlorine can first be described by the reactions: dependent on the composition of the gas phase. If more than 1 pct SO 3 is added to the roasting gas, the reaction rate is determined only by the concentrations of the SO,. In the second part the reactions between chlorine and metal sulfides are discussed. The rate of formation of gaseous chlorine is higher by me order of magnitude than is the reaction rate between ZnS and chlorine. The reaction rate of NiS and PbS lies considerably below that of ZnS. The conversion rate of both pure Fe 2 O 3 and Fe 2 O 3 containing NaCl or CaCl2 when reacting with SO2-O2, mixtures with and without SO3 portions was measured at temperatures of 500", 550°, and 600°C. The weight increase of pressings was determined by means of a spiral balanceg and the reaction rate calculated therefrom according to Eqs. [ll to [31 and [5] to [7]. The prepared samples were suspended on a platinum filament in a vertically mounted tube of mullite (ID 4 cm, length 110 cm) which could be heated by a resistance tube furnace. The platinum filament was tied to the lower end of the spiral balance. A supremax glass tube (length 70 cm) was mounted gas-tight on top of the reaction tube. The unit was sealed up at its top by a ground-in stopper which was holding the spiral balance with the sample. The spiral balance therefore hung outside the high-temperature region of the furnace. Fig. 2 shows the experimental arrangement schematically. While lowering the sample into the reaction tube pure nitrogen was flowing through the reaction zone providing a protective atmosphere. After the sample had reached the reaction temperature within approximately 1 min, the protective gas was replaced by the sulfur dioxide-oxygen reaction mixture. It took about 30 sec until the mixture filled the tube homogeneously. A Ni/NiCr thermocouple placed in the center of the furnace where the sample hung during the measure-
Jan 1, 1968
-
Institute of Metals Division - Gold-Rich Rare- Earth-Gold Solid SolutionsBy P. E. Rider, K. A. Gschneidner, O. D. McMasters
The solid solubilities for thirteen rare-earth metals in gold were determined by using the X-ray parametric method. Solubilities ranged from 0.1 at. pct for lanthanum in gold up to 8.8 at. pct for scandium in gold. The solubilities from lanthanum to gadolinium were very small and essentially constant, but a sharp increase occurred from gadolinium to scandium. The large solubilities for the heavy rare-earth metals were not expected because of the large size and electrochemical differences between rare-earth atoms and the gold atom. Contributions from first- and second-order elasticity theory plus an electronic contribution were found to reasonably account for a more favorable size factor. Electron transfer from the rare-earth metal to the gold Is thought to occur such that the resultant rare-earth and gold electronegativities are favorable for solid-solution formation. It was also found that this mutual adjustment of size and electronegutivity does not occur if the pure-metal size factors are greater than a critical value of 25 pet. The eutectic temperatures for ten systems were determined and these remained fairly constant at approximately 809 "C for the lighter lanthanide metal-gold systems until the Er-Au system was reached, at which Point the eutectic temperature successively increased reaching a maximum of 1040°C in the Sc-Au system. This rise was correlated to the size factor becoming more favorable for solid-solution formation at erbium. The valence state of ytterbium was found to change from two in the pure metal to three when ytterbium is dissolved in the gold matrix. RECENT results1 reported concerning the solubility of holmium in copper, silver, and gold, showed that the solubility of holmium in gold was quite large, 4.0 at. pct, compared with 1.6 in silver and 0.02 in copper. The small solubilities of holmium in silver and copper are quite reasonable in view of the large size difference (22.2 and 38.2 pct, respectively), large electronegativity difference (0.59 for both systems), and possible unfavorable valency factor (assuming one for silver and copper and three for holmium). The large solubility in gold, however, is unexpected because these same factors are also unfavorable for holmium and gold (22.5 pct size difference and 0.69 electronegativity difference), and because the light rare-earth metals, lanthanum, cerium, and praseodymium, have negligible solid solubilities in gold.2 In view of this unexpected behavior, it was felt that a study of the solid solubilities of most of the rare-earth metals in gold would be desirable to better understand the factors involved in the formation of solid solutions. Of the rare-earth metals added to gold in this study, only ytterbium is divalent in the pure metallic state (the other rare-earth metals are all trivalent) and many of its physical properties (such as the metallic radius, electronegativity, and so forth) are much different from those of the normal trivalent rare-earth metals.' The properties of ytterbium are such that one would expect solid-solution formation to be less favorable for ytterbium in gold than for any of the normal trivalent rare-earth metals. But chemically ytterbium is known to possess a stable trivalent state, and it is quite possible that ytterbium may alloy as a trivalent metal under certain conditions rather than as a divalent metal. Because of the dual valency nature and because so little is known about the alloying behavior of ytterbium, the gold-rich ytterbium-gold alloys are of special interest. EXPERIMENTAL PROCEDURE Materials. The gold used in this investigation had a purity of 99.99 pct with respect to nongaseous impurities. In general the rare-earth metals were prepared by reduction of the corresponding fluoride by calcium metal.3 The impurity contents of the metals used in this study are given in Table I. Preparation of Alloys. Two- or 3-g alloy samples were prepared by arc melting. The samples, with the exception of some of the Er-Au alloys, had weight losses of 0.5 pct or less. All alloy concentrations noted in this paper are nominal compositions. After arc melting, the alloys were wrapped in tantalum foil, sealed off in quartz tubing under a partial atmosphere of argon, homogenized for approximately 200 hr at 780°C, and then quenched in cold water. X-Ray Methods. The X-ray parametric method was used in determining the solubility of the rare-earth metals in gold. filings were sealed in small tantalum tubes by welding under a helium atmosphere. The tantalum tubes were then sealed in quartz tubing under a partial argon atmosphere, and annealed for times ranging from 1/2 to 3 hr (the length of time was inversely proportional to the an-
Jan 1, 1965
-
Institute of Metals Division - Effect of Temperature on Yielding in Single Crystals of the Hexagonal Ag-Al Intermetallic PhaseBy K. Tanaka, J. D. Mote, J. E. Dorn
It) an attempt to ulLcoce.lP the operative strain-rate-contl-olliy: dislocation nieclzanistns, specially oviented sizgle clystals of the intel-nzediate 1zexagonal phase containing Ag plus 33 at. pct A1 were tested in tension over a wide range of temperatures. Slip was observed to take place by the {0001} <1120> {l100} mechani fracture took place across the(i100) plane and winning occurred by the (i01Z) ?lechanisn. Basal slip exhibited a strong yield point over the -alzge from 77 to 450°K, the upper ,esolved shear st]-ess having the exceptionally high value of 10,500 psi over this entire ?-a?zge of tenzpei,atuves. The critical 9-esolved shear stress for prismatic slip decreased f7-om 48,000 psi at 4.3"K to 23,000 psi at 170°K (Region 1) follozcirg zt:lzich it decl>eased sloz&ly to 21,500 psi at 475°K (Res'on II); from 475" to 575°K (Regioz III), the c7-itical esolced shear stress dec'-eased precipitously to 2000 psi; and from 575" to 750°K (Region IV) it decreased less afi'dly to a low value of about 500 psi. Pvistintic slip in Region I was pobably controlled by the tliel-nally activated riecharzisui of nucleation and g,-ozcth of kinks in dislocations lying in Peierls potential troughs. In Region II for prismatic slip the critical 1-esolved shear stress was slzocn to be deteemined by sh0l.t-range 01-dering, Overall the forgiorz fo basal slip, 7.c.lre1-e a Strong yield-point phenorlienu ia7as observed, the critical vesolved slzea?