Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Primary Blasting Practice At ChuquicamataBy Glenn S. Wyman
CHUQUICAMATA, located in northern Chile in the Province of Antofagasta, is on the western slope of the Andes at an elevation of 9500 ft. Because of its position on the eastern edge of the Atacama Desert, the climate is extremely arid with practically no precipitation, either rain or snow. All primary blasting in the open-pit mine at Chuquicamata is done by the churn drill, blasthole method. Since 1915; when the first tonnages of importance were removed from the open pit, there have been many changes in the blasting practice, but no clear-cut rules of method and procedure have been devised for application to the mine as a whole. One general fact stands out: both the ore and waste rock at Chuquicamata are difficult to break satisfactorily for the most efficient operation of power shovels. Numerous experiments have been made in an effort to improve the breakage and thereby increase the shovel efficiency. Holes of different diameter have been drilled, the length of toe and spacing of holes have been varied, and several types of explosives have been used. Early blasting was done by the tunnel method. The banks were high, generally 30 m, requiring the use of large charges of black powder, detonated by electric blasting caps: Large tonnages were broken at comparatively low cost, but the method left such a large proportion of oversize material for secondary blasting that satisfactory shovel operation was practically impossible: Railroad-type steam and electric shovels then in service proved unequal to the task of efficiently handling the large proportion of oversize material produced. The clean-up of high banks proved to be dangerous and expensive as large quantities of explosive were consumed in dressing these banks, and from time to time the shovels were damaged by rock slides. As early as 1923 the high benches were divided, and a standard height of 12 m was selected for the development of new benches. The recently acquired Bucyrus-Erie 550-B shovel, with its greater radius of operation compared to the Bucyrus-Erie 320-B formerly used for bench development, allowed the bench height to be increased to 16 m. Churn drill, blasthole shooting proved to be successful, and tunnel blasts were limited to certain locations where development existed or natural ground conditions made the method more attractive than the use of churn-drill holes. Liquid oxygen explosive and black powder were used along with dynamite of various grades in blasthole loading up to early 1937. Liquid oxygen and black powder were discontinued because they were more difficult to handle due to their sensitivity to fire or sparks in the extremely dry climate. At present ammonium nitrate dynamite is favored because of its superior handling qualities and its adaptability to the dry condition found in 90 pct of the mine. In wet holes, which are found only in the lowest bench of the pit and account for the remaining 10 pct of the ground to be broken, Nitramon in 8x24-in. cans, or ammonium nitrate dynamite packed in 8x24-in. paper cartridges, is being used. This latter explosive, which is protected by a special antiwetting agent that makes the cartridges resistant to water for about 24 hr, currently is considered the best available for the work and is preferred over Nitramon. Early churn drill hole shots detonated' by electric blasting caps, one in each hole, gave trouble because of misfires caused by the improper balance of resistance in the electrical circuits. Primarily, it was of vital importance to effect an absolute balance of resistance in these circuits, the undertaking and completion of which invariably caused delays in the shooting schedule. Misfires resulting from the improper balance of electrical circuits, or from any other cause, were extremely hazardous, since holes had to be unloaded or fired by the insertion of another detonator. The advent of cordeau, later followed by primacord, corrected this particular difficulty and therefore reduced the possibility of missed holes. After much experimentation, the blasting practice evolved into single row, multihole shots, with the holes spaced 4.5 to 5 m center to center in a row 7.5 to 8 m back from the toe. Such shots were fired from either end .by electric blasting caps attached to the main trunk lines of cordeau or primacord. The detonating speed of cordeau or primacord gave the practical effect of firing all holes instantaneously. Double row and multirow blasts, fired instantaneously with cordeau or primacord, proved to be unsatisfactory in the type of rock found at Chuquica-
Jan 1, 1952
-
Institute of Metals Division - The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part I – A Thermochemical StudyBy J. Alfred Berger, O. M. Katz
The Zv-Hf-H ternary system was studied between 500° and 900°C at pressures less than 1 atm of hydrogen gas between 1 and 60 at. pct H. A new and unique microgravimentric apparatus was used. Cizanges of slope on pressure-hydrogen composition isothernis delineated phase boundaries. These boundaries separatecl the three regions, a, 0, and y—so designated to correspond to the regions of the Zr-H binary system—from the multiphased areas between them. A eutectoidal decomposition was found with the ß region phase or phases decornposing into a lamellar product on quenching to rool ter,zperatuve. Reproducible decomposition-pressure hysteresis occilrved lnainly at lower hydrogen cornpositions and at lower temperatures across multiplzase vegions between a and 0 and a and y. Tire effects of hqfniur7z on the hydriding charactevistics of zirconiurrz weYe as follows: 1) stabilization of the a and y vegions while destabilizing the 0 region; 2) a/?preciable elevation of the decomposition pressrkres in the multiphase region between the a and /3 field; 3) ~nouenzent of the eutectoid reaction to high te~nperatures; 4) reduction in the total qiiantity of hydrogen absorbed under one atmospheve of Hz p7-essure; and 5) introduction of a split deconzposilion at the eiitectoiclal poinl in pa?? of the ternavy. Assuru~ptions based on an ir-2terstitial vandonl-solulion rtioclel 0.f hydrogen in metals slzowed that the bindit~g energy between solute sites prednnzinatecl at low /i?!dvogen concentrations. However, at high hydrogen contents the entropy was the predorninatlt factor in determining the stability of the Zr-Hf-H al1o.s. This was interpreted to mean a scarcity of filrtlzer itltevslilinl solute sites caused by hydrogen-hydvogen intet-actions in the metal lattice. INTEREST in the reaction of hydrogen with metals has increased in the past few years for the following reasons: 1) the formation or use of high hydrogen potential environments in nuclear reactors; 2) the reaction of hydrogen with alloys in nuclear reactors with the accompanying deleterious effects on the mechanical and corrosion properties; 3) the theoretical implications of thermodynamic data on the theory and rules of alloy formation in the metal-hydrogen systems; 4) the use of hydrogen-containing fuels in rocket engines; 5) the need for a process of making fine metal powders of high-melting reactive metals; and 6) the beneficial impregnation of superconducting alloys with hydrogen. In nuclear pressurized-water reactors, the problem exists of limiting the hydrogen pickup of zirconium alloys which are utilized as fuel cladding, heat shields, and support members. In general, zirconium alloys have good mechanical and corrosion-resistant properties in high-temperature water. However, hydrogen is absorbed from the corrosion reaction between metal and water, greatly accelerating the formation of the corrosion product ZrOz as well as mechanically embrittling the underlying metal. In addition, recent observations1 at zirconium to hafnium welds showed that secondary elements in zirconium can have an appreciable, and somewhat unexpected, effect on hydrogen absorption. This paper lists the thermochemical data in the range 500" to 900°C for the equilibrium reaction of four high-purity Zr-Hf alloys with hydrogen. Phase boundaries and thermodynamic functions are determined while the structural data will be presented in a future paper. In general, the Zr-Hf-H system approximates the well-known, eutectoidal, Zr-H diagram2,3 with modifications introduced through the behavior of hafnium.4,5 The Hf-H system,' published while this work was in progress, provided a consistent trend with the Zr-Hf-H data. PREPARATION OF Zr-Hf ALLOYS Table I presents a complete flow chart of the preparation procedure. The zirconium and hafnium crystal bars were completely immersed in high-purity kerosene and slowly cut into thin wafers. Wafers were then cold-sheared into approximately 1-g pieces, thoroughly cleaned, weighed, and inserted into the furnace. The alloys, B-2, B-4, B-6, and B-8, were then nonconsumable arc-melted under 500 mm of purified argon. Additional purification of the argon was accomplished by melting a large titanium button each time an alloy was re-melted or a different alloy melted. Each alloy button, which weighed 25 g, was remelted four times in an approach to complete homogeneity. Material losses were less than 0.02 wt pct. Alloy buttons were alternately cold-rolled and vacuum-annealed into 10- and 20-mil sheets. Table I1 gives the composition of the four alloys used. Very little elemental segregation existed be-
Jan 1, 1965
-
Extractive Metallurgy Division - Free Energy of Formation of CdSbBy Richard J. Borg
The vapor pressure of Cd in equilibrium with CdSb in the presence of excess Sb has been measured using the Knudsen effusion method over the temperature range 276° to 379°C. The free energy of formation of CdSb is given by AF° = -1.58 + 1.53 x l0-4 T, kcal per mole. The enthalpy and entropy are obtained from the temperature coefficient of the .free energy. CADMIUM and antimony have almost imperceptible mutual solid solubility but form a single stable intermediate phase, CdSb. This phase, according to Han-sen,l extends from about 49.5 at. pct to 50 at. pct Cd at 300°C and has the orthorhombic structure. The free energy of formation of CdSb can be calculated from the vapor pressure of Cd for compositions which contain less than 49 at. pct Cd. The appropriate reaction and formulae are given by Eqs. [I] and [2]- CdSb(s, ~ Cd(g)-, +Sb(s) [1] Since Sb is in its standard state, Af - N,,AF'-,, = NcdRT In a,, = NcdRT InP/PO [2] In Eq. [2], P, is the vapor pressure of Cd in equilibrium with the alloy, and Po is the vapor pressure in equilibrium with pure solid Cd. It is implicit in this calculation that the free energy only slightly changes within the narrow limits of the single phase field. Thus, the value obtained from the antimony-rich boundary is truly representative of the stoi-chiometric compound. The results reported herein are obtained from a mixture near the eutectic composition, i.e. 59 at. pct Sb. Only two previous investigations" of the free energy of formation of CdSb have been made. Both relied upon the electromotive force method, and measurements were made over relatively narrow temperature ranges which strongly influences the reliability of the values of AH and aS. EXPERIMENTAL The eutectic composition is prepared by fusing reagent grade Cd and Sb by induction heating in vacuo with the starting materials held in a graphite crucible having a threaded lid. The material obtained from the initial melt is pulverized, sealed under high vacuum in a pyrex capsule, and annealed at 420°C for two weeks. X-ray analysis"gives the following lattize parameters: a = 6.436A, b = 8.230& and c = 8.498A using Cu Ka radiation with A = 1.54056. These values are in fair agreement with the result? previously reported by Al~in:4 i.e. a = 6.471A, b = 8.253A, and c = 8.526A. Vapor pressures are measured using an apparatus which has been described elsewhere,= however, with a single important modification. Knudsen effusion cells are made of pyrex with knife-edged orifices made by grinding the convex surface of the lid on #600 emery paper. Photographs taken at known magnifications using a Leitz metallograph enable the determination of the orifice area. Numerous calibration measurements of the vapor pressure of pure Cd give close agreement with values previously reported5,= thus indicating that no significant error can be ascribed to the substitution of glass cells for metal cells used in previous work. Because the vapor pressure of Cd is reliably established and because it is difficult to obtain Clausing factors for the glass cells, the final values used for the orifice areas are calculated from the calibration measurements of the vapor pressure of pure Cd. Effusion runs are started in an atmosphere of purified helium which is quickly evacuated as soon as the cell attains thermal equilibrium. Less than one minute is necessary to obtain high vacuum after evacuation begins, and the temperature seldom varies by more than 0.5oC from the value obtained prior to pumping out the helium. RESULTS The results of this investigation along with other pertinent data are tabulated in Table I. Fig. 2 is the familiar graph of log P against T-10 K. At least mean squares analysis of the data presented in Table I yields the following equation: log1DJP = 8.790 - 6472 x T"1 [3] The deviations of the individual measurements from the values calculated with Eq. 131 are given in column six of Table I; the average deviation is 4.0% of the calculated value. Although the partial molal properties change significantly with composition within the single phase region, the integral thermodynamic value should remain relatively constant. Hence the results of the following calculations, which use the data obtained for the eutectic composition, are probably representative of the equi-atomic compound. Eq. [4] describes the vapor pressure of pure Cd as a function of temperature and may be combined with Eq. [3] to
