Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Producing - Equipment, Methods and Materials - Behavior of Casing Subjected to Salt LoadingBy J. B. Cheatham, J. W. McEver
A laboratory investigation of the behavior of casing subjected to salt loading indicates that it is not economically feasible to design casing for the most severe situations of nonuniform loading. When the annulus is completely filled with cement, casing is subjected to a nearly uniform loading approximately equal to the overburden pressure, and, although the modes of failure may be different, the design of casing to withstand uniform salt pressure can be computed on the same basis as the design of casing to withstand fluid pressure. Failure of casing by nonuniform loading in inadequately cemented washed-out salt sections should be considered a cementing problem rather than a casing design problem. INTRODUCTION Casing failures in salt zones have created an interest in understanding the behavior of casing subjected to salt loading. The designer must know the magnitudes and types of loading to be expected from salt flow and he must be able to calculate the reaction of the casing to these loads. In the laboratory study reported in this paper, short-time experimental measurements of the load required to force steel cylinders into rock salt are used as a basis for computing the salt loading on casing. These results must be considered to be qualitative only since rock salt behaves differently under down-hole and atmospheric conditions and also may vary in strength at different locations. The beneficial effects of (1) cement around casing, (2) a liner cemented inside of casing, and (3) fluid pressure inside of casing in resisting casing failure are considered. ROCK SALT BEHAVIOR UNDER STRESS The effects of such factors as overburden loading, internal fluid pressure, and temperature on the flow of salt around cavities have been studied extensively at The U. of Texas. Brown, et al.1 have concluded that an opening in rock salt can reach a stable equilibrium if the formation stress is less than 3,000 psi and the temperature is less than 300°F. At higher temperatures and pressures an opening in salt can close completely. These results indicate that calculations based upon elastic and plastic equilibrium for an open hole in salt should be applied only at depths less than 3,000 ft. In most oil wells the tem- perature will be less than 300F in the salt sections, therefore no appreciable temperature effects are anticipated. Serata and Gloyna2 have reported an investigation of the structural stability of salt. .They assume that the major principal stress is due to the overburden. Other stresses can be superimposed if additional lateral pressures are known to be acting in a particular region. In the present analysis an isotropic state of stress is assumed to exist in the salt before the hole is drilled, since salt regions are generally at rest. This assumption is partially verified from formation breakdown pressure data taken during squeeze-cementing operations in salt. Experimental measurements of the elastic properties of rock salt indicate a value of 150,000 psi for Young's modulus and a value of approximately 0.5 for Poisson's ratio. A value of % for Poison's ratio with finite Young's modulus would indicate that the material was incompressible. Values ranging from 2,300 to 5,000 psi have been reporteda for the unconfined compressive strength of salt. These variations may be due to differences in the properties of the salt from different locations or at least partially to differences in testing techniques. Salt is very ductile, even under relatively low confining pressures. For example, in triaxial tests reported by Handin3 strains in excess of 20 to 30 per cent were obtained without fracture. When casing is cemented in a hole through a salt section, the casing must withstand a load from the formation if plastic flow of the salt is prevented. To determine the forces which salt can impose on casing, circular steel rods were forced into Hockley rocksalt with the longitudinal axis of the rods parallel to the surface of the salt. The force required to embed rods 0.2 to I in. in diameter and 1/2 to 1 in. long to a depth equal to the radius of the rods was found to be F/DL =28,700 psi (± 3,700 psi) , .... (1) where D is the diameter, and L is the length of the rod. CASING STRESSES Since an open borehole through salt at depths greater than 3,000 ft will tend to close, cemented casing which prevents closure of the hole will be subjected to a pressure approximately equal to the horizontal formation stress after a sufficiently long time. As a first approximation the horizontal stress can be assumed to be equal to the overburden pressure. This is in agreement with the suggestion by Texter4 that an adequate cement job can prevent plastic flow of salt and result in a pressure on the casing approximately equal to the overburden pressure. He also advocated drilling with fully saturated salt mud
Jan 1, 1965
-
PART V - Concerning the Relaxation of Strain at Constant Stress and the Relaxation of Stress at Constant StrainBy E. P. Dahlberg, R. E. Reed-Hill
On the assumption that stress or strain relaxation occurs as the result of a thermally activated process, equations are derived relating to tensile experiments that give the strain as a function of the time under the condition of constant stress, and the stress as a function of the time for constant strain. It is demonstrated that if the strain-rate equation i = previously proPosed by Kuhlmann., is used as a starting point, then the relaxation of strain at constant stress may be expressed by the equation c = (-RT/(Y) 1tz tanh (t + is the strain capable of being relaxed at any given instant. Similarly, it is shown that the relaxation of stress at constant strain may be given by a = (-RT/B) In tanh (t + t0)/27, where a is the instantaneois value of the relaxable stress. The fact that these relationships reduce to well-known empirical equations at both large and small values of the stress Or strain is also shozcn. The present theory is shown to agree well with experimental data obtained from tensile elastic aftereffect experiments on a zirconium specimen prestrained at 77 k as to make it strongly anelastic. It is also demonstrated that elastic aftereffect data obtained using torsional specimens ?,Lay agree reasonably well with the equation derived for the case of tension. RELAXATION experiments are often employed as a means of studying metallic deformation mechanisms.' The simplest and most commonly employed techniques involve stress relaxation at constant strain and strain relaxation at constant stress. In general, however, investigations of this nature have been seriously handicapped in the past by a lack of suitable equations giving the time dependence of the relaxing variable over an interval that extends from small strains up into the region where internal-friction experiments become strain-amplitude dependent. This paper presents a derivation of such a set of equations for the case where the time-dependent part of the strain is anelastic or recoverable and the specimens are loaded in simple tension. The relaxation of strain under the condition of constant stress will be considered first. Let us assume that strain relaxation occurs as the result of a reversible thermally activated process that occurs at a number of relaxation centers lying in an elastic matrix. Then, following Kuhlmann,2 we may express the rate of strain relaxation as follows: where C is the strain rate, AFx the free energy of activation of the process controlling strain relaxation, a, the effective or average resolved stress at the relaxation centers, u an activation volume, R the universal gas constant, T the absolute temperature, > a factor with dimensions of a volume that accounts for the strain contribution of a successful operation of a unit process, N the number of relaxation centers per unit volume, and v the Debye frequency. The first term on the right of Eq. [I] represents a strain rate in the direction favored by the stress, while the second term represents the rate in the opposite direction. It is implied in Eq. [I.] that both F and v are symmetrical with respect to the two basic directions of operation of a relaxation process. Eq. [I] may also be written where and S and Q are the activation entropy and activation energy, respectively, of the relaxation process. In the following, A will be considered a constant. This is compatible with a set of experimental conditions where the relaxation rate is controlled by a single basic reversible process in which it may be assumed that the temperature dependence of the product ?Nv is negligible in comparison with the temperature variation of the exponential term. It is also implied that v, 7, and N do not depend strongly on a, . In deriving a relationship for the strain as a function of the time from her equation, equivalent to Eq. [2], Kuhlmann2 chose to consider only the limiting cases where the time was either very small or very large. It will now be shown that it is possible to integrate Eq. [2] to obtain a single equation valid over a wide range of strains if the concept of relaxable strain is introduced. The use of this quantity, which is the difference between the instantaneous value of the strain and the value of the strain at complete relaxation, represents the primary point of departure of the present theory from that of earlier workers. Let us express the effective stress at the relaxation centers in terms of strain. For this purpose we may use the following equation derived by zener3 for the case of strain relaxation at slip bands: where M? and M are the relaxed and unrelaxed moduli respectively, go the applied constant tensile stress, and m an average orientation factor that takes account of the fact that a,, the effective stress at the relaxation center, may not be a tensile stress (i.e., a
Jan 1, 1967
-
The Felder Uranium Project _ Renewed OperationsBy K. E. Barrett