-stress was shoztn to be determined by n conibirzation 0-f Szizuki locking and short-range-order Izavderzizg, The precipitous decrease in the critical resolved shear stress with increase in ter,/pe7-atrir-e over Region HI was tentatively ascribed to a decrease in the degree of slort-)ange 07-del;iqq (0)- clusteing) and also the effect of fluctuations the degree of o?der, It is at pgreser2t zrtzce)taitz as to 1t1hethe1- these or other possi1)le effects are also ,esponsible. fo- the data obsel-ved 172 Region IV. 1NTEREST in inter metallic compounds stems not only from their role in dispersion hardening of polyphase alloy ystems but equally from their potentialities for high strength, hardness, and stability not only at atmospheric temperatures but especially at elevated temperatures. As summarized in a re- cent symposium of the Electrochemical Society on "Mechanical Properties of Inter metallic Compound", most of the experimental evidence regarding the mechanical behavior of intermetallic compounds centers about the effect of temperature on the hardness and ductility of polycrystalline specimens. The available data reveal that the plastic behavior of intermetallic compounds might be rationalized in terms of the usual dislocation mechanisms appropriate to a solid solutions providing the additional complexities arising from crystal structure, long-range ordering, short-range ordering, and defect lattices are taken into consideration. It is apparent, however, in terms of the history on a solid solutions, that a complete detailed mechanistic rationalization of dislocation processes may not be possible until the deformation processes are studied in single crystals of intermetallic compounds. The present paper contains a preliminary report on the plastic behavior of single crystals of the hexagonal Ag-A1 intermetallic phase over a wide range of temperatures. The results confirm the thesis that single crystal data provide a most effective method of identifying operative dislocation mechanisms in intermetallic compounds. EXPERIMENTAL TECHNIQUES Several factors prompted the selection of the hexagonal Ag-A1 intermetallic phase for this preliminar investigation on the plastic properties of single crystals of intermetallic compounds: 1) This phase has a wide solubility range5 which would permit future investigations on the effect of composition and axial ratios on slip mechanisms. 2) Although it undoubtedly exhibits short-range ordering (or clustering) this intermetallic phase is free from complexities arising from long-range ordering.6 3) Since the atomic radii of aluminum and silver are practically identical, the possible complications due to Cottrell locking are minimized. 4)Whereas the dislocations on the basal planes are expected to dissociate into Shockley partials and are thus susceptible to Suzuki locking, those on the prismatic planes probably remain complete. 5) The axial ratio, being 1.61, is almost ideal, suggesting that short-range ordering may be almost spherically symmetrical. The present investigation was conducted exclusively with the hexagonal Ag-A1 alloy containing 33 at. pct Al. Preliminary investigations revealed that this alloy undergoes basal slip by the (0001)
Jan 1, 1962
-
Institute of Metals Division - Effect of Nitrogen on Sigma Formation in Cr-Ni Steels at 1200°F (650°C)By C. H. Samans, G. F. Tisinai, J. K. Stanley
The addition of nitrogen (0.10 to 0.20 pct) to Fe-Cr-Ni alloys of simulated commercial purity results in a real displacement of the u phase boundaries to higher chromium contents. The effect is small for the (Y + s)? boundary, but is pronounced for the (y + a +s)/(y + a) boundary. Although there is an indication of an exceptionally large shift of the n boundaries to higher chromium contents, especially in steels with nitrogen over 0.2 pct, the major portion of this apparent shift results from the fact that carbide and nitride precipitation cause "chromium impoverishment" of the matrices. The effect of combined additions of nitrogen and silicon to the Fe-Cr-Ni phase diagram is demonstrated also. Nitrogen can nullify the effect of about 1 pct Si in shifting the (y + o)/? phase boundary to lower values of chromium at all nickel levels from 8 to 20 pct. NItrogen can nullify this U-forming effect of about 2 pct Si at the 8 pct Ni level, but not at the 20 pct Ni level. The alloys studied were in both the cast and the wrought conditions. There are indications that the u phase forms more slowly in the cast alloys than in the wrought alloys if both are in the completely austenitic state. The presence of 6 ferrite in the cast alloys accelerates the formation of U. Cold working increases the rate of o formation in both cast and wrought alloys. THE major improvement in Fe-Cr-Ni austenitic alloys in recent years has been in the addition or removal of minor alloying elements to facilitate better control of corrosion resistance, sensitization, and heat resistance. One shortcoming of the austenitic Fe-Cr-Ni alloys, which never has been completely circumvented, is their propensity toward u formation. In the AISI-type 310 (25 pct Cr-20 pct Ni) and type 309 (25 pct Cr-12 pct Ni) steels, sufficient amounts of u phase can form, if service or treatment is in a suitable temperature range, to cause severe embrittlement. Also, there is a growing conviction that this phase may be contributory to some unexpected decreases in the corrosion resistance of certain of the 18 pct Cr-8 pct Ni-type steels. The present paper discusses the effect of nitrogen additions on the location of the (r+u)/d and the (y+a+u)/(y+a) phase boundaries in the ternary Fe-Cr-Ni system, for cast and wrought alloys of simulated commercial purity, and in similar alloys containing up to about 2.5 pct Si. The objective is to define compositional limits for alloys which will not be susceptible to u formation when used near 1200°F (650°C). An excellent review of the early studies of the u phase in the Fe-Cr-Ni system has been compiled by Foley.1 Rees, Burns, and Cook2 have determined a high purity phase diagram for the ternary system, whereas Nicholson, Samans, and Shortsleeve3 are- stricted themselves to a portion of the simulated commercial-purity phase diagram. Both groups of investigators show almost an identical position for the commercially significant (y+u)/y phase boundary. Further comparison of the work of the two groups indicates that, below the 8 pct Ni level, the commercial alloys have a decidedly greater propensity toward u formation than the high purity alloys. The two groups of workers agreed that both the AISI-type 310 (25 pct Cr-20 pct Ni) and the type 309 (25 pct Cr-12 pct Ni) steels are well within the (y+~) region and that the 18 pct Cr-8 pct Ni-type alloys straddle the U-forming phase boundaries. Nicholson et al.3 showed, in addition, that these boundaries shift toward lower chromium contents if greater than nominal amounts of silicon or molybdenum are added. The effect of nitrogen on the location of the s phase boundaries in the Fe-Cr-Ni system has not been known with any certainty. In 1942, an approach to this problem was made by Krainer and Leoville-Nowak,' but at that time they apparently were unaware of the slow rate of s formation in strain-free samples and aged their samples for insufficient times, e.g., 100 hr at 650°C (1200°F) and 800°C (1470°F). For this reason, it would be expected that their (y+ u) /y boundary would be shifted toward lower chromium contents (restricted ?-field) when equilibrium conditions were approximated more closely. Procedure for Studying the Alloys The alloys used were prepared in the following way: Heats of 200 lb each were melted in an induction furnace. A 5 lb portion of each heat was poured into a ladle containing an aluminum slug for de-
Jan 1, 1955
-
Part IV – April 1969 - Papers - Studies in Vacuum Degassing Part I: Fluid Mechanics of Bubble Growth at Reduced PressuresBy J. Szekely, G. P. Martins
A formulation is given for describing the rate of expansion of spherical bubbles rising in liquids the freeboard of which is evacuated. The computer solution of the resultant differential equations has shown that, for low freeboard pressures (less than about 5 mm Hg), on approaching the free surface the bubbles expand much less rapidly than predictable from equilibrium considerations. In other words, in this region the pressure inside the bubbles will be significantly larger than the static pressure in the liquid corresponding to the position of the bubble. These theoretical predictions were confirmed by experimental work, using two-dimensional air bubbles rising in mercury. The important consequence of these findings is that the expansion of gas bubbles in vacuum degassing operations will be a great deal less than expected from hydrostatic considerations. This would lead to a significant reduction in the available interfacial area and may explain the apparent poor efficiency of many vacuum degassing units. VACUUM degassing as a treatment for liquid steel has gained widespread popularity in recent years; the number of known installations exceeds several hundred at the present time.' Although much information is available on both the thermodynamics of the system and the overall performance of various industrial units, much less is known about the fundamental aspects of the process kinetics.2-4 The basic physical situation common to virtually all vacuum degassing operations is the interaction between gas bubbles (swarms of bubbles) and the surrounding molten metal, held in a container, the freeborad of which is at a low absolute pressure. Once