Jan 1, 1962
-
Institute of Metals Division - Easy Glide and Grain Boundary Effects in Polycrystalline AluminumBy R. L. Fleischer, W. F. Hosford
Tensile data for coarse grained aluminum Polycrystals suggest that the "grain size" effect is not due to dislocations piled up at grain boundaries but rather is primarily a relative size effect due to surface crystals being weaker and less confined. STUDIES directed at interpreting hardening of poly-crystalline metals normally identify their strain hardening properties with those in some particular type of single crystal.1"4 The recent recognition in face centered-cubic metals of a nearly linear stage with rapid hardening occuring at comparable rates for both polycrystals and single crystals, suggested that the same process or processes determine both cases and hence that there exists some justification for the use of single crystals to understand polycrystals. Further evidence for the above view may be found by an approach initiated by Chalmers:5 By using bicrystals of controlled orientation it is possible to begin to assemble a polycrystal and also to study grain boundary effects in detail. In this way it has been found that a single grain boundary affects easy glide but not the subsequent stage II hardening.6 This result suggests that a sensitive way to observe grain boundary effects in polycrystals would be to vary grain size and measure easy glide. As will be seen, easy glide is only possible for coarse-grained samples, and hence the results will serve to fill in the gap in measurements between single crystals and bicrystals on one hand and fine-grained polycrystals on the other. One problem inherent in comparing single crystals with polycrystals is the uncertainty as to what slip systems are acting in a polycrystal. To compare the two types of samples, rates of shear hardeninn---L. on the acting -planes are needed. and these may be computed only if it is known what particular systems are active. The acting systems were examined for a coarse-grained polycrystal and it will be shown that the systems supplying the preponderance of slip can be determined with little ambiguity. EXPERIMENTAL PROCEDURE Twelve samples of aluminum were prepared by chill casting into a heated graphite mold, followed by annealing at 635° ± 5°C for 24 hr with an 8-hr fur- nace cool, and finally either etching7 or electropol-ishing.' The samples, with a 7 to 10 cm length between grips and 4.4 by 6.6 mm in cross section, were deformed at a strain rate of about 3 10 -3 . per min in a tensile device which has been described elsewhere.5 The composition was reported by Alcoa as 99.992 pct Al, 0.004 pct Zn, 0.002 pct Cu, 0.001 pct Fe, and 0.001 pct Si; nine samples were deformed while immersed in liquid helium and three in air at room temperature. The stress-strain curve for one of the samples (P-1) deformed at 4.2 "K has been reported previ~usl~.~ This sample was selected for determination of active slip systems. Eighteen of the crystals were examined by optical microscopy to determine the angles of slip line traces and by X-ray back reflection to determine orientation. By this means the slip planes were determined and the resolved shear stress factors for possible slip systems could be computed. Finally each sample was sectioned so that after etching, the number of crystals could be counted for each of ten newly exposed surfaces. The average of these ten values will be termed n, the number of crystals per cross section. Values of 11, varied from 1.9 (nearly bamboo structure) to 12.7. Sketches of typical cross sections appear in Fig. 1. RESULTS AND DISCUSSION: SLIP SYSTEMS 1) Determination of Acting Slip Planes—The stress axis orientation and operative slip planes in eighteen crystals of sample P-1, as determined by slip line traces and crystal orientation, are summarized in Fig. 2. For one of the crystals two planes had a common trace. so that the traces alone did not distinguish which plane or planes were slipping. However it was found that the stress resolving factor for the primary system was 0.386, .while that for the most stressed system in the other plane (indicated bv the dotted arrow) is 0.138. It will be assumed tgerefore that only the primary plane acted. Since the orientations were determined after extending the samples 4 pct, the stress axes may be rotated from their original value by as much as 2 deg in some cases. It is interesting to note that in five crystals only one slip plane acted, in eight two acted, and in five three planes were observed—an average of two slip
Jan 1, 1962
-
PART XI – November 1967 - Papers - Diffusion of Palladium, Silver, Cadmium, Indium, and Tin in AluminumBy R. P. Agarwala, M. S. Anand
Using residual activity technique, the diffusion of palladium, silver, cadmium, indium, and tin in alunzinum has been studied in the temperature range of 400" to 630°C. The diffusivities (in units of square centimeters per second) have been expressed as: IMPURITY diffusion in aluminum,1-9 silverand lead5 for cases of low solid solubility of the impurity in the host metal has yielded frequency factors in the range of l0-6 to l0-9 sq cm per sec whereas the activation energy is practically half the self-diffusion activation energy value. From the observed values of frequency factor, activation energy, and entropy of activation, it has been suggested' that these solutes are not diffusing by vacancy or interstitial mechanisms but by a mechanism which should be consistent with such low values of the diffusion parameters (Do and Q). However in spite of extensive work on these types of systems, the mechanism of diffusion is still not well understood. The present investigation on the diffusion of palladium, silver, cadmium, indium, and tin in aluminum has been carried out to throw further light on the diffusion mechanism in systems, where the solid solubility is very low (except for the case of silver). The results are discussed on the basis of solid solubility and the structural changes involved owing to the presence of the solutes in aluminum solid solution. An attempt has also been made to apply the existing theories of charge5-8 and size8 difference between the solute and the solvent. EXPERIMENTAL PROCEDURE Specimens (1/2 in. diam by 3/8 in. high) were machined out of pure aluminum (99.995 wt pct) rod obtained from Johnson Mattheys. They were sealed under vacuum in quartz tubes and annealed at 620° C for several hours; the grains thus developed were sufficiently large to eliminate the possibility of diffusion along the grain boundaries. The flat ends were prepared carefully after polishing as described previously,10 Radioactive nitrates of cadmium, indium, and tin and chloride of palladium containing, respectively, cd115, 1n114, sn113, and pd103 were dissolved in distilled water and mixed with 30 pct acetone. By means of a micropipet a drop of this solution was placed on a smoothly polished and lightly etched surface of the specimen. Due care was taken to see that the solution spread uniformly on the surface of specimen without trickling down its sides. Radioactive silver was elec-trodeposited using a AgCN-KCN bath. The amount of sample deposited in all the cases was not more than 0.1 µ thick. The samples were then sealed in quartz tubes in vacuum. The cadmium samples were sealed in a purified argon atmosphere to avoid evaporation. The samples were then diffusion-annealed. The temperature of annealing varied between 400° and 630°C and was controlled to ±5°C. On heating to -400°C,the deposits of cadmium, indium, and tin, which were of the order of 0.1 p in thickness, were converted to their respective oxides. The contribution of oxygen present in the lattice of aluminum due to these oxides has been calculated and found to be less than 10 ppm in all cases. Oxide method has already been used by other workers11'12 in diffusion studies without any controversy on the issue. However, in some of these investigations, metallic deposition was also tried. The diffusivities calculated from these measurements were found to agree very well with the diffusivities obtained by using the oxide method. Thus it is assumed that the measured diffusivities represent true diffusion coefficients. Since palladous chloride decomposes at about 500°C, the deposited samples which were to be diffusion-annealed below 500°C were heated in vacuum for a very short time at 500°C to allow the decomposition of palladous chloride to palladium metal. Time taken in decomposition of nitrates to oxides and chloride to metal was negligibly small as compared to the period of the diffusion anneals. The residual activity technique13 was used to study the diffusion profiles where thin layers from the specimen surface were removed by grinding it parallel to a flat surface on a 600-grade carborundum paper. The specimen was washed, dried, and weighed, the differ -ence of the weight being the measure of the thickness of the layer removed. After each such abrasion and weighing, the total residual activity on the surface of the specimens was measured by counting 0.656, 0.94,
Jan 1, 1968
-
Part VI – June 1968 - Papers - The Determination of Water Vapor in Tough Pitch Copper Wire Bar by an Aluminum Reduction TechniqueBy John C. Gifford, Charles L. Thomas