Exxon owns a uranium mill and holds two mining leases in Live Oak County, Texas, about halfway between San Antonio and Corpus Christi. The properties make up the Felder Uranium Operations which was reopened earlier this year. Exxon held an oil, gas, and other minerals lease on the J. C. Felder tract, which was adjacent to a relatively shallow uranium discovery by Susquehanna-Western, Inc. on the Marrs-McLean lease immediately south of the Felder property. Drilling in 1967 and 1968 confirmed the presence of reduced uranium mineralization in the basal sand unit of the Oakville formation on the Felder tract, which formed the major part of the roll-front deposit. In 1969 Exxon and Susquehanna-Western, Inc. entered into a sale and purchase agreement which provided for Susquehanna to mine and process Felder ore and purchase recovered uranium. Susquehanna moved an alkaline-leach mill from Wyoming, erected it on the Ray Point property, and placed it into operation late in 1970. Susquehanna mined and processed ore from the Felder and McLean properties through March 1973. Susquehanna ceased operations in March 1973. Exxon then acquired the mill and mill property. Exxon also purchased the mineral rights to the McLean lease, re-negotiated a mining lease for that property, and carried out shut-down programs for the mining and mill areas in the fall of 1973. The project was put on a standby basis until late 1973, when Exxon initiated mine feasibility studies for the project. MINE PLANNING EVALUATION The feasibility study for reopening the Felder Project began in late 1975 and was not completed until late 1976. I will discuss several areas of the feasibility study that required additional work prior to making the decision to renew operations. Ore Reserves Preparations for estimating the ore reserves began with the re-evaluation of more than 1500 natural radioactivity logs from exploration and pre-development drilling that had been completed on the property. These gamma ray logs of non-core rotary drill holes were the principal source of data used in making the estimate. Chemical assays of cores from the deposit were also used in the reserve determination. Electric resistivity and self-potential logs were made along with the gamma ray log. In December 1975 an additional core drilling project was undertaken to confirm the in-place density and radiometric equilibrium characteristics of the ore deposits. Comparison of chemical assays of cores with the U308 values calculated from the logs showed that the unoxidized ores were in radiometric equilibrium. In contrast, cores from anomalies occurring in near surface, weathered, and oxidized zones were in radiometric disequilibrium. Several important decisions were made in developing a mine plan or schedule of production from the Felder and McLean ore bodies. Disposal of Produced Mine Water: The ore bodies of the Felder Uranium Project occur at a point below the ground water table. The ore zones to be mined must first be dewatered to allow removal of mineralized material. In the open pit operations, this is accomplished by maintaining a perimeter ditch around the periphery of the open pit, allowing the interior of the pit to drain and collect into a sump and be pumped from the mine. In addition to anticipated water production from future mining operations, approximately 200M gallons of water was contained in three open pits left from prior mining operations. In two of these existing pits, the water was to be removed and disposed to allow for planned backfilling of waste material into these pits. The third pit would also have to be drained to allow continued mining of an area left from the prior operations. Essentially no ground water information was available for this area. The only data available was water production history from Susquehanna's mining operation. Two water wells were drilled early in 1976 on the Felder lease for use in obtaining hydrological data. A long term draw-down test was performed by pumping one water well and measuring water level drawdown in both the pumped well and the observation well. From these data, values for permeability and storage coefficient were calculated. These data were then used in modeling the aquifer to allow calculation of water influx into the mining area versus time. Once a schedule of water production, including the stored volume in the existing pits was calculated, alternate solutions for disposal were evaluated. The first system evaluated was a series of deep injection wells. The wells were designed to inject at a depth of approximately 3500 feet. Again very little information concerning reservoir characteristics of the receiving sand units was known. Using assumed values for reservoir permeability and storage coefficients, an injection well system was designed to allow for disposal of produced mine water. The biggest
Jan 1, 1979
-
Part VII – July 1969 - Papers - Thermodynamic Activity Measurements Using Atomic Absorption: Copper-ZincBy E. J. Rapperport, J. P. Pemsler
The thermodynamic activities of zinc in six solid solution Cu-Zn alloys ranging from 5 to 35 at. pct Zn were determined experimentally in the temperature range 400° to 600°C. This low temperature investigation was canducted in order to evaluate techniques developed to utilize the inherently high sensitivity of atomic absorption flocesses in the measurement of thermodynamic activities. Analytical expressions ,for the activity and actizlity coeflcient are given for the six alloys in the temperature ranges investigated. RELATIVELY few experimental methods are available for investigation of thermodynamic activities of alloys, especially in the solid state. The techniques most frequently used have been the electrochemical potential and the effusion methods, both of which have severe limitations in many instances. It is therefore desirable to expand the ability to perform such measurements in order to obtain new information as well as to provide an additional independent verification capability. In this work, we present a significant improvement in the spectrophotometric method for sensing small vapor pressures in static absorption cells. Similar techniques have been used previously;1"5 however, applications had been limited to relatively high pressures, often greater than 1 torr. Prior investigators have, for the most part, used broad spectral sources such as xenon or mercury lamps, and high intensity arcs. Hollow cathode sources were first suggested in 1956 6 and were used soon afterwards.4'5 These sources offer significant improvements in sensitivity and freedom from interfering spectral lines.'-' EXPERIMENTAL High purity zinc was obtained from Cominco Products, Inc., and copper from American Smelting and Refining Co. Both elements were of 99.999 pct purity. Copper-zinc alloys were vacuum melted in a high fired carbon crucible with each alloy pulled from the melt as a 4 -in. diam bar. The bars were swaged to -1/4 in. rods and vacuum annealed for 160 hr at 800° + 1°C. Samples for gross chemical analysis were taken at intervals along the length of the rods to ascertain the axial zinc gradient. Electron microprobe analysis of homogenized specimens indicated that the alloys had uniform compositions over their cross sections on a macro (200 p) and micro (1 u) scale to better than *1 pct (20) of the gross composition. This tolerance was determined by counting statistics, rather than assured composition fluctuations. All SiO 2 windows were high-ultraviolet-transmission grade to minimize intensity losses. Silica absorption cells were scrupulously cleaned consecutively in organic solvents, dilute HF, and distilled water before use. The empty cells were then flamed while under a dynamic vacuum, cooled, and removed to an argon-filled glove bag. Alloy pieces were cut and filed in the glove bag to produce fresh surfaces, and then loaded into the cells. The loaded cells were temporarily sealed, removed from the glove bag, reevacuated to 10-5 torr or better, and permanently sealed. The instrument used is schematically shown in Fig. 1. The spectral emission from a commercially made hollow cathode lamp (A) of a selected element is focused through an absorption cell (B) inside a well-controlled furnace (C). The intensity of the transmitted beam is measured using the spectrometer* (D) 'Techtron model AA4 atomic absorption spectrometer. which contains a grating (E) that disperses the light prior to impingement on the photomultiplier (F). The monochromator grating is adjusted so that only the wavelength of interest is measured. The power supply delivered an interrupted voltage to the lamp, causing a chopped radiation output to be transmitted. The detector read only the intermittent component of radiation incident upon it, so that all continuous noise signals (furnace radiation, and so forth) were eliminated. Three recording thermocouples contained in the muffle furnace were positioned along the length of the absorption cell: one at each end and one at the center. An effort was made to keep the ends of the cell several degrees hotter than the center to avoid window condensate. Appropriate thermal corrections were then necessary to relate cell pressure to radiation attenuation. Water-cooled heat shields, as shown in Fig. 1, were found to aid signal stability by protecting the hollow cathode and the photomultiplier from furnace radiation. The furnace had a 2-in. diam muffle, Kan-thal wound, with SiO 2 windows at its ends to minimize convective effects. The hollow cathode radiation was masked and focused to form a conic beam that was a maximum of { in. diam within the furnace. Thus, the 1.5 in. diam absorption cell easily contained the entire beam. The furnace was mounted on ball-bearing slides with positive positioning detents. This arrangement allowed the removal of the entire furnace assembly from the radiation path, position [I], Fig. 1, so that frequent sampling of the unattenuated beam intensity could be obtained. In all cases the beam intensity was kept constant to 0.1 pct as judged by readings taken immediately before and immediately after data collection. Only data for absorptions of less than 80 pct were utilized, as systematic deviations from linearity were found for greater absorptions.