formed (or introduced from an external source) the bubbles will ascend, due to the buoyancy forces, and, during this ascent, a significant increase in their volume will occur. This progressive increase in the bubble volume is due to two factors: a) the continuous reduction in the static pressure acting on the bubble during its rise; and b) mass transfer into the bubble from the surrounding molten steel. In a recent paper Richardson and Bradshaw developed equations5 for describing mass transfer into gas bubbles from molten metals at reduced pressures. However, in deriving these expressions it was assumed that the pressure inside the bubble was identical to the static pressure in the adjacent liquid. In other words, the volume of the bubble was considered to be in equilibrium with the pressure of the fluid adjacent to it. This assumption, thus their analysis presented, was thought to be reasonably accurate for most of the bubble's ascent; however, it was unlikely to be valid in the immediate vicinity of the free surface, held at a low pressure. It was pointed out in the discussion6 that the region close to the surface may be of considerable importance as both the driving force and the interfacial area available for mass transfer are at their highest value here. The ' 'anomalous" behavior of gas bubbles when approaching a free surface at low pressures was recently confirmed in a preliminary investigation by Szekely and Martins. ?1 Here high-speed motion photography was used to study air bubbles rising in a column of n-tetradecane with a freeboard pressure of 0.1 mm Hg. It was found that significant distortion of the bubbles occurred on approaching the free surface; furthermore, the expansion observed was much less than what one could expect from hydrostatic considerations, i.e., factor a previously discussed. It follows from the foregoing that a detailed study of these phenomena would be justified both from fundamental considerations and because of their potential relevance to technology. The purpose of the paper is to present a more realistic formulation for the expansion of a gas bubble approaching a low-pressure region, together with a comparison of the theoretical prediction with experimental measurement. An inert bubble will be considered in the first instance; it is thought that the understanding of the fluid mechanics is an essential first step toward the realistic formulation of the mass transfer process. This latter problem will be the subject of a subsequent publication. FORMULATION The Physical Model. Consider a spherical bubble, of initial radius Ro, rising in a fluid, having a density pL. Initially let the bubble be at a distance H from the free surface, and at a pressure Pgo, as illustrated in Fig. 1. Pgo, the initial pressure in the bubble, is given by the following equation: pgo = Po = Ptp +pLgH [ la] where Po is the pressure in the liquid corresponding to the initial position of the bubble and Ptp is the pressure at the free surface. The fluid pressure at
Jan 1, 1970
-
Reservoir Engineering - General - A Method for Predicting Pressure Maintenance Performance for Reservoirs Producing Volatile Crude OilBy R. H. Jacoby, V. J. Berry
When dry gas is injected into a reservoir containing a volatile crude oil, a significant amount of the reservoir liquid phase may become vaporized. The resultant rich gas phase, when subsequently produced, con-tributes to tank oil production. This contribution assumes greater importance, the more volatile the oil in-olved. Oil recovery may be sub-stantially greater than that predicted by conventional frontal-drive methods, which do not consider the vaporization equilibrium between the reservoir oil phase and the injected gas. A calculation method has been (developed to account for vaporiza-. tion of the reservoir liquid phase during gas-injectiorz operations, and for the tank oil production which results from this factor. Recovery performance calculations are presented for a reservoir containing a highly volatile oil. Tank oil recovery is calculated to be about twice that predicted by the use of the conven-rional frontal-drive equations. In contrastto usual pressure maintenance performance results, in which the gas-oil ratio rises at an increasing rate after gas breakthrough, the pre-dicated gas-oil ratio rises rapidly to about 12,000 scf/bhl and then rises much less rapidly. During gas inje-tion, most of the reservoir liquid phase contacted is evaporated by the dry injection gar. The gas-oil ratio during this period is dependent upon reservoir pressure. The higher the operating pressure, the lower the gas-oil ratio. The predicted behavior i., in accordance with laboratory PVT tests made to .simulate the vaporization behavior. In addition to recovery performance predictions, results of the calculation procedure include complete wellstrearn composition data of value in the design of gasoline plant facilities often used in con-rrction with gas-injection operations. INTRODUCTION In the cycling of gas-condensate reservoirs, dry gas is injected to maintain reservoir pressure during wet gas production and to thereby eliminate or reduce ultimate loss of liquids due to retrograde condensation within the reservoir. Gas injected into crude oil reservoirs has a dual function. It displaces oil to the producing wells and at the same time serves to partially or fully maintain reservoir pressure. Oil shrinkage which would occur upon pressure reduction is thereby minimized or eliminated. Accepted calculation methods are available'= for predicting recovery performance of either gas-condensate reservoirs or crude oil reservoirs which are being subjected to gas injection. In gas-condensate reservoirs, any retrograde liquid formed does not flow, and it is necessary to account only for the vaporization equilibrium between this liquid and the injected gas. Conversely, in normal crude oil reservoirs, both the oil and gas phases flow, but it has not been considered necessary to account for any vaporization of the reservoir liquid which might occur upon contact with the dry injection gas. Recently, high shrinkage reservoir fluids known as "volatile oils" have been found in increasing amounts. These oils are characterized by tank oil gravities above 4.5" API, solution gas-oil ratios above 1,000 scf/bbl, and reservoir volume factors above two. Special techniques have been devised for predicting depletion performance of reservoirs containing such oils.74.5.1; One of the characteristics of reservoirs producing volatile oils is that the reservoir gas phase carries a significant amount of oil which is recoverable as stock-tank liquid. This unusual vaporization be-havior implies that an appreciable amount of reservoir liquid would be vaporized upon contact of the oil with dry injection gas. In a gas-injection operation, tank oil recovery would he obtained not only through frontal displacement of the reservoir liquid by the injected gas, but also through production of the rich gas phase. This means that not only are improved methods needed to predict recovery of such oils from reservoirs undergoing gas injection, but it would also be expected that high oil recoveries might be obtained by such operations. When relatively dry gas is injected in to a volatile oil reservoir, phase equilibrium between the injected gas and the reservoir oil will tend to bc established. Initially the most volatile components, such as propane, the butanes and the pentanes, will account for most of the material transferred from the oil phase to the gas phase. As the partially stripped oil phase is contacted with additional dry injection gas, the heavier intermediate components, such as the hexanes, the heptanes and the octanes, will gradually transfer to the gas phase in increasing amounts. This is because the supply of lighter components in the oil phase dwindles due to the stripping action of the injected gas. This stripping action will usually continue to be effective down
-
Drilling – Equipment, Methods and Materials - A Laboratory Study of Rock Breakage by Rotary Drill...By B. E. Eakin, R. T. Ellington