A unique and reproducible method is presented for the determination of water vapor in tough pitch wire bar copper. The procedure involves reduction of the water vapor with molten aluminum to form hydrogen, which is subsequently measured by mass spectroscopy. Average water vapor pressures within the porosities of the wire bar samples are calculated. Correlation is to exist between the specific gravities of the samples and their measured water vapor contents. The method should find application as a very sensitive means of detecting hydrogen embrittlement in copper. The nature and quantity of gases evolved and retained during the horizontal casting of tough pitch wire bar copper have long been of interest to the metallurgist. Considerable work has been done at this laboratory on the determination of these gases. The work has involved not only qualitative but also quantitative analysis, so as to provide a basis for a total accounting of the porosity which is associated with the cast product. From a knowledge of the gas-forming elements within the copper, and the practice of melting and protecting it with a reducing flame followed by contact with a charcoal cover in the casting ladle, the gases which one might expect to find in the pores of the cast product are sulfur dioxide, carbon monoxide, carbon dioxide, hydrogen, and water vapor. Hydrogen sulfide, nitrogen, and hydrocarbons would be other possibilities; however vacuum fusion-mass spectroscopy techniques employed at this laboratory have shown that no hydrogen sulfide and only traces of nitrogen and methane are present. It is highly improbable according to phillipsl that any sulfur dioxide could be evolved in wire bar copper with 10 ppm or less sulfur under normal freezing conditions. Mackay and smith2 have noted that porosity due to sulfur dioxide only becomes noticeable at concentrations above 20 ppm S. Investigation of carbon monoxide and carbon dioxide by a variation in the method of Bever and Floe showed that these two gases could only account, at 760 mm and 1064°C (Cu-Cua eutectic temperature), for a maximum of about 25 pct of the total porosity in a wire bar having a specific gravity of 8.40 g per cu cm. phillips' has noted that no normal furnace atmosphere is ever sufficiently rich in hydrogen to cause porosity in copper from hydrogen alone. In addition, using a hot vacuum extraction technique for hydrogen,4 values have never been observed in excess of 10 ppb in tough pitch wire bar. On the basis of the preceding considerations of gases in tough pitch wire bar, only water vapor is left to account for the major portion of the porosity. Direct determinations of water vapor are virtually impossible at low concentrations by any presently known technique, due to adsorption and desorption within the walls of the apparatus used.5 The present investigation deals with a method for the determination of water vapor by an indirect procedure, using molten aluminum as a reducing agent to form hydrogen according to the reaction: 2A1 + 3H2O — A12O3 + 3H2 The evolved hydrogen can then be measured quantitatively by mass spectroscopy. EXPERIMENTAL A 10-g piece of 99.9+ pct A1 was charged into a porous alumina crucible (Laboratory Equipment Co., No. 528-30). Fig. 1 shows the crucible in place at the bottom of an 8-in.-long quartz thimble. A funnel tube with two l1/8-in.-OD sidearms extending at a 90-deg angle from each other was attached to the top of the thimble. One of the sidearms was joined to the inlet system of the mass spectrometer (Consolidated Electrodynamics Corp. Model 21-620A) via a mercury diffusion pump situated between two dry-ice traps. The copper samples were placed in the other sidearm, followed by a glass-enclosed magnetic stirring bar for pushing the samples into the crucible. All ground joints were sealed with vacuum-grade wax. The entire system was evacuated and the aluminum was heated with a T-2.5 Lepel High Frequency Induction Furnace for 21/2 hr at a temperature visually estimated to be 900°C. The temperature was then lowered and the hydrogen was monitored on the mass spectrometer until it was given off at a constant rate of about 4 to 5 1 per hr. This rate corresponded to a slope of 2 to 3 divisions per min on the X3 attenuation of a 10-mv recorder at a hydrogen sensitivity of approximately 100 divisions per 1. A micromanometer (Consolidated Electrodynamics Corp. Model 23-105)
Jan 1, 1969
-
Institute of Metals Division - Hardness Anisotropy and Slip in WC CrystalsBy David A. Thomas, David N. French
The lrnrdness of WC crystals has been measured with the Knoop indenter at loads of 100 and 500 g on the (0001) and (1070) planes. The hardness as tneasitred on the basal plane is 2400 kg per sq mm and shows little anisotropy. The hardness on the prism plane, however, shows a marked orientation dependence, with a low value of 1000 kg -per sq mm when the long axis of the Knoop indenter is oriented parallel to the c axis and a high value of 2400 kg per sq mm when the indenter is perpendicular to the c axis. Slip lines (Ire observed surrounding the microhardness indentations and they show slip on (1010) planes, probably in [0001] and (1120) directions. This slip behavior can be explained by the crystal structure of TVC, which is simple hexagonal with a c/a ralio of 0.976. The hardness anisotropy call be explained by [0001]{1010} and (1130) {10l0] slii) and the resolved shear-stress analysis of Daniels and Dunn. HARDNESS anisotropy is a well-known phenomenon and has been reported for many metals, with both cubic and hexagonal structure.1-6 For hexagonal tungsten carbide, WC, a wide range of hardness values is reported in the literature. For example, Schwarzkopf and Kieffer7 give a hardness of 2400 kg per sq mm and report a value of 2500 kg per sq mm by Hinnüber. Foster and coworkerss give the average Knoop microhardness as 1307 kg per sq mm with a maximum value of 2105 kg per sq mm. Although these values and the structure of WC suggest the likelihood of hardness anisotropy, no such measurements have been made. We first detected a large apparent hardness anisotropy in WC crystals about 75 p large, in over-sintered cemented tungsten carbide. Prominent slip lines also occurred around many indentations. This report presents further observations and interpretations of hardness anisotropy and slip in WC crystals obtained from Kennametal, Inc. Both Knoop and diamond pyramid indenters were used on a Wilson microhardness tester with loads of 100 and 500 g. EXPERIMENTAL RESULTS The carbide crystals tended to be triangular plates parallel to the (0001) basal plane of the hexagonal structure. The side faces were parallel to the ( 1010) prism planes. Specimens were mounted approximately parallel to these two types of faces and metallographically polished. Laue back-reflection X-ray patterns were used to orient the specimens, which werethen ground to within ±1 deg of the (0001) and (1010) planes. The Knoop hardness values measured on the basal plane are plotted in Fig. 1. There is only a small anisotropy, with a hardness range of 2240 to 2510 kg per sq mm. The additional points at angles from 52.5 to 67.5 deg confirm the sharp minimum hardness at 60-deg intervals, consistent with the sixfold hexagonal symmetry. The average hardness of all values obtained on the basal plane is 2400 kg per sq mm. While the basal plane shows only slight anisotropy, the (1010) plane exhibits marked hardness anisotropy, from 1000 to 2400 kg per sq mm. Fig. 2 shows the hardness as a function of the angle between the long axis of the indenter and the hexagonal c axis, the [0001] direction. The minimum and maximum occur when the indenter is oriented parallel and perpendicular to the [0001] direction, respectively. The anisotropy of the prism plane is contrary to that reported for hexagonal zinc and hard- However, the basal-plane anisotropy is similar to these two metals.1'2 To check the accuracy and reproducibility of the measurements, a series of fifteen impressions was made at 100-g load in the same orientation in the same area of the specimen surface. The average for all was 2040 kg per sq mm, with a range of 1950 to 2130 kg per sq mm, giving an accuracy of about ± 5 pct. Thus the slight anisotropy on the basal plane is almost within experimental error. Fig. 3 shows slip lines around the Knoop indentations on the basal plane. The slip traces are in directions of the type (1130). The presence of slip steps on the basal plane indicates that the slip direction lies out of the (0001) plane. Because WC has a c/a ratio of 0.976,' the shortest slip vector is [0001], which suggests slip systems of the type [0001] (1010). Fig. 4 shows slip lines around the Knoop intentations on the (1010) plane. These slip lines are inconsistent with [0001] slip but can be
Jan 1, 1965
-
Institute of Metals Division - The Creep Behavior of Heat Treatable Magnesium Base Alloys for Fuel Element Components (Discussion)By P. Greenfield, C. C. Smith, A. M. Taylor
J. E. Harris (Berkeley Nucclear Laboratories, England)—Greenfield et al.11 attribute abrupt changes in slope of their log o/log i curves for heat-treated Mg/0.5 pet Zr alloy (zA) to 'atmosphere' locking. It is proposed here that a more reasonable explanation of the apparent strengthening at low rates of strain can be based on precipitation either during the preanneal or during the creep tests. All the tests were carried out above 0.5 Tm where solute atmospheres are likely to be largely evaporated2 and can migrate sufficiently rapidly so as not to impose any 'drag' on the moving dislocations. McLean3 has derived an expression for determining the temperature Tc above which, due to the high-migration rate of the atmospheres, Cottrell or Suzuki locking can play no part in determining creep strength. This expression, which holds for an applied shear stress of not greater than 5 X 107 dynes per sq cm is: Tc/Tm= 7/6.8 - log10? where i = secondary creep rate The values for T, corresponding to the maximum and minimum reported creep rates at each temperature have been calculated from the data of Greenfield et al. These are given in Table VII. All the test temperatures were above T,, the margin being greater for the higher temperatures and for the lower strain rates where the breaks in the log s/log ? curves occurred. Dorn and his collaborators14, 17 have studied systematically the effect of solute hardening on the creep properties of an A1/3.2 at. pet Mg alloy. In the temperature range where strain aging occurred in tensile tests, abnormally high-activation energies for secondary creep were obtained but at temperatures above 0.43 Tm, solute alloying did not have any effect on the creep parameters. Moreover, there have been no reports of any strain aging phenomenon during elevated temperature tensile tests with ZA material.18 Instead of the observed strengthening being due to atmosphere locking, it is now proposed that precipitates play an important role in enhancing the creep strength of the material. There are two possibilities—precipitation of zirconium hydride during the high-temperature preanneal and/or precipitation of the hydride or a-zirconium during creep. On the basis of the former the results can be interpreted in terms of a critical stress being necessary to force the dislocations through or over preexisting precipitates. From the latter, if the strengthening is due to pre- cipitation during the test then hardening should be associated with a critical strain rate. At low rates of strain, time is available during the tests for precipitation to occur either directly onto dislocations (thus pinning them) or generally throughout the matrix (which would impede dislocation movements). Examination of the data of Greenfield et al. suggests that both mechanisms may be operative since they observed precipitation during creep and also found that their alloys exhibited high-creep strength in the early stages of the low-stress tests, i.e., before creep-induced precipitation had time to occur. It is not easy to understand why they considered that precipitation of zirconium hydride is unlikely to occur at 600°C while it can take place in tests in air at as low a temperature as 200°C. Precipitation of the hydride during the preanneal cannot be ruled out merely on the basis of metallographic examination. Hydride precipitates in ZA type alloys are very small and can only be accurately resolved in the electron microscope.9 For example, in this laboratory20 hydride platelets with major dimensions <(1/10) µ have been observed by electron transmission through thin film specimens of hy-drogenated ZA material. Complex interactions between dislocations and such particles are illustrated in Fig. 12. Additional evidence for precipitation during pre-annealing is provided by the data presented in Greenfield's Fig. 1 and Table IT. These show that the creep strength at 200o and 400°C increases with the time of preanneal at 600°C. Such increases cannot be explained on the basis of increases in grain size alone for further improvements in strength were observed when the material was annealed for longer times than that required to stabilize the grains. Although the main discussion is confined to ZA material, similar arguments can be used against the strain aging hypothesis proposed to explain the binary Mg/Mn alloy data. In this case no precipitation is possible during the preanneal, but precipitation-hardening during creep can occur.