Jan 1, 1970
-
Managing The Wealth Of United States MineralsBy David C. Russell
The Department of the Interior used to be a quiet, noncontroversial, almost boring agency. It, after all is the fifth oldest of the Departments, and as an old line Federal agency it has studiously performed its preservation and resource management functions in a caretaker mode--though some would say more "undertaker" than "caretaker"--locking up the body and soul of America piece-by-piece. Yes, quiet, serene. That is until Jim Watt showed up. And we have all seen that version of Mt. Vesuvius which resulted--only it was the environmentalists who blew their tops. Ronald Reagan chose Jim Watt as Secretary of this fine old agency to prove that one-third of our Nation's land and over a billion acres on the Outer Continental Shelf can work for this Nation. At the foundation of President Reagan's charge to Secretary Watt is a belief in the tenets of the free enterprise system, and in the individual freedoms upon which this country was founded. There are those who don't share this belief in democracy and free enterprise, and those who believe this 205 year experiment called the United States of America will fail. Nikita Krushchev said "we will bury you"--obviously he didn't agree with our system. An Italian sociologist, Franco Ferrorotti, said bureaucratic stagnation will kill capitalism. Certainly we have all felt the ravages of bloated bureaucracies. Perhaps one indicator in the United States is the Federal Register, that daily compilation of Government's largesse. In 1970, 20,000 pages of the Federal Register were published. A decade later, in 1980, that volume had quadrupled to 80,000 pages. The Federal bureaucracy can stagnate from excessive budgets as well. The Interior Department spent $60 million on administering Federal coal leasing in 1981. That's nearly two bits a ton for every ton of coal leased in 1981. You wouldn't stay in business very long if your administrative overhead on inventory was that outrageous. But the pessimism of our critics is apparent from more than red tape and bloated budgets. For decades America has been fasting--consuming too little of America's wealth of minerals, subsisting instead on a diet heavily reliant upon mid-east oil, with little emphasis or concern for inventorying and developing domestic energy and mineral resources. Economics--yes. But short-term, short-sighted economics. Excessively dependent upon foreign imports, of oil, cobalt, chrome and other strategic minerals, the U.S. measures its time before another embargo--or fallen Shah, or Soviet manipulation, or Saudi shift, or, as we witnessed in Egypt, assassination--an untimely loss to mankind and efforts to bring peace to the troubled mid-east. These disruptions, in addition to their tragic human tolls, impair the free world's security. Huge chunks of the United States have been locked away in dozens of single land use categories in the name of conservation, with only the foggiest idea of what resources might be denied the American people-and this at a time of unacceptable levels of energy and strategic mineral imports. More than half and perhaps two-thirds of all Government-owned lands are totally withdrawn from or severely restricted to development under the mining and leasing laws. We must continue to rid Government of the overly zealous restraints which have been keeping us from drawing upon that which can help restore our economy and national security. When we assumed responsibility, the United States was dependent on foreign sources for about 40 percent of its oil. In 1981, our oil import bill was approximately $83 billion--nearly 17 times what it was in 1972. Our reliance on foreign sources for essential minerals is even more disturbing. We must look to other countries--some unfriendly, some unstable--for 22 of 36 strategically critical minerals. Yet the energy resources on federal lands which are owned by the American people could meet our needs for centuries if properly managed. Eighty-five percent of the crude oil yet to be discovered in America is likely to come from public lands, as will 40 percent of the natural gas, 35 percent of the coal, 80 percent of the oil shale, nearly all of the tar sands, and substantial portions of uranium and geothermal energy. Our vast hardrock-mineral wealth includes untapped deposits of essential elements we now import, such as chromium, copper, platinum, and cobalt. The obvious question is, if these abundant resources can help to revitalize our economic strength and to preserve our national security, why aren't we using them to better advantage? To a large extent, the answer can be found in past decisions to restrict public access to the federal estate, thus deferring to us or our successors the tough decisions that flow from Congress' mandate to provide for environmentally responsible development of America's energy and mineral treasures. Here is the legacy this Administration inherited: In January 1981, 7 years after the onset of the Mideast oil embargo: ---Less than 15 percent of federal onshore lands were under lease for oil and gas development; ---No oil and gas leases had been issued in Alaska for 15 years;
Jan 1, 1982
-
Industrial Minerals - Importance and Application of Piezoelectric MineralsBy Hugh H. Waesche
Of all the military services, the Signal Corps is the most concerned with piezoelectric minerals because of its function as a supply service to the strategic and tactical military forces. Consequently this paper is written from the point of view of one associated with that organization. The Signal Corps is responsible for the research, development, and supply of communications, radar, and components to the using services of the Department of the Army and to some extent the Other branches of the National Defense Department. Their work therefore includes the study of the sources* characteristics, and application of quartz and other piezoelectric materials. These materials have become a vital consideration in strategic planning and are essential for efficient tactical operation by all the Armed Forces. The Signal Corps at the beginning of world War 11 Was respon-sible for both Army Ground and Air Force electronic equipment. Since that time this Army service organization has probably done more in the development of frequency control devices using piezoelectric materials than any other group. The U.S. Department of the Interior, Bureau of Mines, Minerals yearbook of 1945, shows that during the four war years, 1942 through 1945, 9,598,-410 Ib of quartz crystal were imported for all uses and of this total, 5,168,000 lb were consumed to produce 78,320,-000 crystal units for electronic application. Other government records confirm these data which conclusively show that approximately 53 pct of the crystalline quartz imported was consumed in the production of electronically applied quartz crystal units. It may be assumed that some effort was made to maintain a stockpile over demands for all purposes. and this would mean that the actual percentage of quartz used electronically was considerably over the 53 pct figure. These data only emphasize that electronic application of crystalline quartz was the greatest requirement, and per- haps the actual value in this application to national defense is many times greater in importance than is apparent on first inspection. Current electronic research and development programs of the Armed Forces are planned around the fundamental use of piezoelectric minerals for frequency control and this at present, at least, means quartz. Definition and Early Development The word piezoelectricity is formed from combination of the Greek word "piezein". meaning "to press," and "electricity." It is that property shown by numerous crystalline substances whereby electrical charges of equal and opposite value are produced on certain surfaces when the crystal is subjected to mechanical stress. It appears to be intimately associated with the better known property, pyro-electricity and in fact, the two may be manifestations of the same phenomeuon. This property was discovered by Pierre and Jacques Curie in quartz, tourmaline, and other minerals in 1880 while studying the symmetry of crystals. The converse effect, that is, mechanical strain in the crystal when placed in an electrical field, was predicted by the French physicist, G. Lippman, in 1881, and verified by the Curies almost immediately. As has been the case with many discoveries of similar character in the basic sciences, not much attention was paid to this property for man)- years except as an entertaining curiosity. Between 1890 and 1892 a series of papers was published by W. voigt in which the theoretical physical properties were put into mathematical form. The first practical application of piezoelectricity occurred during World War I when professor P. Langevin of France used quartz mosaics to produce underwater sound waves. The same mosaics were used to pick up the sound reflections from submerged objects which were in turn, amplified by electronic means and used to determine the distances to such objects. This device was intended for use as a submarine detector but development was not completed in time for war service although it was used later for determining ocean depths. About the same time, A. M. Nicholson, of Bell Telephone Laboratories, developed microphones and phonograph pickups using Rochelle salt crystals. A major step in the application of piezoelectric quartz came in 1921, when professor W. G. Cady, of wesleyan university, showed that a radio oscillator could be controlled by a quartz crystal; from that date, this use of quartz has increased steadily, reaching its peak in world war 11 as is shown by the figures previously given. Essentially all American electronic equipment for communication, navigation, and radar, utilized quartz crystals for the exacting frequency control required. Crystalline Minerals with piezoelectric Properties QUARTZ Hundreds of piezoelectric crystalline materials are known, most of which are water soluble. Of these, quartz appears to be without a peer for electronic frequency control. Unfortunately, the quartz must be of superior quality. It must be free of mechanical flaws, essen-tially optically clear, free of both Brazil and Dauphiné twinning and must be, for average uses, over 100 g in weight. Because of these stringent requirements, raw quartz of the quality desired is of rare occurrence. In addition to quartz, several other naturally occurring crystalline materials are known to have the piezoelectric property and could perhaps be substituted for quartz in some applications. These