An apparatus and a procedure for determining the viscosity behavior of hydrocarbons at pressures up to 10,000 psia and temperatures between 77 and 400° F are described. The equipment is suitable for measuring viscosity of either the liquid or vapor phases or the fluid above the two-phase envelope for systems exhihiting retrograde phenomena, according no the phase state of the system within these ranges of temperature and pressure. Equations are developed for calculation of viscosity from the experimental measurements, and new data for the viscosities of ethane and propane at 77° F are reported. INTRODUCTION With the advent of higher pressures and temperatures in industrial processes and deep petroleum and natural gas reservoirs, demand has increased for accurate values of physical properties of hydrocarbons under these conditions. Proportionately, more frequent occurrence of natural gas and condensate-type fluids is encountered as fluid hydrocarbons are discovered at greater depths. This increases the importance, to the reservoir engineer, of being able to predict accurately the physical properties of light hydrocarbon systems in the dense-gas and light-liquid phase states. Reliable gas viscosity data are limited primarily to measurements made on pure components near ambient temperature and at low pressures. Few investigations have been reported for high pressures, and except for methane, data on light hydrocarbons are subject to question. This is demonstrated by the large discrepancy between sets of data on the same component reported by different investigators. For mixtures in the dense gas and light liquid regions and for fluids exhibiting retrograde behavior there are very few published experimental data. Viscosity data for methane have been reported by Bicher and Katz,1 Sage and Lacey,12 Comings, et al,3 Golubev,3 and Carr,3 with good agreement among the last three sets of data. Comings, Golubev and Carr utilized capillary tube instruments for which the theory of fluid flow is well established. The theory permits calculation of the viscosity directly from the experi- mental data and dimensions of the instrument alone. Sage and Lacey, and Bicher and Katz used rolling-ball viscometers. The theory of the rolling-ball viscometer has not been completely established, and these instruments presently require calibration by use of fluids of known viscosity behavior before viscosities of test fluids can be measured. To obtain accurate data it is necessary that the rolling-ball viscometers be calibrated by use of fluids of density and viscosity similar to the test fluids, a difficult selection for the gas phase. From the methane data and experimental tests on various natural gases, Carr developed a correlation for predicting the PVT behavior of light natural gases.2,3,4 This correlation was based on data for a very limited composition range; its application to rich gases and condensate fluids is questionable. The object of this investigation is to develop an instrument which can be used to obtain viscosity data at reservoir temperatures and pressures, for rich gases, condensate-type systems above the two-phase envelope and light liquid mixtures. These data will be used in an effort to develop correlations to represent the viscosity behavior of these fluids. APPARATUS In a previous viscosity study Carr2 utilized a modified Rankine capillary viscometer configuration," Fig. 1. In this instrument the gas to be tested is forced through the capillary tube in laminar flow by motion of a mercury pellet in the fall tube, the measured displacement time being that required for the mercury slug to move between the brass timer rings. The viscometer is constructed of glass and mounted in a steel pressure vessel. The test gas pressure in the viscometer is balanced by an inert gas (usually nitrogen) in the vessel. Excellent results have been obtained with instruments of this type, with Carr2 and Comings5 reporting repro-ducibilities of 99.5 to 99.3 per cent and an estimated absolute accuracy of 99 per cent. However, these instruments have limitations which have precluded their use for liquids. The need for maintaining a balance between pressures of the test fluid and inert gas in the viscometer vessel presents operating problems, and requires charging the test fluid to the viscometer very slowly. The principle drawback to the Rankine unit is behavior of the mercury slug which provides the pressure differential across the capillary. When even trace quantities of propane or heavier hydrocarbons are present in the test gas, the mercury tends to subdivide
-
Reservoir Engineering – Laboratory Research - The Deterioration of Miscible Zones in Porous MediaBy Francis R. Conley, John A. Sievert, John N. Dew
A brief review is presented of the past performance of a number of large, thin, highly permeable reservoirs with low dips in the Bolivar Coastal fields of Venezuela. The performance of these reservoirs indicates that the fluids are segregated vertically within the sand section by gravity. With this assumption, equations are developed which describe the performance under pressure maintenance operations. Methods of solving these equations and results of simple example calculations are presented. Example calculations indicate that under pressure maintenance conditions injected gas tends to {tow preferentially along the top of the sands and that encroaching water has a tendency to flow preferentially along the bottom. The expected performance of segregated fluids is discussed and compared with that of fluids which are uniformly distributed in any sand section. INTRODUCTION The field performance of a number of reservoirs described herein indicates that the fluids are segregated vertically within the sand section by the force of gravity. Thus, it was felt that any method used to predict the future performance of these reservoirs should consider the effects of segregation in the sand sections. A study of the available information on some of the reservoirs suggests that increased recoveries may be expected if the reservoir pressure is maintained by either crestal gas injection or flank water injection. To predict future performance of reservoirs under pressure maintenance operations, a method of analysis was needed which would account for segregation of fluids in the sand sections. Several methods of analysis have been developed to take into account the segregation of fluids in the reservoir as a whole1,3 To our knowledge no method considers segregation of the fluids within sand sections in the manner indicated by the past performance of several reservoirs in the Mara-caibo Basin. This paper outlines part of the work done in studying some of these reservoirs and contains a description of their performance characteristics. The analysis presented is restricted to pressure maintenance conditions, since space limitations prevent a full discus- sion of the development of the mathematical relations and the various methods of solving them. Only a sketch of the development of the mathematical relations is given. The various methods of solving these relations are pointed out, but the actual determination of solutions to various problems are omitted except for one example. It is felt that these results may aid in the study of reservoirs outside the Maracaibo Basin. Some concepts on which the present analysis is based are outlined by D. N. Dietz. However, the analysis presented herein includes several factors not considered by Dietz: (1) variations in permeability and in the cross section, (2) various shapes of the cross section, and (3) the production of fluids. Also, the mathematical development presented by Dietz differs considerably from our corresponding analysis. RESERVOIR CHARACTERISTICS The reservoirs under consideration, large and thin, with low dip and high permeability, are large to the extent that they contain from 0.5 to over four billion bbl of oil initially in place. The section thicknesses vary from 100 to 400 ft and the lengths from 10,000 to 40,000 ft. Thus, a length-wise cross section of the producing formation appears to be long and thin. The dip angles vary from 0 to 6 degrees and the average permeabilities vary from 0.5 to over three darcies. The reservoirs contain from 20 to 50 per cent shale inter-laminated with the productive sands. Most shale breaks within the major sands do not correlate from one well to the next, and correlation is often difficult, even between wells drilled from the same location. However, it is often possible to correlate the shale breaks between major sands for some distance. Herein we are concerned with the performance of reservoirs containing oil of gravities over 20" API. Past reservoir performance indicates good pressure communication and, in cases where pressure sinks have developed, large amounts of fluid migration have occurred. Few of the reservoirs have had initial gas caps, but also, few have been found to be highly under-saturated. Due to gravity segregation, secondary gas caps usually form before the pressure has been reduced more than 25 per cent of its initial value. The effect of gravity has not only been apparent on a reservoir-wide basis, but has also caused segregation of the reservoir fluids in productive sections. Proof of this is found from the results of selective well tests, workovers, and electric and various other types of logs. Evidence that
-
Part X – October 1968 - Papers - Low-Temperature Heat Capacity and High-Temperature Enthalpy of CaMg2By J. F. Smith, J. E. Davison