Jan 1, 1962
-
Institute of Metals Division - Crystal Orientation in the Cylindrical X-Ray CameraBy Robert W. Hendricks, John B. Newkirk
A simple method is described for determining the orientation of a single crystal by means of a cylindr cal X-ray camera. Orientation setting to within ±1 deg is attainable by a stereographic analysis of a single cylindrical Laue pattern produced by the originally randomly mounted crystal. Final precision adjustments which permit orientation of the crystal to within ±5 min of arc from the desired position can be made by the method of Weisz and Cole. A chart, originally Presented by Schiebold and schneider7 and which allows a direct reading of the two stereographic polar coordinates of the corresponding pole of a given Laue spot, has been recomputed to aid in the stereographic interpretation of the cylindrical Laue X-ray photograph. Detailed instructions for the use of the chart, a simple example, and a comparison with the conventional flat-film Laue Methods, are presented. 1 HE problem of determining the orientation of the unit cell of a single crystal relative to a set of fixed external reference coordinates is fundamental to most problems of X-ray crystallography and to many experimental studies of the structure-sensitive physical properties of crystalline materials. Several techniques for measuring these orientation relations have been developed which correlate optically observable, orientation-dependent physical properties to the unit cell. Examples of such procedures include the observation of cleavage faces or birefringence, as discussed by bunn,1 or the examination of preferentially formed etch-pits, as discussed by barrett.2 Each of these methods is limited, for various reasons, to an orientation accuracy of approximately ±1 deg—a serious limitation in some experimental studies. Several other limitations decrease the generality of these methods. Of these, perhaps most notable is the absence in many crystals of the physical property necessary for the orientation technique. The most widely used methods for determining crystal orientation are variations of the Laue X-ray diffraction method. Because of the indeterminacy of the X-ray wavelength diffracted to a given spot, the interpretation of Laue photographs is now limited almost exclusively to the procedure of using a chart to determine the angular coordinates of the corresponding pole for each spot. For the flat-film geometries, either a leonhardt3 or a Dunn-Martin4 chart is used in interpreting transmission patterns, whereas a greninger5 chart is used for interpreting back-reflection patterns. A less common method of interpreting flat-film transmission Laue photographs is by comparing the Laue pattern with the Majima and Togino standards,6 or with the revised standards prepared by Dunn and Martin.4 Although this last method is applicable only to crystals with cubic symmetry, it can be very rapid and just as accurate as the graphical methods. The primary limitation of all the X-ray methods mentioned is the relatively small number of Laue spots and zones which are recorded on the flat film. Often, few, if any, major poles appear, thus making interpretation tedious and sometimes uncertain. The use of a cylindrical film eliminates this problem. Schiebold and schneider7 prepared a chart by which the orientation of the specimen crystal could be determined from a cylindrical Laue photograph. However, it was only drawn in 5-deg intervals of each of the two angular variables used to identify the Laue spots, thus limiting the accuracy of orientation to about ±3 deg. An examination of this chart indicated that if it were drawn in 2-deg intervals, crystal orientations to ±1 deg would be attainable. Subsequent use of the replotted chart has confirmed this accuracy. It is the purpose of this paper to describe the redevelopment and use of this chart, and to point out its advantages and limitations. I) CAMERA GEOMETRY AND CHART CALCULATIONS The geometry of the cylindrical camera with a related reference sphere is shown in Fig. 1. The X-ray beam BB' pierces the film at the back-reflection hole B, strikes the crystal at 0, and the transmitted beam leaves the camera at the transmission hole T. One of the diffracted X-rays intersects the film at a Laue spot L. The normal OP to the diffracting plane bisects the angle BOL between the incident and diffracted X-ray beams. The point P on the reference sphere can be located uniquely by the two orthogonal motions 6 and 8 on the two great circles ENWS and BPQT respectively. Because the Bragg angle 8 (= 90 - < BOP) is always less than 90 deg, P always remains in the hemisphere BENWS. Therefore, if every possible pole P is to be recorded on the same stereographic projection, it is necessary that the projection reference point be at T with the projection plane tangent to the sphere at B.* The great
Jan 1, 1963
-
Institute of Metals Division - Diffusion of Zinc and Copper in Alpha and Beta BrassesBy R. W. Balluffi, R. Resnick
NUMEROUS investigations of chemical diffusion in a brass have been made and the results are collected in several places.1-3 This work has been mainly concerned with the determination of the chemical diffusivity as a function of composition and temperature. In 1947 Smigelskas and Kirken-dall' showed that zinc and copper diffuse at different rates in face-centered-cubic brass, and since then, a number of efforts have been made to determine the intrinsic diffusivities of zinc and copper in this alloy.1, 5-9 Horne and Mehl8 in particular have recently determined the intrinsic diffusivities as functions of temperature and composition using sandwich-type couples and inert markers. Inman et al." also have determined the intrinsic diffusivities in homogeneous alloys using tracer techniques. When the present work was started, no information of this type was available. Consequently, measurements of the intrinsic diffusivities were made as a function of temperature at a constant composition of 28 atomic pct Zn with vapor-solid diffusion couples where the zinc was diffused into the diffusion couple from the vapor phase. The application of these couples to the study of diffusion in a: brass has been described previously.0,7 The temperature dependence of the intrinsic diffusivities was found to follow the relation D, = A, exp(-Hi/RT) and the values of Hzn, and Hcu, were found to be closely the same. It is emphasized, however, that the chemical dif-fusivity (D = N1D2 + N2D1) is a composite diffusivity and does not necessarily follow this exponential form. It is usually found to do so within experimental error for substitutional alloys because the heats of activation of the intrinsic diffusivities generally are not greatly different.'" Also, at the onset of this work, there was no information available concerning possible unequal diffusion rates of individual components and the existence of a Kirkendall effect in alloys with other than face-centered-cubic structures. Since then, two reports indicating a Kirkendall effect in body-centered-cubic ß brass have appeared. Landergren and Mehl" have published a note describing Kirkendall diffusion experiments with sandwich-type couples. Inman et a1.9 also find a Kirkendall effect in this alloy using the tracer technique. In the present work, several aspects of the Kirkendall effect in ß brass were further investigated using vapor-solid couples. Two different couples were used, one in which the zinc was diffused into the specimen from the vapor phase and the other in which the zinc was diffused out of the specimen into the vapor phase. Briefly, the existence of a Kirkendall effect is confirmed and it is found that Dzn/Dcu = 3 at about the 46 atomic pct composition in this alloy at 600°, 700°, and 800°C. As a result of the unequal diffusion rates of zinc and copper, volume changes occur and subgrain formation is observed in the diffusion zone. In addition, significant porosity is produced by the precipitation of supersaturated vacancies. Diffusion in this alloy is therefore outwardly similar to diffusion in a brass where these effects are also observed, a Brass Experimental Methods—The use of vapor-solid couples in studying diffusion in a brass has been described in previous articles.6,7 The method briefly consists of sealing a copper specimen with Kirkendall markers initially placed on its surface in an evacuated quartz capsule along with a large zinc source of fine a brass chips and then diffusing the zinc into the specimen through the vapor phase. The zinc concentration at the specimen surface rises rapidly enough to a value near that of the a brass source so that the surface concentration may be regarded as constant during diffusion. Under these boundary conditions, values of the chemical diffu-sivity may be obtained by applying the Boltzmann-Matano analysis to the concentration penetration curve, and the intrinsic diffusivities may be obtained from Darken's5 equations when the velocity of marker movement is known. The diffusion specimens were made from OFHC copper in the form of disks 3.2 cm diam and 0.5 cm thick with faces surface-ground parallel to within +0.001 cm. Markers in the form of fine alumina particles <0.0002 cm diam were placed on the specimen surface. These specimens were then sealed in quartz capsules along with enough a brass chips of a 30.0 atomic pct Zn composition to keep the source concentration from decreasing by more than 0.3 atomic pct Zn as a result of the loss of zinc to the specimen during diffusion. The quartz capsules which were initially evacuated to a pressure of
Jan 1, 1956
-
Reservoir Engineering- Laboratory Research - The Effect of Connate Water on the Efficiency of High-Viscosity WaterfloodsBy D. L. Kelley