Jan 1, 1950
-
Part X - Communications - Computer Program System for Analysis of Electron Microbeam Probe DataBy E. Lifshin, R. E. Hanneman
QUANTITATIVE applications of the electron micro-beam probe frequently involve the evaluation of complex mathematical expressions and/or the analysis of large amounts of experimental data. The purpose of this communication is to describe briefly a versatile and useful computer program system that is applicable to analyze rapidly a wide variety of practical microprobe problems. This system consists of a group of ten FORTRAN programs that can be stored on tape, cards, or in the memory disc of the computer. These programs, or links, can be run individually or in any prespecified sequence without interrupting the operation of the computer or without destroying information which is being transfered from one link to another. For the program system described here a GE-235 computer with disc storage was used, so that the DCHAIN method of program linking was employed. Included in the library are programs to: 1) initiate analysis of a new set of data and transfer control between all other programs in any predetermined manner; 2) generate theoretical calibration curves of composition vs relative intensity; 3) generate empirical deviation parameters from least-square fits of experimental calibration data from standards of known composition; 4) convert raw X-ray data to corrected composition; 5) determine inter diffusion coefficients by Matano analysis of con centrat ion -distance data on a uniaxial diffusion couple; 6) determine activation energies and frequency factors of temperature-activated processes such as diffusion; and 7) generate calibration curves for determination of the thickness of thin films using microanalysis. A detailed description of these computer programs and their underlying principles is available on request from the authors."' The first program to generate theoretical calibration curves of corrected relative intensities vs composition uses the Poole and Thomas atomic number correction' and the Philibert absorption factor' with a voltage-dependent mass absorption coefficient for electrons in the alloy. A modified Castaing fluores- cence correction is also used which includes the effects of both Ka and KO radiation and over voltage.' Once the theoretical curves have been calculated in 1 wt pct intervals, these results are least-squares fit to obtain Ziebold deviation parameters' which are stored in COMMON in the computer memory. The net discrepancies between the original theoretical calibration curve and the regenerated curve using the Ziebold parameter are computed. Although this link is explicitly written for K-K fluorescent interactions, it can be applied to K-L, L-K, and L-L interactions as previously disc~ssed."~ Similar programs have also been written to utilize the Wittry fluorescence correction, Birks combined corrections, and various other corrections.' These modified programs have proved to be quite useful for quantitative comparisons of the results of the various theories. The program for conversion of raw X-ray data to corrected composition includes corrections for drift, backround, and instrumental dead time. The corrected intensities are converted to composition by use of the Ziebold equation"2 and parameter obtained from the program system. The results can be obtained for either atom or weight fractions. In addition to accurately computing interdiffusion coefficients the Matano analysis program calculates least-square smoothed values of concentration, concentration gradient, and curvature for each point on the raw input concentration profile. In order to obtain high accuracies a unique method of performing a least-square polynomial fit to incrementally advancing profile segments which overlap is used.' This program has been successfully modified for use in ternary diffusion problems3 and can readily be modified to handle analysis of diffusion profiles which include phase boundary discontinuities. This link is generally applicable to analysis of interdiffusion data obtained by other techniques as well as by the microprobe. The primary function of the next program is to least-squares fit experimental diffusion data to the normal Arrhenius function: D = Doexp(-Q/RT), to obtain values of Do and Q. In addition the probable error and one, two, and three u statistical confidence limits of DO, Q, and log D are evaluated. This program is also directly useful for analysis of any other simple temperature-activated processes including conductivity, and certain deformation and chemical processes. The program to generate calibration curves for film-thickness determination using the microprobe is based on a numerical integration of the equation derived by Cockett and ~avis.' Values of film thickness obtained by this program for copper on various substrates are in good agreement with measurements made by other techniques. Versions of the above program system have been prepared for use with or without a remote teletype connection to the computer for processing on either a real-time or time-share basis. The instrumentation coupling a microprobe to a teletype for automatic data collection and analysis by the presently described program system has been reported elsewhere by the authors.' If teletype equipment is not used to communicate with the computer, standard methods of card reading and tape reading can be used. In either
Jan 1, 1967
-
Part VIII – August 1968 - Papers - Self-Diffusion in Plutonium Epsilon Phase (Bcc)By Michel Dupuy, Daniel Calais
The study of self-diffusion of plutonium in E phase has been carried out by the welded couples method. The tracer used was puZ4O which is detected by its X-ray emission (conversion lines of uranium which are computed between 13 and 21 kev). Intensities were measured with a scintillation counter. Each layer was removed in a direction parallel to the original interface with a grinding machine and a thickness measured with a pneumatic comparator. The concentration-penetration curves obtained were corrected for the effect of heating time from room temperature to annealing temperature and for the expansion due to phase transformations of plutonium. They were analyzed by the generalized Gruzin method. Self-diffusion of plutonium in E Phase is very fast cm per sec between 500" and 620°C) and the diffusion zones are 2 to 3 mm wide for annealing times ranging from 30 min up to 10 hr. The Arrhenius law gives the temperature dependence in the form: From the point of view of self-dqfusion, PUE phase falls into the anomalous bcc metals category (Tip , Hfp, Zrp, Uy) with a low-frequency factor and an activation energy lower than those provided by standard correlations. No theory proposed hitherto to explain these anomalies (influence of dislocations, of extrinsic vacancies bonded to inlpurities, of bi-vacancies) can clearly explain the self-diffusion coeffzcients of plutonium. DIFFUSION in bcc metals is a present-day problem. A recent symposium (Gatlinburg, 1964), followed by a book,' has been devoted to it. A great many experiments seem to show that diffusion in certain bcc metals obeys unexpected laws. The activation energies measured are sometimes strangely low (B hafnium, y uranium). For certain metals (0 zirconium, p titanium) the curves of log D (D = diffusion coefficient) as a function of 1/T (T = absolute temperature) are not linear. The frequency factors Do, which are of the order of 1 sq cm sec-' in fcc metals, vary from 1 to 10~6 sq cm sec-'. Various theories have been put forward to explain these anomalies; none is yet satisfactory. We wished to introduce a new experimental result by studying the self-diffusion in c plutonium. This allotropic phase, stable from 475°C up to the melting point (640°C), is in fact bcc. Unfortunately, nothing is known of the characteristics of the point defects in this phase, which limits the scope of the hypothesis which can be made about the mechanism(s) of self-diffusion in plutonium. 