The heat capacity of CaMg2 was measured over the temperature interval, 4.8° to 287°K, by the technique of low-temperature adiabatic calorimetry. Heat content measurements were performed with a drop calorimeter over the temperature interval, 273" to 673°K. From these data the thermodynamic functions, (FT - H0)/T, ST - So, and & - Ho, were evaluated. A third-Law calculation of the standard entropy of formation of CaMg2 yields a value of -0.25 * 0.06 cal per (°K g-atom) , and the free-energy function derived from this study when combined with existing equilibria data yields a value for the standard enthalpy of formation which is in agreement with direct calorimetric enthalpy measurements. The accompanying paper' shows that the enthalpy of formation of CaMg2 has been determined with good precision by three different calorimetric techniques.'-= TWO independent determinations of the Gibbs free energy of formation of CaMg2 have also been made; both determinations were based on vapor pressure measurements, being in one case hydrogen vapor pressures over ternary Ca-Mg-H alloys4 and in the other case magnesium vapor pressures over binary Ca-Mg alloys.5 The present determination of heat capacity of CaMg2 below room temperature and of the heat content of CaMg2 above room temperature was undertaken to provide supplementary data. These data are useful in their own right but can in addition be used to evaluate an entropy of formation for CaMg2 which, because of the interrelation of free energy, enthalpy, and entropy, can be used as a check of the self-consistency of the composite of the presently available information. LOW-TEMPERATURE HEAT CAPACITY The heat capacity of CaMg2 was measured over the temperature interval 4.87° to 286.64°K in an adiabatic calorimeter. The physical details of the calorimeter and the experimental procedure for measuring the heat capacity of a specimen have been adequately described by Gerstein et a1.6 The source and purity of the calcium and magnesium are described together with the methods of sample preparation and chemical analyses in the accompanying paper.' Results of chemical analyses of the material which was used in the present investigation are shown in Table I. These analyses show that, on the basis of the published phase diagram,7 the heat capacity sample contained a slight excess of a calcium while the heat content sample contained a slight excess of magnesium. However, in both cases the excess was small, and X-ray diffraction patterns showed reflections which were without exception attributable to CaMg2. The sample which was used for heat capacity measurements weighed 69 g while the sample container and addenda weighed 132 g. The sample was in the form of annealed powder, 50 to 60 mesh, and was sealed into the sample container under 0.1 atm of helium. Copper fins inside the sample container facilitated thermal equilibrium of the powdered Sample. Time intervals of the order of 10 min were required for thermal equilibration, and such times are normal for this calorimeter regardless of the form of the sample. The observed heat capacities were corrected for the small excess of a calcium through use of the heat capacity values tabulated by Hultgren et a1.8 The corrected heat capacities are tabulated as a function of temperature in Table II. The free-energy function and the absolute entropy of CaMg2, which were calculated from the experimental heat capacity data, are listed in Table 111. A smooth curve was fitted to a plot of the experimental values of the heat capacity and in only two instances above 30°K did the plotted points deviate from the curve by more than 0.2 pct. Below 10°K the deviation of several of the points was as much as 50 pct. These large percentage deviations were attributed to the small value of the heat capacity and to the low sensitivity of the platinum resistance thermometer in this temperature range. The deviations in the region of 10°to 30°K were less than 5 pct. Although the percentage deviations of some of the low-temperature measurements are large, the actual value of these deviations is small since the magnitude of the heat capacity in that temperature range is small. The error in the value of the third-law entropy at 298.15°K was estimated to be less than 0.01 cal per (°K g-atom). A value of -0.25 ±0.06 cal per (°K g-atom) was obtained for the standard entropy of formation at 298.15°K from the relation:
Jan 1, 1969
-
Institute of Metals Division - The Zirconium-Rich Corners of the Ternary Systems Zr-Co-O and Zr-Ni-OBy J. W. Downey, M. V. Nevitt
The phase boundaries for the 950" isothermal sections in the ternary systems Zr-Co-0 and `Zr-Ni-0 have been determined for the composition range from 50 to 100 at. pct Zr. The two systems show very similar phase relations, having no extensive solid solution phase fields. Each contains a ternary phase. These phases are apparently isostructural, but their structure has not been determined. Some aspects of the phase relations are discussed in terms of the alloying behavior of transition metals. THE work described in this paper is the outgrowth of a recent study of the occurrence of phases having the Ti2Ni-type structure (structure-type E9,) in certain ternary systems involving Ti, Zr, or Hf with another transition metal and O.", In the Zr-CO-0 and Zr-Ni-0 systems no Ti2Ni-type phases were found to occur. However, there are several interesting aspects of the phase relations in the two systems which have significance from the point of view of the alloying behavior of transition metals. The results of this investigation may also have some importance in studies of the oxidation of Zr-Co and Zr-Ni alloys. In both the Zr-Co-0 and Zr-Ni-0 systems only the 950" isothermal sections were investigated and, as a further restriction, the study was limited to the composition range from 50 to 100 at. pct Zr. A tentative Zr-Co binary diagram has been published by Larsen, Williams, and Pehin. In the composition range pertinent to the present work they report a eutectic at 980°C and 75.9 at. pct Zr, the products of which are the terminal solid solution based on /3 Zr and the compound Zr2Co, and a eutectic at 1080" and 64.8 at. pct Zr whose products are Zr,Co and ZrCo. The solid solution based on /3 Zr is shown to decompose eutectoidally at 826°C into a Zr and Zr2Co. The limits of solubility of Co in a and /3 Zr have not been established. The structure of Zr2Co is not identified in the publication just cited. Dwight has reported that ZrCo has the CsC1-type strcture. The Zr-rich portion of the Zr-Ni diagram has been determined by Hayes, Roberson, and Paasche." The phase relations are very similar to those of the ZrCo system. A eutectic reaction whose products are /3 Zr containing 2.9 at. pct Ni and Zr,Ni occurs at 961°c, and a eutectic between Zr,Ni and ZrNi is found at 985". The solid solution based on /3 Zr decomposes eutectoidally at 808°C. The solubility of Ni in a Zr is not known accurately but is believed to be very small. Smith, Kirkpatrick, Bailey, and Williams7 have found that Zr2Ni has a tetragonal structure of the A1,Cu-type and that ZrNi is orthorhombic. Domagala and McPherson8 have published a constitution diagram for the system Zr-ZrO,. At 950" their diagram indicates that the solid solution of 0 in 0 Zr is stable from 0 to 0.5 at. pct while the phase field of 0 in a Zr extends from 6 to 29 at. pct. These solubility limits were adopted in the present study and no binary Zr-0 alloys were made. No previous data on the phase diagrams of the ternary systems are known to exist. EXPERIMENTAL PROCEDURE The experimental details involved in the preparation of alloys in this laboratory by arc melting have been described in several previous papers"3 and they will not be repeated here. Information concerning the purity of the metals used is given in Table I. Oxygen was added in the form of reagent grade ZrO,. All of the cast specimens in both alloy systems were annealed in air-atmosphere tube furnaces at 950 3' for 72 hr and water quenched. The specimens were protected from oxidation by wrapping them in Mo foil and sealing them in quartz tubes that had been evacuated at room temperature to a pressure of 1 x 10B mm of Hg. The phase boundaries were determined by metallography, and identification of the phases was accomplished primarily by X-ray diffraction methods which employed a powder camera having a diameter of 114.6 mm. The diffraction techniques which are in use in this laboratory have been previously described.' An etchant that proved satisfactory for most of the alloys consisted of 5 pct by vol of AgNO
Jan 1, 1962
-
Part VI – June 1969 - Papers - The Effects of Solute Additions on the Stacking Fault Energy of a Nickel-Base SuperalloyBy P. S. Kotval, O. H. Nestor