High-viscosity water injection has been proposed for use in reservoirs containing high-viscosity crude oils. Previous publications have largely ignored the possible effects of the connate water on the proposed process. This paper describes experimental work which indicates that the connate water will be forced ahead of the injected water to form a bank of low-viscosity water. This decreases the oil recovery which would be expected if such a bank were not formed. These effects are shown for a range of fluid mobilities and connate-water saturations for a five-spot injection system. In general, oil recoveries using viscous water are significantly greater than for untreated water even though they are less than would be expected if no connate water bank were formed. INTRODUCTION The effect of mobility ratio on the oil recovery of wa-terfloods has been known for many years. Muskat first pointed out that the fluid mobilities (k/µ) in the oil and water regions would affect the performance of the water-flood, and he estimated the general effect of these variables.' Since this early work, studies of the effect of mobility ratio on secondary recovery have been reported where mathematical,' potentiometric3 and scaled flow models' were used. These studies have shown that a reduction in the mobility ratio between the oil and the displacing fluid would cause additional oil recovery when water-flooding reservoirs containing viscous crude oils. Studies reported by Pye- nd Sandiford 8 have indicated that chemicals to increase injection water viscosity are now available and can be used to reduce the over-all mobility ratio of a waterflood. Where mobility ratios are controlled by the injection of viscous fluids, the connate water of the reservoir can play an important part in the displacement of the reservoir oil. The purpose of this study was to determine the effect of the connate-water saturation in waterfloods where viscous waters are used for injection. DISPLACEMENT OF THE CONNATE WATER Russell, Morgan and Muskat7 were the first to recognize the mobility of connate waters in waterflooding. They conducted waterfloods on oil-saturated cores containing 20 and 35 per cent irreducible water saturations, and found that from 80 to 90 per cent of the "irreducible" water was produced after only one pore volume of water was injected. However, their experiments were conducted at rates of flow significantly higher than those ordinarily occurring in waterfloods. Also, the cores were only from 4.0 to 8.5 cm long. Brown 4 studied a 100-cm linear sand pack which had been prepared to contain connate water and oil. He used 140- and 1.8-cp oils with injection water of essentially the same viscosity as the connate water. He found that all of the connate water was displaced by the injection water in both cases. However, the injection volumes required for complete displacement of the connate water were considerably higher in the case of the more viscous oil. To verify the results of the foregoing experiment, a 10-ft-long linear model was constructed by packing 250-300 mesh sand in a 1/2-in. diameter nylon tube. The model was evacuated, saturated with a brine of 1-cp viscosity, and flooded with a 41-cp mineral oil to the irreducible water saturation of 10.9 per cent. The model was then waterflooded by the injection of a water solution which had an apparent viscosity of 42.6 cp. The solution consisted of 0.5 per cent methylcellulose in distilled water. The viscosities of the oil and connate water were measured with an Ostwald viscosimeter. The viscosity of the polymer solution was calculated by Darcy's law using pressures measured during actual flow conditions. The ratio of the mobility in the oil region to the mobility in the inject ion-water region was approximately 0.32. The mobility ratio of the oil region to the connate-water bank was approximately 14. The mobility ratio between the connate-water bank and the injection water region was 0.024. Approximately 84.5 per cent of the recoverable oil was produced before water breakthrough. Immediately following breakthrough, oil and connate water were produced at an increasing water-oil ratio until the viscous injection water broke through. At viscous-water breakthrough, 96 per cent of the original connate water had been produced. After breakthrough of the viscous water, there was no additional production of connate water or oil. The near-
Jan 1, 1967
-
Extractive Metallurgy Division - Preparation of Metallic Titanium by Film BoilingBy L. A. Bromley, A. W. Petersen
The van Arkel-deBoer method for producing ductile titanium by thermal decomposition of Til, vapor and deposition on an electrically heated filament is modified by film boiling Til liquid on a heated filament, resulting in similar titanium deposition on the filament and liberation of gaseous iodine. The deposition rate is higher and the energy requirement smaller than in the van Arkel process. Many problems must be solved before the process is commercially feasible. TITANIUM of 99.9 pct purity, called ductile titanium, has been produced by a modification of the van Arkel-deBoer' method. In the van Arkel-deBoer method, an electrically heated wire is suspended from two electrodes, which are placed in a container holding TiI, vapor at a low' vapor pressure (usually <5 mm Hg). The vapor diffuses to the hot wire, usually maintained at 1100" to 1600°C,' and decomposes according to the reaction liberating gaseous atomic iodine and depositing solid crystalline titanium on the wire. Estimations based on the data of Runnalls and Pidgeon,' indicate that the rate-control ling step is the diffusion of atomic iodine away from the wire. There appears to be nearly thermodynamic equilibrium at the wire with TiI, and iodine as the main gaseous species. TiI, is almost certainly an important gaseous species in the cooler regions.' The liberated iodine diffuses to a heated source of crude titanium and reacts to form more TiI, vapor, which again diffuses to the hot wire and completes the cyclic process. The foregoing process may be modified by suspending the hot wire in liquid TiI,, instead of the vapor, and obtaining film boiling. This type of boiling is characterized by the formation of a continuous film of vapor over the wire surface. Since only vapor contacts the wire sul.face, the temperature of this surface may be raised as high as desirable, within the limit of mechanical strength requirements for the wire. By properly adjusting the input voltage. the temperature of the wire may be maintained above U0C"C; and by evacuating the vessel holding the liquid TiI, and maintaining a suitable condenser temperature, the vapor pressure of TiI, may be held low. Thus, the conditions of operation of the van Arkel-deBoer method may be approximated with film boiling; and hence, it is postulated that ductile titanium may be produced by this method. Preparation of Til, There are many methods available for the preparation of TiI,; that used in this research was prepared by the direct reaction of titanium sponge in controlled amounts with liquid iodine. Although no difficulty was encountered with this reaction, it has since been pointed out that this method is sometimes dangerous and should be used with caution. The resulting TiI, was purified by distillation. First Film Boiling Experiments Apparatus: The apparatus shown in Fig. 1 was used for film boiling TiI, on short wire filaments. The current to the filament was supplied through a bank of three 5 kva transformers connected in parallel. The current was controlled by adjusting the voltage over a 0 to 67.5 v range with a 7 kva variable transformer on the low voltage side of the bank of transformers. The current and voltage were measured by Weston meters. The sealed-in-glass tungsten electrodes were hard-soldered to the filament for the film boiling of TiI,. The bottom part of the reactor, containing TiI,, was wrapped with ni-chrome heating wires to maintain the TiI, in the liquid state. An ice or liquid nitrogen trap, for solidifying I, vapor and any TiI, not condensed, was attached to the low pressure side of the air-cooled condenser. A Megavac vacuum pump was used. Procedure: A 0.010 in. diam tungsten filament was hard-soldered to the tungsten electrodes. TiI, was melted (mp 156°C) and poured into the reactor chamber; the top of the reactor chamber, containing the electrodes, was replaced. Freezing of the TiI, was prevented by controlling the current to the ni-chrome wires wrapped around the reactor with a 1 kva variable transformer. The mechanical vacuum pump was started and the system evacuated to about 2 mm Hg TiI, vapor pressure. The current to the filament was turned on and the impressed voltage slowly increased with the variable transformer. A sudden drop in current at nearly constant im-
Jan 1, 1957
-
Part III – March 1969 - Papers- Effects of Substrate Misorientation in Epitaxial GaAsBy A. E. Blakeslee
Morphological and electrical properties of GaAs epitaxial layers are influenced not only by changes in the nominal substrate orientation but also by small amounts of misorientation from the exact crystal planes. Deviations up to 5 deg from {11IA}, {11IB}, and (100) planes were investigated. Growth rates increase progressively with angle, approximately I u per hr per deg. Size and density of growth pyramids fall off with increasing angle, but other effects that are deleterious to the surface may occur which are heightened by increased misorientation. Carrier concentration decreases and electron mobility consequently increases as the angular offset increases, except in the case of strong compensation, where the mobility trend is reversed. It has long been known that changes in the crystallo-graphic orientation of the substrate may cause pronounced effects on the morphological properties of vapor grown semiconductor films. Reports of orienta-tion-dependent growth rates and surface characteristics are as old as the literature on epitaxy itself. shawl has recently published a comprehensive study of the dependence of growth rate on substrate temperature and orientation in epitaxial GaAs. It is also well-known that misorienting the substrate surface a few degrees away from the nominal low-index crystal-lographic plane often produces a much smoother epitaxial surface. This was reported by Tung2 for silicon, Reisman and Berkenblit3 for germanium, and by Kontrimas and Blakeslee4 for GaAs, and use is commonly made of this fact in the semiconductor industry to help guarantee smooth vapor deposits. The effects of substrate orientation on the carrier concentration and mobility of vapor grown GaAs were first documented by williams5 in 1964 and have been observed by several other authors since then,6,7 but no one has yet reported a careful study of how small changes influence these properties. We have made such a study and have found that sizable differences in growth rate, morphology, carrier concentration, and mobility can indeed be observed for epitaxial films grown on substrates that are oriented by progressive small increments away from the exact crystal plane. EXPERIMENTAL Early in the investigation an arsine synthesis system of conventional design8 was employed to produce growths on {111A}-oriented GaAs substrate crystals. In that early work, pronounced effects on carrier concentration and electron mobility were observed as a function of slight misorientation from this low index plane. That observation led to the more careful study that is reported here. An AsC13 system, differing in major aspect from those commonly in use today9 only in that the reactor is vertical rather than horizontal, was used for the detailed study. The gallium source was at 900°C and the substrates were at 750°C. The flow rate of pal-ladium-diffused H2 through the AsCl3 bubbler was 200 cu cm per min, and the flow rate of bypass H2 was also 200 cu cm per min. The substrates consisted of chro-mium-doped semiinsulating GaAs to facilitate elec-trical evaluation of the overgrowth by means of Hall and conductivity measurements on conventional eight-legged Hall bridges. They were misoriented by 0 to 5 deg from the {111A}, {111B}, and (100) planes, toward the (100) from the {111A} and {111B} and randomly toward the <111A> or <111B> from the {loo). The crystals were oriented for sawing by the Laue back-re-flection technique, which is good only to about ±1/2 deg; but after polishing or sometimes after epitaxial growth the wafers were checked by a diffractometer technique which is accurate to about * 0.1 deg. After lapping, the wafers were polished with NaOCl after the technique of Reisman and Rohr,10 and just before use they were cleaned in NaOC1, thoroughly rinsed with de-ionized water, and blown dry with nitrogen. Each run employed four wafers, each misoriented by differing amounts from one of the three major faces, and at least two runs were made for each orientation. The runs were continued long enough to provide at least a 15-µ or thicker layer. SURFACE MORPHOLOGY The appearance of all the films that were grown in a given run always changed from wafer to wafer as a function of increasing misorientation, but not always in the same regular fashion. At least three different trends were observed. These are more easily seen than described, and reference to the series of photo-