1) EXPERIMENTAL METHODS 1) Principle. We used the welded couple method. The two pellets of the couple initially have different 240 isotope contents (X emitter). After diffusion, the concentration/penetration curves are drawn up by the generalized Gruzin method. 2) Gamma Spectrography. The metal used in our study is plutonium, either low in puZ4O (isotopic content 1 pct) or high in puZ4O (8 pct). The latter also contains plutonium 241 (-1 pct) and 300 ppm of ameri-cium produced by the reaction Pu2U-AmM1 + 8-. The emission spectra of these two plutoniums placed in leak-tight vinyl bags have been studied by y spectrograph~. The detector is a thin crystal of thallium-doped sodium iodide. The activity of the plutonium rich in 240 is about twice that of the plutonium low in 240 in the energy band of 17 kev (L conversion lines of uranium); this band was used in these measurements. 3) Preparation and Examination of the Diffusion Couples. Diffusion couples were made from plutonium with a high and low PU"' content. Pellets (6 6 mm. thickness 3 mm) mounted on a polishing disc with ground parallel faces were polished mechanically on both sides. In this way, pellets with two parallel faces were easily obtained. The polished pellets were joined by a 6 phase anneal (420°C, 1 hr) in a small screw press (pressure of 20 kg per sq mm cold); a centering ring enabled the two pellets to be pressed coaxially. The couples then were subjected to the diffusion treatment by annealing in the E phase in sealed silica ampules in argon at atmospheric pressure. The annealing temperatures and times are given in Table I. The couples were encased in a mild steel ring, the joint interface being thus parallel to the ground face of the ring. The diffusion couple/ring assembly underwent successive abrasions by means of a magnetic plate grinder. The thickness of the abraded layer was measured with a Solex pneumatic comparator when it was less than 0.1 mm (accuracy 0.2 p) or with a mechanical micrometer (accuracy 3 p) for passes of the order of 0.2 mm. All these operations were done in glove boxes, as plutonium is particularly toxic. After each abrasion we determined the emission spectrum of the ground face. The emissive surface is defined by means of a diaphragm 3 mm in diam. We noted more particularly the X activity in the 17-kev
Jan 1, 1969
-
Technical Notes - What Mathematics Courses Should a Mining Engineer Take?By G. H. Miller
With the recent advances which have been made in science and technology and the increased use of mathematics in this area, the question of the best mathematics courses for a mining engineer to take is of major importance. The question becomes even more difficult to answer due to the recent increase in the number of different mathematics courses in the last two decades offered by the mathematics departments. Therefore, the National Study of Mathematics Requirements for Scientists and Engineers (NSMRSE) was designed to provide some answers to these questions. Approximately 10,000 scientists and engineers were selected for the Study, These individuals were placed in two categories: (1) The Awards Group, recipients of national honors or awards and those recommended by the members of the Board of Advisors as having national and international reputations in their areas of specialization and (2) The Abstracts Group, persons exceptionally productive in their research, based on the number of journal articles listed in the last five years in the Engineering Index, Scientific and Technological Aerospace Reports, Chemical Abstracts, Biological Abstracts, and the Physics Abstracts. The NSMRSE Course Recommendation Form and the Instruction and Course Content Sheet were constructed with the aid of the Board of Advisors and other consultants. For the Study, 40 courses were selected by the mathematical consultants. In order to make sure that the basic content of the mathematics courses was the same for all respondents, a brief resume of each of the 40 courses was given. The NSMRSE Course Recommendation Form consisted of seven sections. These sections were as follows: Section 1, 38 different specializations; Section 2, orientation of work (applied through theoretical); Section 3, highest degree obtained; Section 4, place of employment (academic, nonacademic); Section 5, administrative capacity (administrative or nonadministrative); Section 6, age groups (five-year intervals). Section 7 contained the 40 courses which were to be marked according to five categories: (1) Course Length, 3 to 36 weeks; (2) Applied-Theoretical Orientation, a five-point scale; (3) Course Level, freshman through graduate; (4) Knowledge of Course; and (5) Use of Course Content in Work. The Analysis The report of the data is based on the replies received from 44 mining engineers. This group was part of the Awards and Abstracts Group for all engineers. The resume of the recommended courses is reported in quintiles (upper fifth to lower fifth), since recommendations of this kind are not precise. The results of the Study are based on recommendations of the most active research men in engineering in the U.S. today; therefore, the reader should realize that these course recommendations represent an upper bound of mathematics requirements for the Ph.D. in both undergraduate and graduate work. Conclusions and Recommendations 1) Mining engineering students who plan to be active research specialists should take all those courses which are "very highly recommended" (80-10070) and "highly recommended" (60-79.9%). Those courses in the upper two quintiles and recommended by most mining engineers are: first-year calculus, third-semester calculus, elementary differential equations, applied statistics, and machine computation. Courses of "moderate recommendation" (40-59.9%) are: vectors, intermediate ordinary differential equations, the first course in partial differential equations, elementary probability, and linear programming. 2) The great majority of mining engineers indicated that they prefer a course which is concerned primarily with applications. Only the standard courses such as first-year college mathematics, calculus, differential equations, and advanced calculus received a recommendation for 50% theory and 50% practice. Therefore, all mathematics courses given to mining engineers should contain many applications and little theory. Engineers in both the applied and the combination (ap-plied-theoretical) groups indicated a definite need for applications in all courses. 3) In general, recommendations were for mathematics courses to be given for short intervals of time such as 3, 6, or 12 weeks. Only the standard courses mentioned previously received the usual one-semester or one-year recommendation. Therefore, it is of value to combine several related courses into a one or two-semester course so that the mining engineering student could acquire important mathematical knowledge at an early date in order to prepare him for his research. 4) There was little use for the newer courses in modern mathematics such as the functional analysis sequence, the modern algebra sequence, and the group theory sequence. In addition, there were uniformly very low recommendations (0-19.9%) for multilinear algebra, complex variables, mathematical logic, special functions, integral equations, approximation theory, analytic mechanics, integral transforms, and geometric algebra. Therefore, these courses should be given a low priority. 5a) Comparisons among mining engineers with different backgrounds showed that the combination ap-plied-theoretical group recommended more mathematics than the applied group. 5b) There was little difference in recommendations between the administrative group and the nonadminis-trative group. 5c) Analysis of age groups showed that those in the lower age groups gave significantly higher recommendations to courses such as the first course in partial dif-
Jan 1, 1971
-
Part X - The 1967 Howe Memorial Lecture – Iron and Steel Division - Strength and Ductility of 7000-Series Wrought-Aluminum Alloys as Affected by Ingot StructureBy S. Lipson, H. W. Antes, H. Rosenthal