Stacking fault energy measurements of nickel-base alloys have been mainly confined to binary and ternary systems. In this paper, the stacking fault energy has been measured by the rolling texture method in a series of ten alloys which comprise successive additions of Cr, Mo, Fe, and C to pure nickel, eventually resulting in an alloy of the composition of Hastelloy alloy X. The alloys studied here are single-phase, solid solutions with the exception of two alloys in which some undissolved particles of "primary" carbide have been retained. It is found that successive additions of chromium, molybdenum, and iron all lower the stacking fault energy, with iron having only a minor effect. The stacking fault energy is found to increase when carbon is added in solid solution. The results from the rolling texture measurements are correlated with thin foil observations of dislocation substructures in these alloys. In a recent paper' it was pointed out that the dislocation substructure of various superalloy matrices could be classified into three broad categories based on 'high', 'medium', and 'low' stacking fault energy. It has also been demonstrated2 that the dislocation substructure in each of these categories has a well defined role in the nucleation of strengthening precipitates which is different from the role played by the dislocation substructure in other categories. Thus, it becomes desirable to understand the influence of various solute elements on the stacking fault energy and hence on the dislocation substructure of the matrix, before any further development of superalloys by mi-crostructural predesign can be undertaken. Recently, Beeston and France have studied the influence of increasing solute additions on the stacking fault energy of a series of binary nickel-base alloys relevant to the Nimonic series using the rolling texture method, and have then estimated the effect of a given alloy addition in five commercial Nimonic alloys. However, comparison with stacking fault energy data from other investigations''5 suggests that the influence of a given solute element in a nickel-base binary system is not necessarily the same in a ternary or more complex superalloy system. Accordingly, the present work was undertaken to study the effect of successive addition of solute elements to pure nickel, the final composition being the nominal composition of Hastelloy X. The rolling texture method of stacking fault energy measurement was used since it can be used for the whole range of stacking fault energy values and does not have the disadvantage of, say, the Node method which is only applicable to low values of stacking fault energy. In addition, the rolling texture method provides a means of determining the stacking fault energy which is statistically more significant than that provided by other methods. EXPERIMENTAL TECHNIQUES Button heats of alloys of the compositions shown in Table I were prepared. Each button was remelted not less than four times. After a slight deformation (approximately 5 pct) all alloys were homogenized at 2200°F except alloys, H . I, and J. Alloys H and I were solution heat treated at 2150°F and alloy J at 2282OF. The buttons were cold worked by rolling, using "end-to-end" passes and intermediate anneals at the homogenization temperatures mentioned above. After each annealing treatment the samples were rapidly water quenched to avoid any precipitation. In alloys F and I, however, a few particles of "primary" carbides were retained even after the homogenization treatments at the temperatures mentioned above. Part of the solution heat treated material was cold worked to 0.04-in.-thick sheet and the penultimate reduction was -50 pct of deformation as recommended by Dillamore et al. All annealing was carried out in vacuo within sealed quartz capsules. Some of the material from each alloy was rolled down further to 0.004 in. strip for thin foil transmission electron microscopy specimens. Specimens of this strip were annealed at the homogenization temperature for 1 hr and then strained 7 pct by rolling at room temperature. Thin foils were prepared from the strip specimens by the 'window" technique using an Ethanol-Perchloric acid electrolyte at 32°F and a voltage of 22 v. Stainless steel cathodes were employed. All transmission electron microscopy was performed in a JEM-7 electron microscope using an accelerating voltage of 100 kv. Specimens from the 0.04 in. sheet which had been rolled -60 pct in the final pass were electropolished to remove the surface layers to a depth of approximately 0.002 in. Rolling texture pole figures for all the alloys were determined using a Schulz ring and nickel filtered CuKa radiation at 50 kv and 20 ma. The texture parameter Io/(lo + I,,) (where Io is the
Jan 1, 1970
-
Part I – January 1969 - Papers - Kinetics of Oxygen Evolution at a Platinum Anode in Lithium Silicate MeltsBy A. Ghosh, T. B. King
The kinetics of the discharge reaction: 20'- (in silicate melt) = O,(g) + 4e- at a platinum anode in lithium silicate melts have been studied al 1350°C by galvanostatic methods. Plots of the sleady-state overpotential, q, as a function of the logarithm of the current density, i, showed injlections and were linear only at high current densities. The value of the overpotential was influenced by bubbling gas through the electrolyte. The ocer potential was also studied as a function of time. The rise and decay of overpotential were very slow processes. At low current densities transport is the likely rate-controlling process but at high current densities passivation of the electrode, Presumably by an oxide film on the surface, seems to be a contributory functor. IT is well-established that molten silicates behave as electrolytes'5 and, except in a few cases,6 conduction is entirely ionic. Moreover, it is supposed that a possible, and perhaps predominant, mechanism for phase boundary reactions between metals and slags is similar to that in corrosion whereby anodic and cathodic processes occur at unrelated sites, the metal serving to conduct electrons.1'8 Thus electrochemical studies of some slag-metal reactions would seem to be a useful way to diagnose the rate-controlling steps in the overall reaction. The electrochemical method is, in principle, a better diagnostic tool than the direct chemical method for the following reasons: 1) The partial electrochemical reactions, which are simpler than the overall reaction, may be studied individually. 2) The rate of reaction can be controlled at will and independently of the concentrations of reactants. 3) Fast reactions can be studied by relaxation methods.' Esin and his coworkers5'10"12 have pioneered such studies in silicates and have deviloped some ingenious techniques. Not all of their findings, however. can be accepted without a good deal of further work. In this investigation, the kinetics of the oxygen discharge reaction: 202- (in silicate melt) = Oz(g) + 4e- [I] at a platinum electrode were studied by both steady-state and transient galvanostatic techniques. Interest in this reaction was first developed as a result of the findings of Fulton and chipman13 that the reduction of silica, in a silicate slag, by carbon, dissolved in liquid iron, is a very slow reaction. Subsequent work, for example, by Rawling and ~lliott,'~ has demonstrated that the reaction under these conditions must be slow, because the rate is limited by diffusion of oxygen in the iron to the metal-crucible phase boundary at which a CO bubble may be nucleated. Further work by Tarassof,'~ in which the reduction of silica by aluminum dissolved in copper was studied, has shown that under these conditions, where carbon monoxide evolution is not involved, control of the reaction rate resides in diffusion of silica in the slag phase. However, there is no practical way of inducing sufficient convection in the system to make it clear that the phase boundary reaction is indeed fast. The overall reaction of silica reduction involves the discharge of silicon ions at cathodic sites and oxygen ions at anodic sites. In the examples cited, the discharged ions are dissolved in a liquid metal. In the present study of oxygen ion discharge, gaseous oxygen may be evolved at high current densities or oxygen may simply dissolve, possibly as oxygen molecules, in the silicate at very low current densities. The discharge of an oxygen ion at an anode must, in silicates less basic than the orthosilicate composition, be preceded by a reaction in the vicinity of the electrode, such as: which makes oxygen ions available. Platinum was chosen as the working electrode since it is comparatively inert to oxygen and is, therefore, expected to come rapidly into equilibrium with the electrolyte and with gaseous oxygen. Minenko, Petrov, and Ivanova16 have measured the electromotive force at a platinum electrode in molten silicates as a function of the partial pressure of oxygen in the atmosphere, the concentration of oxide ions in the melt, and the temperature. They found platinum to behave as a reversible oxygen electrode. At two different oxygen pressures, Po2 (I) and Pq (11). the electromotive force is given by: where F is the Faraday constant, equal to 23,060 cal per v equivalent, indicating that the electrode reaction is as written in Eq. [I.]. Platinum has been similarly used in molten silicates by other inve~ti~ators. "'~~ In this investigation platinum was used only as an anode, since a current deposits other elements on its surface and changes its characteristics.