Jan 1, 1970
-
Institute of Metals Division - A Study of the Aluminum-Lithium System Between Aluminum and Al-LiBy E. J. Rapperport, E. D. Levine
The boundaries of the (a +ß) field in the Al-Li system were determined between 150°and 550°C utilizing quantitative metallography and lattice-parameter measurements. The solubility of lithium in aluminum decreases from 12.0at. pct Li at 550°C to 5.5 at. pct Li at 150°C. P Al-Li is saturated with aluminum at 45.8 at. pct Li and has this boundary value constant over the temperature range 150°to 550°C. THE solid solubility of lithium in aluminum has been determined by several investigators, 1-6 but, as shown in Fig. 1, there is little agreement among the various determinations. The earliest investiga-tions'-' are suspect because of the use of impure materials. Although high-purity materials were employed in more recent work,4'5 the experimental techniques may have led to contamination of the specimens. Probably the best work has been that of Costas and Marshall,6 who obtained close agreement between results obtained by two independent phase-boundary techniques: electrical resistivity and mi-crohardness. No detailed studies of the solubility of aluminum in the bcc ß phase, Al-Li, have been reported. Cursory investigations1,2,6 have indicated only that the (a+ß) -p boundary lies between 40 and 50 at. pct Li and is relatively independent of temperature. The present work was undertaken in order to provide an independent check on Costas and Marshall's determination of the solubility of lithium in aluminum, to extend knowledge of this solubility limit to temperatures below 225°C, and to make an accurate determination of the solubility of aluminum in Al-Li. EXPEFUMENTAL Alloy Preparation. In view of the difficulties encountered in previous investigations of the A1-Li system, close attention was paid to the use of methods of alloy preparation and treatment that would minimize contamination. Aluminum sheet (99.99 + pct Al) was vacuum-induction melted in a beryllia crucible to remove hydrogen. Lithium (99.9 pct Li) was charged with pre-melted aluminum into a beryllia crucible, in a helium-filled drybox. The crucible was sealed in a Vycor tube and transferred from the drybox to an induction furnace. Melting of alloys was performed by induction heating in a helium atmosphere. Solidification was accomplished by means of a suction apparatus, shown in Fig. 2, in which the alloy was forced by changes of pressure into a 3/16-in. inside diam closed-end beryllia tube. This technique produced rapid solidification of a small portion of the melt, resulting in alloys with a high degree of homogeneity. Typical lithium distributions are presented in Table I. Transverse sections 1/8 in. long were cut from the alloy rods, and each section was split in half longitudinally. One half of each section was analyzed for lithium, and the opposing halves were employed for phase-boundary determinations. Lithium contents were determined by flame photometry with an accuracy of 1 pct of the amount of lithium present. Thermal Treatments. Homogenization and equilibration heat treatments were performed in electrical-resistance furnaces with temperatures controlled to ± 2OC. Calibrated chromel-alumel thermocouples were employed to measure temperature. Homogenization was performed in helium-filled l?yrex tubes for 1 hr at 565°C. The encapsulated specimens were then transferred directly to furnaces maintained at lower temperatures for equilibration. Equilibration times were 2 hr at 550°C, 8 hr at 450°C, 27 hr at 350°c, 90 hr at 250°c, and 285 hr at 150"~. These times were chosen on the basis of conditions employed by previous investigators. Alloys were quenched from the equilibration temperatures by breaking the capsules into a silicone oil bath. By performing all possible operations either in sealed capsules or in a helium-filled drybox, the specimens were given minimum exposure to the atmosphere. Quantitative Metallography. Metallography of Al-Li alloys is difficult because of the atmospheric reactivity of the ß phase. It was found possible, however, to prepare surfaces of good metallographic quality by preventing contact with moisture during preparation. Grinding through 4/0 paper was performed in the drybox. The specimens were then transferred under kerosene to the polishing wheel. Three polishing stages were employed: 25-p alundum with kerosene lubricant on billiard cloth, 1-µ diamond paste on Microcloth, and 1/4-p diamond paste on Microcloth. Between stages the samples were cleaned by rinsing in trichloroethylene and buffing
Jan 1, 1963
-
Iron and Steel Division - Evaluation of pH Measurements with Regard to the Basicity of Metallurgical SlagBy C. W. Sherman, N. J. Grant
The correlation of the high temperature chemical properties of slag-metal systems with some easily measured property of either slag or metal at room temperature has been the goal of both process metallurgists and melting operators for many years. There are several rapid methods for estimating various constituents in steel in addition to the conventional chemical methods which are quite fast, but these do not reveal the nature of the slag as a refining agent, which is of primary interest to the steelmaker. Furthermore, there are several methods for examining slag, the three principal ones being slag pancake, petrographic examination, and the previously mentioned chemical analysis. The main objection to the last two is the lime required to make a satisfactory estimate of the mineralogical or chemical components. The objection to the first is the inadequacy of the information obtained. A new technique has been developed by Philbrook, Jolly and Henry1 whereby the properties of slags are evaluated from an aqueous solution leached from a finely divided sample of slag. It is known that the pH or hydrogen ion concentration (of saturated solutions that have dissolved certain basic oxides, notably calcium oxide) will indicate a pronounced basicity. Philbrook, Jolly and Henry devised the pH measurement technique in order to supply open hearth operators with a fast, reasonably accurate method of estimating slag basicity. They offered the method as an empirical observation and made no claims as to its theoretical justification. The results were presented as an experi-metally observed relationship which applied over an important range of basic open hearth slags. They found that, in plotting the measured pH against the basicity, the best relationship existed between the pH and the log of the simple V ratio, CaO/SiO2. Extensive investigation also showed that there were several variables in the experimental technique that influenced the results and necessitated following a standard procedure to obtain reproducible pH readings. These variables were: 1. Particle size of the slag powder used. 2. Weight of sample used per given volume of water. 3. Time of shaking and standing allowed before the pH was measured. 4. Exclusion of free access of atmospheric carbon dioxide to the suspension. 5. Temperature of the extract at the time the pH was measured. In subsequent investigations of the pH method by Tenenbaum and Brown2 and by Smith, Monaghan and Hay3 the general conclusions of Philbrook's work were reaffirmed. It was the object of the present investigation to extend the technique to a point where it could be used to evaluate slags of all types. Experimental Results PARTICLE SIZK OF SLAG POWDER A large sample of commercial blast furnace slag of intermediate basicity (V-ratio 1.15) was selected for the study. The slag had been put through a jaw crusher until all of it passed through a 20 mesh screen. Five fractions of this crushed material were separated, -20 to +40, -40 to +60, -60 to +100, -100 to +200, and -200 mesh. A representative sample of 0.5 g was removed from each fraction and the pH determined using the method of Philbrook. Check pH analyses on the sample fractions varied due to the different amounts of shaking. To eliminate this variable, a mechanical shaker was employed. In order to know the exact time of contact between the slag and water, it was found necessary to filter the extract at the end of the shaking period. Using the mechanical shaker and a filtering apparatus, similar runs were made on the five fractions for contact times of 5, 10, 20, and 40 min. Random checks gave reproducible results within 0.02 pH. The data are plotted in Fig 1. It can be seen from the plot that each slag fraction is hydrolyzed to an extent that is roughly proportional to the surface area exposed to the water. The (—100 to +200) mesh material changed very little in pH after 10 min. shaking time. The curves are symmetrical and lie in proper relation to one another. The —200 mesh curve appears to be somewhat flatter than the others, but this can be attributed to the portion of very fine material that is not present in the other fractions. The closeness of the (-100 to +200) mesh curve to the —200 mesh curve and the fact that a —100 mesh sample would contain amounts of slag down to 1 or 2 microns in diam were considered sufficient reasons for selecting a —100 mesh sample as representative of the whole sample of slag for the purposes of this investigation.