A study was made of the effect of ingot structure on the strength and ductility of high-strength wrought-aluminum alloys. It was found that a fine-cast structure facilitated complete homogenization which, in turn, resulted in significant increases in ductility and strength. A completely homogenized 7075-T6 alloy developed tensile properties of 85,000 psi UTS, 75,000 psi YS, with 40 pct RA. Completely homogenized 7001-T6 alloy tensile properties were 102,000 psi UTS, 99,000 psi YS, with 19 pct Ra. A method was devised for making small ingots having secondary dendrite arm spacing of less than 10 u. This method involved multiple-pass arc melting of commercial rolled plate with a tungsten electvode. This material could be completely homogenized after 3 hr at 900°F; homogenization of the original plate material was not complete after 120 hv at 900°F. Degree of homogeneity was determined by use of metallographic and electron-microprobe analyses. The electron-micro-probe study also showed the preferential segregation of solutes in the microstructure. HIGH-strength aluminum alloys, such as those of the 7000 series, usually freeze by the formation and growth of dendrites. The dendrite arm spacing (DAS) depends on the rate of solidification.' Commercial ingots are usually direct chill-cast to promote more rapid solidification, but, due to the large mass of the ingot, localized solidification times are long and a large DAS results. During solidification, solute elements are rejected by the solid as it forms, causing enrichment of the liquid and ultimately solute-rich interdendritic regions. In order to attain a homogeneous ingot, the segregated solutes must diffuse across the dendrite arms. The larger the DM, the longer the time for complete homogenization. In the case of commercial ingots, the DAS is so large that the time for complete homogenization is prohibitively long and, therefore, second phases or compounds are always present. These un-dissolved phases are carried over to the wrought material during processing, resulting in an impairment of strength and ductility. In addition, the mechanical fibering of the undissolved second phases or compounds during working results in mechanical property anisotropy. If complete homogenization could be attained, higher ductility could be expected. The realization of higher ductility at current strength levels is a desirable objective; however, if higher-strength alloys were wanted, it might be possible to sacrifice some of this ductility by adding more solute elements and produce even higher-strength alloys than are currently available. Further, if complete homogenization leads to more efficient utilization of solute elements, then more dilute alloys should have relatively high strengths with very high ductility. In all instances, it would be expected that the degree of mechanical property anisotropy due to mechanical fibering would be reduced. Therefore, it was the purpose of this investigation to produce cast structures that would facilitate homogenization and to determine the effect of homogenization on the properties of high-strength, wrought-aluminum alloys. MATERIAL CLASSIFICATION Commercial Alloys. In order to illustrate the non-homogeneous condition that exists in commercial high-strength, wrought-aluminum alloys, typical micro-structures of 7001, 7075, and 7178 are shown in Fig. 1. The chemical compositional specifications of these alloys are given in Table I. It can be seen in Fig. 1 that a considerable amount of undissolved second-phase material is present in each of these alloys. The solute elements associated with the undissolved phases were identified by electron microanalyses. Back-scattered electron images and characteristic X-ray images of the three commercial alloys are shown in Figs. 2, 3, and 4. These data indicate that the second phases are regions of high copper and high iron-copper concentrations. The second-phase material also was analyzed for magnesium, zinc, manganese, chromium, and silicon, but no significant enrichment above that of the matrix was found. Therefore, the problem of homogenization resolved itself into one of dissolving the copper-rich and the iron-copper-rich second phases. In order to accomplish this objective, two approaches were made. The first was to reduce the iron as low as possible since this element has a maximum solid solubility of 0.03 pct in aluminum. The second was to produce cast structures with finer DAS to facilitate dissolving the second phases. Commercially Produced High-Purity Alloys. A special high-purity, 2000-lb ingot of 7075 alloy was made by a commercial producer. This alloy contained the following weight percentages of solutes: 5.63 Zn, 2.48 Mg, 1.49 Cu, and 0.21 Cr. All other elements combined were less than 0.02 pct by wt including iron and silicon at less than 0.01 pct each. The ingot was cast and processed into rolled plate using standard commercial techniques. Microstructures of standard commercial 7075 and the special high-purity 7075 are shown in Fig. 5. It can be seen from this figure that the high-purity alloy has less undissolved second-phase material, but a significant amount was still present. The second phase in the high-purity material did not contain iron but it was found to be enriched with copper. The slight effects of the increased purity and de-
Jan 1, 1968
-
Institute of Metals Division - Mechanism of Electrical Conduction in Molten Cu S-Cu Cl and MattesBy G. Derge, Ling Yang, G. M. Pound
The specific conductance and its temperature dependence were measured over the entire composition range of the molten Cu2S-CuCI system. At a typical temperature of 1200°C, 10 rnol pet of the ionically conducting CuCl reduced the specific conductance from about 77 ohm-lcm-l for pure Cu2S to about 32 ohm -1cm -1, and 50 mol pet CuCl reduced the conductance to that for pure CuCI—about 5 ohm 1cm1. The nature of electrical conduction in molten Cu2S, FeS, CuCI, and mixtures was studied by measuring the current efficiency of electrolysis at about 1100°C. The Cu2S, FeS, and mattes were found to conduct exclusively by electrons, but addition of 1 5 wt pet CUS to Cu2S produces a small amount of electrolysis. Addition of CuCl to Cu2S suppresses electronic conduction, and ionic conduction reaches almost 100 pet at a CuCl concentration of about 50 mol pet. These facts are interpreted in terms of electron energy level diagrams by analogy to the situation in solids. RESULTS of electrical conductivity studies on molten Cu-FeS mattes as a function of composition and temperature have been reported.' The specific conductances ranged from about 100 ohm-' cm-' for pure Cu2S to 1500 ohm-' cm-1 for pure FeS. This is in sharp contrast with the low specific conductance of molten ionic salts for which the transfer of electricity is by migration of ions in the field. In general, these ionically conducting molten salts, such as NaC1, KC1, CuC1, etc., have a specific conductance of the order of magnitude of 5 ohm-' cm-'. It was concluded on the basis of this evidence that molten FeS and Cu,S exhibit electronic conduction. Pure molten FeS has a small negative temperature coefficient of specific conductance, resembling metallic conduction, while pure molten Cu2S has a small positive temperature coefficient, resembling semi-conduction. The molten Cu2S-FeS mattes follow a roughly additive rule of mixtures, both with respect to specific conductance and temperature coefficient. Savelsberg2 has studied the electrolysis of molten Cu2S and Cu2S + FeS. He concluded that while molten Cu2S is an electronic conductor, there is some ionic conduction in molten Cu2S + FeS3 owing to the formation of the molecular compound 2Cu2S.FeS and its dissociation into Cu1 and FeS2-1 ions. The present work does not verify his results. Chipman, Inouye, and Tomlinson" have studied the specific conductance of molten FeO and report a high specific conductance, about 200 ohm-1 cm-1 of the same order of magnitude as that found for molten mattes, and a positive temperature coefficient. They interpret these results in terms of p-type semiconduction in the ionic liquid by analogy to the situation in solid FeO.1 imnad and Derne' detected appreciable ionization in molten FeO by means of electrolytic cell efficiency measurements. In order to verify the conclusion that electrical conduction in molten Cu2S and mattes is electronic, and to gain further insight into the structure of molten sulfides, the following investigations were carried out in the present work: 1) The specific conductance, s of the molten system Cu2S-CuC1 was measured as a function of temperature over the entire composition range. As discussed later, molten CuCl is an ionic substance. It was thought that if molten Cu2S were simply ionic in nature, addition of small amounts of CuCl might not have a catastrophic effect in lowering the high conductance of the Cu2S. On the other hand, if much electronic conduction occurs, addition of the ionic CuCl should have a large effect in destroying the electronic conduction. 2) The electrolytic cell efficiency of the following molten systems was measured at about 1100°C in specially designed cells: Cu3; Cu2S + FeS, 50:50 by wt; FeS; Cu2S + CuS, 15 wt pet; Cu2S + CuC1, 5.9 to 46.4 mol pet; and CuC1. This gives a direct measure of the fraction of current carried by ions in these melts. Further, the cell efficiency, extrapolated to zero ionic current, is given by cell efficiency = (s leasile + s elexstronic). [1] s lucile for molten CulS would be expected to be no greater than that for molten CuC1, whose s lonle is about 5 ohm-' cm-1, as will be seen in the following. u,.,,.,.,.......for molten Cu,S is of the order of 100 ohm-' cm-'.' Thus, a large increase in cell efficiency from 0 to values of 10 to 100 pet upon addition of CuCl to Cu2S would indicate destruction of the electronic conductance. Conductance Measurements Experimental Procedure—The apparatus and experimental method were the same as those described in detail in connection with the study of electrical conduction in molten Cu,S-FeS mattes.' A four terminal conductivity cell and an ac poten-
Jan 1, 1957
-
Part IV – April 1969 - Papers - Microstructural Stability of Pyromet 860 Iron-Nickel-Base Heat-Resistant AlloyBy C. R. Whitney, G. N. Maniar, D. R. Muzyka