Jan 1, 1970
-
Part II – February 1969 - Papers - The Interaction of Crystal Boundaries with Second- Phase ParticlesBy J. Lewis, J. Harper, M. F. Ashby
A grain boundary in a metal interacts with second-phase particles, which exert a pinning force (first estimated by Zener) on the boundary opposing its motion. We have computed the shape of boundaries which interact with more or less spherical second-phase particles and have constructed a soap-film model to reproduce the shape of the boundary surface. An important result is that measurement of this shape allows the pressure, or driving force, on the boundary to be measured. We hare applied this technique to grain boundaries in two alloys and hate measured the pinning force exerted by single second-phase jwrticles on the boundaries. It is in good agreement with Zener's estimate. J\. boundary between two grains, or two bulk phases, interacts with small inclusions or particles of a second phase, whether they are gas or solid. This interaction means that the boundary, forced to migrate by a difference in free energy between the material of the two grains or phases which it separates, exerts a force on a particle which it touches, tending to drag it forward. (The movement of inclusions through metals under the influence of this force, has, in fact, been observed. 1-3) Equally, the particle can be thought of as exerting a pinning force on the boundary, tending to hold it back. Zener (in a celebrated private communication4) first realized that this interaction, and the resulting pinning force, existed. His calculation of its magnitude was crude but adequate: a spherical inclusion of radius r blanks off an area nr2 of the boundary on which it sits; since the boundary has an energy of rMM x per unit area, the blanlung-olf decreases the energy of the system by MM: this energy is returned to the system if the boundary is pulled free from the inclusion— a forward movement of the boundary by a distance r will do this—so that the maximum pinning force is Trrym.M- A similar argument can be made for inter-phase boundaries. The nature of the particle itself did not enter this, or two subsequent treatments.5,6 When it is considered, tic leifthe energyoftheb a) The boundary may enter and pass through the particle if the energy of the boundary is lower within the particle than in the matrix. Fig. l(r/). Certain coherent precipitate particles behave like this. h) More usually, the boundary will bend round the particle, enveloping and bypassing it. Fig. l(b). In doing so, it changes the structure and energy of the interface between the particle and its matrix. This means that the boundary does not touch the particle surface at right angles, as early treatments assumed,5'9 but at some angle a which depends on this change in surface energy of the particle, and can be calculated from the equilibrium of surface tensions. Most precipitate particles and inclusions behave like this. Gas bubbles or liquid drops can be regarded as belonging to either group. The progress of bypassing is conveniently measured by the angle shown in Fig. 1. When the nature of the particle is ignored, its maximum pinning force is exerted when - 45 deg. When it is considered, this critical value of is found to depend on a and thus on the nature of the particle. The maximum pinning force lies between nryMM and 2jtjMM (Appendix 1). not very different from Zener's result. In reality, a boundary between crystals has a specific energy and tension which varies with the orientation of the boundary. Furthermore, recent experiments7 indicate that such a boundary is not atom-ically smooth, but has steps on it: migration of the boundary corresponds to the sweeping of these steps across the boundary surface, like the Frank model of crystal growth from the vapor. This means that the interaction of a boundary with particles should really be considered in terms of the way in which particles hinder the movement of these steps. To suppose a grain boundary or interphase boundary to be smooth, and to ignore the variation of its energy with orientation, is to liken it to a soap film. The advantage of this soap film approximation, which we have used throughout this paper, is that interaction energies and boundary shapes can be calculated easily. We have done this by numerical computation and by using a soap film model, and have compared the results with grain boundaries in an aluminum-based and a copper-based alloy. It turns out that the shape of the boundary which bulges between particles allows the pressure an it to be calculated; that is, the local driving force an the boundary can be measured. This has allowed us to check the Zener relationship experimentally.
Jan 1, 1970
-
Institute of Metals Division - The Solubility and Precipitation of Nitrides in Alpha-Iron Containing ManganeseBy J. F. Enrietto
Internal friction measurements were used to determine the effect of manganese on the solubility and precipitation kinetics of nitrogen. Manganese, in concentrations up to 0.75 pct, has little effect on the solubility at temperatures above 250°C. On the other hand, at Concentrations as low as 0.15 pct, manganese inhibits the formation of iron nitrides, especially Fe4N, even though it may not form a precipitnte itself. The precipitation and solubility of carbides and nitrides have been extensively investigated in the pure Fe-C and Fe-N systems.1-3 In recent years, some effort has been ispent in studying the influence of substitutional alloying elements on the behavior of carbon and nitrogen in ferrite.4 -7 In particular Fast, Dijkstra, and Sladek have investigated the effect of 0.5 pct Mn on the internal friction and hardness during the quench aging of Fe-Mn-N alloys.', ' They found that at low temperatures (below 200°C) the presence of 0.5 pct Mn greatly retarded quench aging. For example, after 66 hr at 200°C very little precipitation had taken place in the iron alloyed with manganese, whereas precipitation was complete after a few minutes in a pure Fe-N alloy. The effect of varying the manganese content and the details of the precipitation process were not mentioned in these papers. Fast' postulated that manganese causes a local lowering of the free energy of the lattice with a resulting segregation of nitrogen atoms to these low energy sites. The segregated nitrogen atoms are bound so tightly to the manganese atoms that they cannot form a precipitate. The internal friction measurements of Dijkstra and Sladek tended to confirm the concept of segregation of nitrogen around manganese atoms, and the increase in free energy on transferring a mole of nitrogen atoms from a segregated to a "normal" lattice site was computed to be - 2800 cal. Dijkstra and Sladek9 distinguished between two types of precipitates: ortho, a nitride of appreciably different manganese content than that of the matrix, and para, a nitride with a manganese content essentially that of the matrix. With each type of precipitate a solubility, again designated ortho or para, can be associated. Since the internal friction maximum in alloys which were aged several hours at 600" C dropped almost to zero, Dijkstra and Sladek9 concluded that the ortho solubility must be very low. The effect of temperature on the ortho and para solubilities has no1: been investigated. There are obviously several gaps in our knowledge concerning the influence of manganese on the behavior of nitrogen in a-iron. It was the purpose of the experiments described in this paper to determine the following: 1) The ortho and para solubilities of nitrogen as a function of temperature. 2) The details of the precipitation process at elevated temperatures. 3) The effect of varying the manganese concentration on the above phenomena. EXPERIMENTAL PROCEDURE Internal friction is conveniently employed in studying the precipitation of nitrides and/or carbides from a -iron because it is one of the few parameters, perhaps the only one, which is not affected by the presence of the precipitate itself. For this reason, internal friction techniques were heavily relied upon in the present experiment. A) Preparat of -. All specimens were prepared from electrolytic iron and electrolytic manganese. Alloys containing 0.15, 0.33, 0.65, and 0.75 wt pct Mn were vacuum melted and cast into 25 lb ingots. After being hot rolled to 3/4 in. bars, the ingots were swaged and drawn to 0.030 in. wires. The wires wen? decarburized and denitrided by annealing at 750° C for 17 hr in flowing hydrogen saturated with warer vapor. To obtain a medium grain size, - 0.1 mm, the wires were then heated to 945oC, allowed to soak for 1 hr, furnace cooled to 750°C, and water quenched. Subsequent internal friction measurements showed that this procedure reduced the nitrogen and carbon concentrations of the alloys to less than 0.001 wt pct. The wires were nitrided by sealing them in pyrex capsules containing anhydrous ammonia and annealing them for 24 hr at 580°C, the nitrogen being retained in solid solution by quenching the capsule into water. Immediately after quenching, the wires were stored in liquid nitrogen to prevent any precipitation of nitrides. By varying the pressure of ammonia in the capsule, it was possible to produce any desired nitrogen concentration. B) Internal Friction. The internal Friction measurements were made on a torsional pendulum of the Ke type,'' a frequency OF 1. or 2 cps being used. For
Jan 1, 1962
-