Jan 1, 1950
-
Minerals Beneficiation - Preconcentration of Primary Uranium Ores by FlotationBy B. C. Mariacher
EXTRACTION of uranium from ores is being ac-complished by processes which. for the most part, subject the entire ore to acid or carbonate leaching. Ore deposits with a U 3 O 8 content below 0.10 pct U 3 O 8 are seldom considered suitable for treatment by leaching. A preliminary concentration that would enrich the uranium content of an ore by a simple, low cost process based on physical properties of the ore might result in some low grade deposits becoming commercial ores. In addition, the process might be employed in existing operations to reduce transportation and leaching costs and to increase capacity of existing leaching plants. A study to attempt the development of a preliminary concentration process for primary uranium ores was undertaken by the Colorado School of Mines Research Foundation under sponsorship of the U.S. Atomic Energy Commission. The objective of this work was to produce concentrates containing 0.25 pct U3O8 from the low grade ores tested. Ores Tested: The main effort was devoted to the low grade primary uranium ores from northwestern Saskatchewan. Samples were obtained from the Beaverlodge operation of the Eldorado Mining & Refining Ltd. Additional primary ores, obtained from deposits in Gilpin County, Colo., contained from 0.07 to 0.10 pct U3O8. Summary of Concentration Tests: The Beaverlodge ore was tested to determine amenability of the ore to concentration by magnetic, electrostatic, gravity, and scrubbing processes. None of these produced satisfactory results. Both gravity and magnetic processes produced fairly good concentrates when closely sized fractions of the ore were treated, but on the basis of treating the total ore, recovery was poor. Preparation of sized fractions and the low capacity of equipment for suitable concentration made these methods impractical. As flotation offered the advantage of treating the total ore without intermediate sizing, the main effort was in this direction. A flotation process was developed that fulfilled the concentration objectives as set by the AEC. Pilot plant testing was used to verify results obtained from laboratory batch testing. Mineralogy: A petrographic examination of the Beaverlodge ore included a study of polished sur- faces and identification of the radioactive mineral by autoradiograph and X-ray diffraction. Approximate quantitative mineral identification was as follows: quartz, 60 pct; orthoclase feldspar, 20 pct; chlorite, 10 pct; carbonates, 5 pct; and miscellaneous minerals, 5 pct. Included in this last group were plagioclase feldspar, pyrite, mica, chalcopyrite, pyroxene, sericite, magnetite, galena, and uraninite. The most general occurrence of uraninite was in the form of crusts and thin coatings on limonite-stained grains of pyrite, quartz, and pyrite-quartz intergrowth. At least 90 pct of the uraninite was still attached to other minerals in a 100 by 200-mesh size fraction. The uraninite crusts were as small as 10 to 20 µ diam, and 5 to 10 µ thick. The Flotation Process Petrographic examinations of the Beaverlodge ore had indicated the impracticability of attempting to concentrate the uranium by floating individual grains of uraninite. Liberation of the uraninite required grinding to sizes below those suitable for flotation. However, there was preferential association of the uraninite with some minerals while others were free of uraninite attachment. The approach to the development of a flotation process was, therefore, based upon an attempt to concentrate the uraninite by floating carrier minerals. The following paragraphs discuss the various stages of the process with regard to the factors tested and the conditions under which best results were obtained. Grinding: The most effective size range for flotation was —150 mesh + 13 µ. The —13 µ material in the final concentrate had a higher U3O8 content than the total ore, but not as high as the average concentrate; however, rejection of slimes before flotation was prohibitive because of the loss in uranium carried in the —13 µ fraction. Grinding techniques which contributed to a minimum production of fines, such as stage grinding, were then employed. Quartz and Silicate Depression: These minerals represented approximately 80 pct of the ore and were free to a large degree of uraninite attachment. Significant improvement in the grade of the concentrate was obtained by depression of these minerals with hydrofluoric acid or sodium fluoride. Promoter: Selective stage flotation of uraninite carrier minerals was simplified by development of a single promoter mixture. The mixture consisted of an emulsion of a fatty acid, fuel oil, and a petroleum sulfonate and was selected after a comprehensive series of tests. It contained three parts by weight of an oleic and linoleic acid such as Emersol 300,
Jan 1, 1957
-
Metal Mining - Primary Blasting Practice at ChuquicamataBy Glenn S. Wyman
CHUQUICAMATA, located in northern Chile in the Province of Antofagasta, is on the western slope of the Andes at an elevation of 9500 ft. Because of its position on the eastern edge of the Atacama Desert, the climate is extremely arid with practically no precipitation, either rain or snow. All primary blasting in the open-pit mine at Chuquicamata is done by the churn drill, blasthole method. Since 1915, when the first tonnages of importance were removed from the open pit, there have been many changes in the blasting practice, but no clear-cut rules of method and procedure have been devised for application to the mine as a whole. One general fact stands out: both the ore and waste rock at Chuquicamata are difficult to break satisfactorily for the most efficient operation of power shovels. Numerous experiments have been made in an effort to improve the breakage and thereby increase the shovel efficiency. Holes of different diameter have been drilled, the length of toe and spacing of holes have been varied, and several types of explosives have been used. Early blasting was done by the tunnel method. The banks were high, generally 30 m, requiring the use of large charges of black powder, detonated by electric blasting caps. Large tonnages were broken at comparatively low cost, but the method left such a large proportion of oversize material for secondary blasting that satisfactory shovel operation was practically impossible. Railroad-type steam and electric shovels then in service proved unequal to the task of efficiently handling the large proportion of oversize material produced. The clean-up of high banks proved to be dangerous and expensive as large quantities of explosive were consumed in dressing these banks, and from time to time the shovels were damaged by rock slides. As early as 1923 the high benches were divided, and a standard height of 12 m was selected for the development of new benches. The recently acquired Bucyrus-Erie 550-B shovel, with its greater radius of operation compared to the Bucyrus-Erie 320-B formerly used for bench development, allowed the bench height to be increased to 16 m. Churn drill, blasthole shooting proved to be successful, and tunnel blasts were limited to certain locations where development existed or natural ground conditions made the method more attractive than the use of churn drill holes. Liquid oxygen explosive and black powder were used along with dynamite of various grades in blast-hole loading up to early 1937. Liquid oxygen and black powder were discontinued because they were more difficult to handle due to their sensitivity to fire or sparks in the extremely dry climate. At present ammonium nitrate dynamite is favored because of its superior handling qualities and its adaptability to the dry condition found in 90 pct of the mine. In wet holes, which are found only in the lowest bench of the pit and account for the remaining 10 pct of the ground to be broken, Nitramon in 8x24-in. cans, or ammonium nitrate dynamite packed in 8x24-in. paper cartridges, is being used. This latter explosive, which is protected by a special antiwetting agent that makes the cartridges resistant to water for about 24 hr, currently is considered the best available for the work and is preferred over Nitramon. Early churn drill hole shots detonated by electric blasting caps, one in each hole, gave trouble because of misfires caused by the improper balance of resistance in the electrical circuits. Primarily, it was of vital importance to effect an absolute balance of resistance in these circuits, the undertaking and completion of which invariably caused delays in the shooting schedule. Misfires resulting from the improper balance of electrical circuits, or from any other cause, were extremely hazardous, since holes had to be unloaded or fired by the insertion of another detonator. The advent of cordeau, later followed by primacord, corrected this particular difficulty and therefore reduced the possibility of missed holes. After much experimentation, the blasting practice evolved into single row, multihole shots, with the holes spaced 4.5 to 5 m center to center in a row 7.5 to 8 m back from the toe. Sucti shots were fired from either end by electric blasting caps attached to the main trunk lines of cordeau or primacord. The detonating speed of cordeau or primacord gave the practical effect of firing all holes instantaneously. Double row and multirow blasts, fired instantaneously with cordeau or primacord, proved to be unsatisfactory in the type of rock found at Chuquica-
Jan 1, 1953
-
Reservoir Engineering-General - A Study of Forward Combustion in a Radial System Bounded by Permeable MediaBy G. W. Thomas
A mathematical tnodel of forward combustion in an oil reservoir is treated in this paper. The model describes a radial system having a vertical section of essentially infinite thickness, all of which is permeable to gas flow. Combustion, however, is presumed initiated over a limited thickness of the total vertical section. In the interval supporting cotnbustion, the mechanisms of radial conduction, convection and heat generation are taken into account. Above and below the burning interval, heat transport in the radial direction is by cottduction and convection. Vertical heat losses from the ignited interval are accounted for by conduction alone. A general solution is presented for the temperature distribution caused by radial movement of the combustion front. The results show that no feedback of heat occurs into the ignited interval when convection and conduction are acting in the bounding media. Peak temperatures are also 5 to 10 per cent higher than in the case where heat transport in the bounding media is by conduction alone. We arbitrarily define vertical coverage to be that fraction of the total ignited interval which is at 600F above atnbient, or greater, at any given time. The radial distance at which the vertical coverage becomes zero is the propagation range of the combustion front. It was found that an increase in vertical coverage results when the oxygen concentration, fuel concentration or gas-injection rate is increased. Moreover, the combustion front can be propagated 10 to 15 per cent further than in the case where only conduction is acting above and below the ignited interval. INTRODUCTION In the theoretical treatment of forward combustion in a radial system, one of the problems encountered is the determination of the transient temperature distributions caused by an expanding cylindrical heat source. Bailey and Larkin' and Ramey' simultaneously presented analytical solutions to the problem assuming heat transport by conduction alone. In a subsequent publication, Bailey and Larkin3 included the effects of both conduction and convection while treating linear and radial models. In this latter work, however, vertical heat losses were largely neglected. Selig and Couch' dealt with a radial model in which both conduction and convection were acting. Only a limiting case involving vertical heat losses was considered, however. Namely, temperatures on the boundary of the bed of interest were set equal to zero. Solutions thus obtained were representative of a system having a maximum vertical heat flux. Chu5 recently treated a more general case in which a permeable bed was considered bounded by impermeable media. Conduction and convection took place within the bed, and only conduction outside of the bed. The effects of vertical heat losses were included in his study. Solutions were obtained by numerical techniques. This paper is an extension of the theoretical work of other authors pertaining to forward combustion in a radial system. In particular, a mathematical model of the process is treated in which heat generation occurs over a small vertical interval of a larger permeable section. In the interval supporting heat generation, and above and below this interval, the mechanisms of radial conduction and convection are also presumed acting. Heat losses from the ignited interval are accounted for by vertical conduction. An analytical solution for the temperature distribution caused by radial movement of the burning front is presented. The effects of certain process variables are indicated and comparisons with Chu's results are made. THEORY To render the mechanism of forward combustion tractable to mathematical treatment, we idealize the problem to the extent of assuming continuous reservoir media possessing homogeneous and isotropic properties. The following additional assumptions are implicit in this analysis. 