Previous results have shown that Pyromet 860, an Fe-Ni-base heat-resistant alloy, is stable at temperatures as high as 1500°F for aging times as long as 100 hr. This Paper describes the results of long-time creep-rupture testing at 1050" to 1400°F at various stress levels. Times as long as 37,660 hr were employed. The effects of time, temperature, and stress on the precipitates and their morphologies were studied by optical and electron microscopy, X-ray and electron diffraction, and microprobe techniques. phase, containing cobalt, nickel, and molybdenum, was detected after extended exposures from 1200" to 1400°F and careful study was performed to describe the kinetics of its formation in this alloy. µ phase formation apparently has little effect on the elevated-tem-perature properties of Pyromet 860. For times as long as 500 hr at 1300°F and below, with µ phase present, m significant effects on ambient temperature properties were noted. For longer times at 1300°F and after 1400°F exposure, the effects of u phase on ambient temperature tensile strength properties are not clear due to y' effects and grain boundary reactions. Electron-vacancy, N,, numbers were calculated using different methods described in literature and correlated with the present findings. In the selection of alloys for use in gas turbine applications, structural stability ranks as a primary criterion. High-temperature strength and cost are also of major concern. With these factors in mind, Pyromet 860 alloy, an Fe-Ni-base superalloy was designed. This alloy combines the cost advantages of Fe-Ni-base alloys such as A-286, 901, and V-57 with improved strength and structural stability'1,2 and no tendency to form the embrittling cellular 77 phase. A previous study3 reported on the stability of Pyro-met 860 at temperatures from 1375" to 157 5°F and times up to 100 hr. That study showed that the y' precipitates increased in size and separation and decreased in number with an increase in time or aging temperature. No deleterious phases were found to occur. In the present work, samples from four production heats were subjected to long-time creep-rupture testing at 1050" to 1400°F at various stress levels. Various heat treatments were used on the starting samples and tests were run up to 37,660 hr. The effects of time, temperature, and stress on the precipitates and their morphologies were studied by optical and electron microscopy, X-ray and electron diffrac- tion, and microprobe techniques. Electron vacancy numbers, Nv , calculations were made by TRW.4 Experimental results are correlated with the Nv data used to predict occurrence of intermetallic phases such as a phase. EXPERIMENTAL PROCEDURE Mechanical Tests. Material for the present study came from four production size heats of Pyromet 860 alloy, weighing from about 3000 to about 10,000 lb. All of these heats were made by vacuum induction melting plus consumable electrode vacuum remelting. The nominal analysis for this alloy is compared with the actual analysis of the four heats in Table I. Sections of these heats were forged to 9/16-in. round bar,3/4-in. square bar, 3-in. round bar, 4-in. square bar, and a gas turbine blade forging about 16 in, long, about 6 in. wide, and weighing about 20 lb. In general, all forging of this alloy is done from a 2050°F furnace temperature. Longitudinal test blanks were cut from the centers of the smaller bars, from mid-radius positions for the 3- and 4-in. bars, and from the air foil of the gas turbine blade and heat-treated according to the procedures outlined in Table 11. Heat treatment A is the "standard treatment" recommended for this alloy for best all-around strength and ductility. Heat treatment B is a modification of treatment A for improved tensile strength at moderate temperatures. The treatment coded C was designed for treating large sections according to a procedure previously described.' Heat treatment D was developed to yield optimum stress relaxation characteristics at 1050°F for a steam turbine bolting application. After heat treatment, the test blanks were machined either to plain bar creep specimens with a gage diameter of 0.252 in., to combination smooth-notched stress-rupture bars with a plain bar diameter of 0.178 in. and a concentration factor of Kt 3.8' at the notched section, or to notch-only specimens. All specimens conformed to ASTM requirements. Metallography. Most of the creep-rupture tests were continued to failure. A few bars were fractured as smooth or notch tensiles after creep-rupture exposures. After fracturing, ordinary metallographic sections were made primarily in gage areas adjacent to fractures to represent a "high-stress" region and through specimen threads to represent a "low-stress" region. All metallographic sections were made in a longitudinal direction with respect to the test specimen axes. For optical microscopy, the samples were etched in glyceregia (15 ml HC1, 5 ml HNO,, 10 ml glycerol). For XRD analysis, the phases were extracted electrolytically in two media: 20 pct &Po4 in H20 for selective extraction of y' and 10 pct HC1 in methanol for carbides and other phases.
Jan 1, 1970
-
Part VIII - Papers - Martensite-to-Fcc Reverse Transformation in an Fe-Ni AlloyBy S. Jana, C. M. Wayman
The reverse transformation of bcc martensite to the fcc phase was studied in an Fe-33.95 wl pct Ni alloy by nzeans oj dilatometry, melallography, and electron microscopy. Upon "slozc" heating (-1°C per min) length cJmnge us temperature plots showed u gradual contracLion over the temperature range 200" to 280"C ,followed by a more abrupt contraction beginning a1 -280°C. Howet,ev, zchen the heating rate was increased -4°C per tnin, no gradual contraction was observed and only the abrupt contraction starting at -2BO"C was found. Thus on slower heating- the AS "temperature" for the subject alloy, unlike the MS temperature, is better defined as a range of temperatures. Both optical and transmissiorl electron microscope observations showed that some of the martensite plates exizibited a partial loss of transformation twins during reversal. The midvib region of the martensite plates disappeaved relatively early duirng the reversal. Metallographic observations slowed that the earliest detectable stage of the rezlerse tvansforrvration begins (axd Moues inulardly) at The Martensens i te - parent interface. At higher temperatirres, the. formation of martensitically reversed jcc plates within the bcc martensite plales was observed. It is concluded that the reverse transformation consists of a diffusion less process (martensitic); but this is ps-obably aided by a prior or simultaneous dijjusiorz-comltvolled process, at leasl in the case of slower heat-ing' experiments. ALTHOUGH numerous investigations have dealt with the parent-to-martensite ("forward") transformation (fcc — bcc) in Fe-Ni alloys, comparatively little is reported on the ("reverse7') martensite-to-parent transformation.'-4 Even though such reverse transformations have been studied in detail in some nonferrous systems, one of the difficulties of studying the reverse transformation in most ferrous mar-tensites is that the martensite decomposes by tempering during heating. However, carbonless Fe-Ni alloys do not exhibit this difficulty since the transformation in these alloys is completely reversible. The present investigation represents an attempt to shed more light on the nature and mechanism of the martensite-to-parent transformation. 1) EXPERIMENTAL PROCEDURE 1.1) Alloy Prepatation. Fe-Ni alloys of compositions near 34 wt pct Ni were prepared from zone-refined iron (99.994 wt pct Fe) and high-purity nickel (99.999 wt pct Ni) by induction melting in recrystallized alumina crucibles in an argon atmosphere, with prior vacuum evacuation to 10"3 mm Hg. The alloys were homogenized by induction stirring in the molten state for 5 min. After solidification, the alloys were further homogenized in evacuated quartz capsules for 96 hr at 1230°C. 1.2) Dilatometry. Slices of the ingot were hot-forged (750°C in air) into approximate rod form and these specimens were then hot-swaged (750°C in air) into long cylindrical rods 0.55 mm diam. From the rods, specimens about 1 in. long were cut. These were then vacuum-annealed for 24 hr at 1200°C, cooled to room temperature, and subsequently transformed to martensite in liquid nitrogen (whereby about 40 pct transformation was obtained). Dilatation measurements were made by observing length changes in a vacuum dilatometer with an externally mounted LVDT sensing element. 1. 3) Preparation of Electron Microscope Specimens. Slices of the ingots were cold-rolled (with intermediate vacuum anneals) to -0.020 in. Out of these rolled sheets, specimens (about 1 by 1 in.) were cut. These were then vacuum-annealed, transformed to martensite by cooling in liquid nitrogen, and subsequently heated from room temperature to various temperatures to effect either partial or complete reverse transformation. These specimens were then chemically polished to 0.002 in. in l:l HsOz (30 pct) and &PO4 (85 pct) solution, and thinned to electron transparency in an electrolyte consisting of 150 g CraOs, 750 ml glacial acetic acid, and 30 ml ~~0.~ Observations were made with a 100-kv Hitachi HU-11 electron microscope equipped with an HK-2A tilting device. 1.4) Optical Microscopy. Metallographic observations were made with a Leitz MM5 metallograph on the same 0.020-in. sheet specimens as were used for electron microscopy and on bulk specimens which were 0.2 in. or more on a side. The chemical thinning solution when cooled below 20°C also served as an etchant for this alloy. Observations of surface relief were made with a Zeiss interference microscope employing a Thallium light source of wavelength 0.54 p. Specimens for interference studies were prepared by two-stage polishing on Buehler vibromet polishers using 0.3 and 0.05 p alumina abrasives. 2) EXPERIMENTAL RESULTS 2.1) Comparison of the MS,AS, and Af Tempera-tures wTth Previous Re sults. The AS aLd Af tempera -tures of several Fe-Ni alloys were determined dila-tometrically. The MS temperatures of the same alloys were determined by continuously lowering the temperature using a mixture of isopentane and liquid nitrogen and observing the highest temperature at which a prepolished specimen showed surface upheavals. For the present the As temperature is defined as the temperature at which an abrupt decrease in length occurs in the dilatation plot. The Ms,As7 and A determinations in the present investigation and those of Kaufman