Reservoir Engineering Equipment - Transient Pressure Distributions in Fluid Displacement ProgramsBy O. C. Baptist
The Umiat oil field is in Naval Petroleum Reserve No. 4 between the Brooks Range and Arctic Ocean in far-northern Alaska. The Umiat anticline has been tested by 11 wells, six of which produced oil ; however, [lie productive capacity and recoverable reserves of the field are subject to considerable speculation because of unusual reservoir conditions and because several wells appear to have been .seriously damaged during drilling and completion. Oil is produced at depths of 275 to 1,100 ft; the depth to the bottom of the permanently frozen zone varies from about 800 to 1,100 ft, .so that most of the oil reserves are in the permafrost Reservoir pressures are estimated to range from 50 to 350 psi, increasing with depth, and the small amount of gas dissolved in the oil is the major source of energy for production. Laboratory tests were made on cores under simulated permafrost conditions to estimate oil recoverable by solution-gas expansion from low saturation pressures. The cores were also tested for clay content and susceptibility to productivity impaiment by swelling clays and increased water. content if exposed to fresh water. The results indicate that oil can be produced fronz reservoir rocks in the permafrost and that substantial amounts of oil can be produced from depletion-drive reservoirs by a pre.s.r~lrr drop of as little as 100 psi below the saturation pressure. Freezing of formation water reduces oil productivity much more than that due to increased oil viscosity: Failure of we1ls drilled with rtuter-base mud to produce is attributed to freezing of water in the urea immediately surrounding the wellbore. Swelling clays apparently contributed very little to the plugging of the wells. INTRODUCTION Naval Petroleum Reserve No. 4 lies between the Brooks Range and the Arctic Ocean in northern Alaska. The Umiat oil field is located in the southeastern part of the Reserve and is about 180 miles southeast of Point Barrow (the only permanent settlement in the Reserve and the primary supply point for drilling of the wells at Umiat). Eleven wells were drilled for the U. S. Department of the Navy, Office of Naval Petroleum and Oil Shale Reserves, between 1944 and 1953 to test the oil and gas possibilities of the Umiat anticline. Six of these wells produced oil in varying quantities and the best one pumped about 400 B/D.' Estimates of recoverable oil range from 30 to 100 million bbl. The main oil-producing zones are two marine sandstone beds in the Grandstand formation of Cretaceous age: these are referred to as the upper and lower sands. Good oil shows were found throughout the sand settions in the first three wells drilled on the structure, but the highest rate of oil production obtained on any 01 the many tests was about 24 BOPD. These first wells were drilled with conventional rotary methods using water-base mud; later wells were drilled either with cablc tools using brine or rotary tools using oil or oil-base mud. These experiments were successful as is shown by comparing the oil production from Well No. 2 with that from No. 5. These two wells are only 200 ft apart and are located at about the same elevation on the structure. Well No. 2. drilled with a rotary rig using water-base mud, was abandoned as a dry hole after all formation tests were negative. Well No. 5. drilled with cable tools and reamed with a rotary using oil, pumped 400 BOPD which was the maximum capacity of the pump and less than the capacity of the well. These field results indicated that the producing sands were extremely "water sensitive" and it was assumed that the cause of this sensitivity was the presence of swelling clays in the sands. Because of the very unusual reservoir conditions and the difficulties encountered in completing oil wells in the permafrost. the Navy asked the U. S. Bureau of Mines to make laboratory studies under simulated permafrost conditions to assist them in estimating the production potential of the field and the recoverable reserves. These tests were designed to determine the cause of the plugging of wells in the permafrost and to test oil recovery from frozen sand by solution-gas expansion with the oil gas-saturated at very low pressures. EXPERIMENTAL METHODS AND PROCEDURES Samples Analyzed Core samples were analyzed that represent the lower sand in Umiat Well No. 7, the upper sand in No. 3. and both the upper and lower sands in No. 9. These sands should be productive in all of the wells because of their location on the structure. Core samples from
-
Iron and Steel Division - Investigation of Bessemer Converter Smoke ControlBy A. R. Orban, R. B. Engdahl, J. D. Hummell
The initial phase of a research program on smoke abatement from Bessemer converters is described. In work sponsored by the American Iron and Steel Institute, a 300-lb experimental Bessemer converter was assembled to simulate blowing conditions in a commercial vessel. Measurements of smoke and dust were also made in the field on a 30-ton commercial vessel. During normal blows the dust loading from the laboratory converter averaged 0.51 lb per 1000 lb of exhaust gas. This was similar to the exhaust-gas loading of a commercial vessel. The addition of hydrogen to the blast gas of the laboratory converter caused a decided decrease in smoke density. Smoke was also reduced markedly when methane or ammonia was added instead of hydrogen. The research is continuing on a bench-scale investigation of the mechanism of smoke formation in the converter process. DURING the past 2 years, on behalf of the American Iron and Steel Institute, Battelle has been conducting a research program on the control of emissions from pneumatic steelmaking processes. The objective of the research program is to discover a practical method for reducing to an unobjectionable level the emission of smoke and dust from Bessemer converters. PRELIMINARY INVESTIGATION Although conceivably some new collecting technique may be devised which would be economically practicable for cleaning Bessemer gases, no such system based on presently known principles seems feasible because of the extremely large volume of high-temperature gases involved. Hence, the research is being directed toward prevention of smoke formation at the source. A thorough review was first made of former work to determine the present status of the cleaning of converter gases. No published work was found on work done in the United States on collecting smoke or on preventing its formation in the bottom-blown, acid-Bessemer converter. In Europe, however, a number of investigations have been made on the basic-Bessemer converter. Kosmider, Neuhaus, and Kratzenstein1 conducted tests on a 20-ton converter to obtain characteristic data for dust removal and the utilization of waste heat. They concluded that because of the submicron size of the dust, special equipment would be necessary to clean the exhaust gases. Dehne2 conducted a large number of smoke-abatement experiments at Duisburg-Huckingen in a 36-ton Thomas converter discharging into a stack. A number of wet-scrubbing and dry collectors were tried unsuccessfully. A waste-heat boiler and electrostatic collector with necessary gas precleaners was felt to be the best solution for this particular plant. Meldau and Laufhutte3 determined that the particle size was all below 1 µ in the waste gas of a bottom-blown converter. Sel'kin and zadalya4 describe the use of oxygen-water mixtures injected into a molten bath in refining open-hearth steel. They claim that with use of oxygen-water mixtures the amount of dust formed was reduced between 33.3 and 20 pct of its previous level, and emission of brown smoke almost ceased. Pepperhoff and passov5 attempted unsuccessfully to find some correlation between the optical absorption of the smoke, the flame emission, and the composition of the metal in a Thomas converter in order to determine automatically the metallurgical state in the melt. In a recent U. S. Patent (NO. 2,831,762)' issued to two Austrian inventors, Kemmetmuller and Rinesch, the inventors claim a process for treating the exhaust gases from a converter. By their method the inventors claim that the exhaust gases from the converter are cooled immediately after leaving the converter to a degree that oxidation of the metal vapors and metal particles to form Fe2O3 is inhibited in the presence of surplus oxygen. Gledhill, Carnall, and sargent7 report on cleaning the gases from oxygen lancing of pig iron in the ladle. They claim the Pease-Anthony Venturi scrubber removed 99.5 + pct of the smoke, thereby reducing the concentration to 0.1 to 0.2 grain per cu ft, which resulted in a colorless stack gas after the evaporation of water. Fischer and wahlster8 developed a small basic converter and compared the metallurgical behavior of the blow with that of a large converter. Later work by Kosmider, Neuhaus, and Hardt9 on the use of steam for reduction of smoke from an oxygen-enriched converter confirmed that the cooling effect of steam is detrimental to production. From review of all of the published information on the subject, it was concluded that a practical solution to the smoke-elimination problem had not been found. Accordingly, it was deemed desirable to investigate the feasibility of preventing the initial formation of smoke in the converter.
Jan 1, 1961