1. The thermal parameters, i.e., heat capacities, thermal conductivities and thermal diffusivities are invariant with temperature and pressure. Moreover, the bounding media possess the same thermal properties as the bed of interest. 2. The temperatures of the porous media and its contained fluids at any point and at any time are equal. 3. The reaction rate between the oxidant gas and the fuel is infinite. This assumption implies that the incoming oxygen concentration instantaneously goes to zero within an infinitesimal distance, i.e., the width of the combustion zone is negligible. 4. The rate of gas injection is constant and corresponds to the average rate throughout the lifetime of the project. 5. The fuel concentration is constant throughout the volume of rock swept out by the burning zone. 6. There is complete burnoff of fuel. This assumption demands that the rate of propagation of the burning front equals the rate of fuel burnoff. In a radial system, with a
-
Metal Mining - Primary Blasting Practice at ChuquicamataBy Glenn S. Wyman
CHUQUICAMATA, located in northern Chile in the Province of Antofagasta, is on the western slope of the Andes at an elevation of 9500 ft. Because of its position on the eastern edge of the Atacama Desert, the climate is extremely arid with practically no precipitation, either rain or snow. All primary blasting in the open-pit mine at Chuquicamata is done by the churn drill, blasthole method. Since 1915, when the first tonnages of importance were removed from the open pit, there have been many changes in the blasting practice, but no clear-cut rules of method and procedure have been devised for application to the mine as a whole. One general fact stands out: both the ore and waste rock at Chuquicamata are difficult to break satisfactorily for the most efficient operation of power shovels. Numerous experiments have been made in an effort to improve the breakage and thereby increase the shovel efficiency. Holes of different diameter have been drilled, the length of toe and spacing of holes have been varied, and several types of explosives have been used. Early blasting was done by the tunnel method. The banks were high, generally 30 m, requiring the use of large charges of black powder, detonated by electric blasting caps. Large tonnages were broken at comparatively low cost, but the method left such a large proportion of oversize material for secondary blasting that satisfactory shovel operation was practically impossible. Railroad-type steam and electric shovels then in service proved unequal to the task of efficiently handling the large proportion of oversize material produced. The clean-up of high banks proved to be dangerous and expensive as large quantities of explosive were consumed in dressing these banks, and from time to time the shovels were damaged by rock slides. As early as 1923 the high benches were divided, and a standard height of 12 m was selected for the development of new benches. The recently acquired Bucyrus-Erie 550-B shovel, with its greater radius of operation compared to the Bucyrus-Erie 320-B formerly used for bench development, allowed the bench height to be increased to 16 m. Churn drill, blasthole shooting proved to be successful, and tunnel blasts were limited to certain locations where development existed or natural ground conditions made the method more attractive than the use of churn drill holes. Liquid oxygen explosive and black powder were used along with dynamite of various grades in blast-hole loading up to early 1937. Liquid oxygen and black powder were discontinued because they were more difficult to handle due to their sensitivity to fire or sparks in the extremely dry climate. At present ammonium nitrate dynamite is favored because of its superior handling qualities and its adaptability to the dry condition found in 90 pct of the mine. In wet holes, which are found only in the lowest bench of the pit and account for the remaining 10 pct of the ground to be broken, Nitramon in 8x24-in. cans, or ammonium nitrate dynamite packed in 8x24-in. paper cartridges, is being used. This latter explosive, which is protected by a special antiwetting agent that makes the cartridges resistant to water for about 24 hr, currently is considered the best available for the work and is preferred over Nitramon. Early churn drill hole shots detonated by electric blasting caps, one in each hole, gave trouble because of misfires caused by the improper balance of resistance in the electrical circuits. Primarily, it was of vital importance to effect an absolute balance of resistance in these circuits, the undertaking and completion of which invariably caused delays in the shooting schedule. Misfires resulting from the improper balance of electrical circuits, or from any other cause, were extremely hazardous, since holes had to be unloaded or fired by the insertion of another detonator. The advent of cordeau, later followed by primacord, corrected this particular difficulty and therefore reduced the possibility of missed holes. After much experimentation, the blasting practice evolved into single row, multihole shots, with the holes spaced 4.5 to 5 m center to center in a row 7.5 to 8 m back from the toe. Sucti shots were fired from either end by electric blasting caps attached to the main trunk lines of cordeau or primacord. The detonating speed of cordeau or primacord gave the practical effect of firing all holes instantaneously. Double row and multirow blasts, fired instantaneously with cordeau or primacord, proved to be unsatisfactory in the type of rock found at Chuquica-
Jan 1, 1953
-
Penetration of Leach Solution into Rocks Fractured by a Nuclear ExplosionBy David D. Rabb
Leaching or solution mining, a relatively simple and economical process for beneficiating metallic ores, is likely to find increasing application in the treatment of low-grade ores that are impractical to mine by any other means. This process may be carried out in two different ways: 1) dump leaching, where the ore is moved from its original location to be leached at another site; and 2) In-situ leaching, where the ore is leached in place by introducing the leach solution at the top, letting it flow down through the ore under gravity, and then recovering it plus the dissolved metals it contains. Whichever leaching method is used, it is almost always necessary to break up the ore before leaching. In this paper a study is reported which indicates that rock broken by an explosion-in particular, an underground nuclear explosion-is significantly more amenable to leaching then is rock broken by other methods. These results suggest that the leaching speed and efficiency could be increased by nuclear fracturing of the ore. Not only would the leach time be shortened, but the resulting increase in strength or richness of the solutions would decrease plant installation expense as well as reduce pumping and processing costs. A considerable fund of experience has been accumulated in the course of several hundred experimental underground nuclear explosions, so that the gross results of any given nuclear explosion can now be predicted with a fair degree of confidence.' From this knowledge it seems clear that, under the proper conditions, large ore bodies can be fractured much more economically-macroscopically speaking-by nuclear explosions than by other methods. The present study concentrates on smaller scale effects that is, the cracks in the chunks of rock broken by the explosion-and shows that here too, in the microscopic domain, there are important advantages to nuclear fracturing. The intense shock produced by the very fast acting, high-brisance nuclear explosive fractures the rock in a way that should significantly improve its leachability. Experimental Procedure This study compared rocks broken by nuclear explosives with rocks produced by conventional mining, quarrying, or core drilling. The test samples, granite chunks 6 to 8 in. on a side, plus core sections, came from the area of the Hardhat*2 nuclear explosion and were taken both before and after the explosion. For comparison, several samples of quarried granite were obtained from a local gravestone monument company. The general procedure was to soak the test samples in leaching solution and then determine the extent of penetration. A standard commercial copper leaching solution was used (10 gpl Cu, 10 gpl H2SO4, 5 gpl ferric Fe, 15 gpl total Fe, pH about 1.5), to which a water-soluble penetrant dye, Zyglo 1-c, had been added. Details of the procedure were as follows: 1) Sample leached in solution containing Zyglo penetrant dye. 2) Washed with water. 3) Air-dried. 4) Cut with granite wire saw. 5) One face polished with granite monument polish. 6) Sent directly to be photographed, or heated at 110°C for 2 hr and then sent to be photographed. 7) Photographed under ultraviolet light to show crack patterns. Results After 10 days of leaching at 70-75°F, the samples were removed from the solution, washed, dried, and cut in half with a granite wire saw to study the penetration of the leach solution. Since the Zyglo dye in the leach is visible under ultraviolet light, the degree of penetration of the leach (and hence the cracks in the samples) can be studied on photographs of the crosscut samples made under ultraviolet light. The photos in [Fig. 1] show how the leach solution penetrated various representative samples. Of the 71 rock samples examined, fractures were most frequent and prominent in samples from the rubble produced by the nuclear explosion [(Fig. 1D)]. Fracturing was less apparent in shaft-mined rock [(Fig. 1B)], still less evident in drift-mined rock [(Fig. 1C)], and practically nonexistent in cored or quarried specimens [(Fig. 1A)]. The samples in [Fig. lA-C] were from the same general area as the nuclear explosion, but they were obtained before the explosion. Results of the crack studies are summarized in [Table 1]. The Zyglo-treated leach solution penetrated the test samples at the rate of about 1/2 mm during the first hour, 1 mm by the end of 4 hr, 2 to 3 mm in 12 hr, and 4 to 6 mm in 10 days, showing a progressively slower rate with time.
Jan 1, 1972