Jan 1, 1968
-
Part X – October 1969 - Papers - Microyielding in Polycrystalline CopperBy M. Metzger, J. C. Bilello
Microyielding in 99.999 pct Cu occuwed in two distinct parabolic microstages and was substantially indeoendent of grain size at the relatiz~ely large grain sizes stzcdied. The strain recouered on unloading was a significant fraction of the forward strain and was initially higher in a copper-coated single crystal than in poly crystals. Results were interpreted in terms of cooperative yielding and short-range dislocation motion activated otter a range of stresses, and a formalism was given for the first microstage. It was suggested that models involving long-range dislocation motion are more appropriate for impure or alloyed fcc metals. THERE are still many unanswered questions concerning the degree and origin of the grain size dependence of plastic properties. In the microstrain region, a theory of the stress-strain curve proposed by Brown and Lukens,' based on an exhaustion hardening model in which the grain boundaries limit the amount of slip per source, accounted for the variation with grain size of microyielding in iron, zinc, and copper.' This theory assumes N dislocation sources per unit volume whose activation stress varies only with grain orientation. Dislocations pile-up against grain boundaries until the back stress deactivates the source, which leads to a relationship between the axial stress and the strain in the microstrain region given by: where G is the shear modulus, D the grain diameter, a the flow stress, and a, is the stress required to activate a source in the most favorably oriented grain.3 If this or other grain-boundary pile-up models are correct, then the reverse strain on unloading would be much larger for a polycrystalline specimen than for a single crystal. Also, the microplasticity would become insensitive to grain size if this could be made larger than the mean dislocation glide path for a single crystal in the microregion. These questions are examined in the present work on polycrys-talline copper and a single crystal coated to provide a synthetic polycrystal. EXPERIMENTAL PROCEDURE Tensile specimens 3 mm sq were prepared from 99.999 pct Cu after a sequence of rolling and vacuum annealing treatments similar to those recommended by Cook and Richards4-6 to minimize preferred orientation. Grain size variation from 0.05 to 0.38 mm was obtained by a final anneal at temperatures from 310" to 700°C. Dislocation etching7 revealed pits on those few grains within 3 deg of (111). For all grain sizes dislocation densities could be estimated as -107 cm per cu cm with no prominent subboundaries. The single crystals, of the same cross section, were grown by the Bridgman technique with axes 8 deg from [Oll] and one face 2 deg from (111). An anneal at 1050°C produced dislocation densities of 2 x 106 cm per cu cm and subboundaries -1 mm apart in these single crystals. A Pb-Sn-Ag creep resistant solder was used to mount the specimens, with a 19 mm effective gage length, into aligned sleeve grips fitted to receive the strain gages. All specimens were chemically polished and rinsed8 to remove surface films just prior to testing. The synthetic polycrystal was made by electroplating a single crystal with 1 µ of polycrystalline copper from a cyanide bath. Mechanical testing was carried out on an Instron machine using two matched LVDT tranducers to measure specimen displacement, the temperature and the measuring circuit being sufficiently stable to yield a strain sensitivity of 5 x 107. At the crosshead speeds employed, plastic strain rates were, above strains of 10¯4, about 10¯5 per sec for polycrystalline specimens and 10-4 per sec for the single crystals. Plastic strain rates were an order of magnitude lower at strains near l0- '. A few checks at strain rates tenfold higher were made for reassurance that the initial yielding of polycrystalline copper was not strongly strain-rate dependent. Test procedures followed the general framework outlined by Roberts and Brown.9,10 An alignment preload of 8 g per sq mm for polycrystals, and 2 to 4 g per sq mm for single crystals, was used for all tests. These gave no detectable permanent strain within the sensitivity of the present experiments; although at these stress levels, small permanent strains are detectable in copper with methods of higher sensitivity.11 12 stress and strain data are reported in terms of axial components. RESULTS General. The initial yielding is shown in the stress vs strain data of Fig. 1. For polycrystals, cycle lc, the loading line bent over gradually without a well-defined proportional limit, and almost all of the plastic prestrain appeared as permanent strain at the end of the cycle. The unloading curve was accurately linear over most of its length with a distinct break indicating the onset of a significant nonelastic reverse strain at the stress o u, indicated by the arrows. The yielding in subsequent cycles, Id and le, had the same general character. The single crystal behavior, shown to a different scale at the right of Fig. 1, was different in that initially the nonlinear reverse strain was unexpectedly much greater than for polycrystals. It should be noted that these soft crystals had a small elastic
Jan 1, 1970
-
Part IX – September 1968 - Papers - The Structure of the Zn-Mg2Zn11 EutecticBy R. R. Jones, R. W. Kraft
Zn-Mg2Znn eutectic alloys nzay freeze willr either rodlike or lanzellar rnorphology. Alloys with slighlly more than /he eutectic arrzount of rnagnesillrn usually contain three-cnned dendrjles of MgzZnll in a eutec-lic ttlulris. All three morphologies haue the same cryslallographic orientution relationship: (0UOl) zn - 11 (111) Mg2Znll and (2310)Zn 11(101) Mg2Znll, but u3ith different prej-erred groulth direclions. The lurnellae lo rods transifion in con/rolled ingols qf euleclic cotnposition occurs because lhe large kinelic undercooling due to MgzZnll minirrzizes /he ejj-ecl of the solid-solid inlerface energy. The eutectic morphology is influenced by the presence of lhree-nned dendrites 0-f MgzZn11 which may conlrol /he rricroslrccture by acting as nuclealion sites. In recent years there has been much interest in eutectic solidification and several theories have been proposed. One of the confusing factors is the existence of various morphologies in which the solidified phases may form. The lamellar microstructure seems to be most common in metal eutectics, and it has been claimed' that all regular eutectics should be lamellar if sufficiently pure. However, there still remain eutectic alloys which are not lamellar or which change their morphology as a function of growth conditions. The eutectic between zinc and the intermetallic phase Mg2Znll was chosen for this investigation because it has been found to solidify in more than one morphology. The diagram in anssen' locates the eutectic point at 3.0 wt pct Mg and 367°C. lliott gives 364°C as the eutectic temperature, leaving the phase compositions unaltered. Since the growth conditions determine the micro-structure of the solidified alloy, the factors controlling the transition from one morphology to another could be studied. The lamellae to rods transition is of particular interest. PROCEDURE Alloys were prepared from carefully weighed portions of 99.999 pct Zn and 99.97 pct Mg by melting in Pyrex containers under argon and casting into graphite boats. The resulting ingots were remelted under argon and solidified unidirectionally in a horizontal tube furnace at growth rates ranging from 2.0 to more than 50 cm per hr under a temperature gradient, measured over a 5-cm length, of 9" to 14°C per cm. The solid-liquid interface appeared to be planar at all growth rates although no attempt was made to confirm this by decantation or quenching. A few ingots were allowed to freeze uncontrolled. Most alloys were of the nominal eutectic composition, 3.0 wt pct Mg according to Hansen2 and lliott, but some contained as much as 3.35 wt pct Mg. Chemical analyses were not run since metallographic examination confirmed that the desired composition was achieved. Specimens were cut from the middle portion of the ingot normal to the growth axis, polished mechanically, and etched with 2 pct Nital. Suitable areas were selected for the determination of crystallographic orientation relationships by a tiontechniqueof described previously by one of the authors.4 The (2310) planes of zinc and the (8701, {944}? (1032) planes of Mg2Znll were found suitable for orientation determination; experimental error was on the order of 2 or 3 deg. RESULTS Three different morphologies were found in the unidirectionally solidified alloys: lamellar eutectic, rod-like eutectic, and a structure whose most predominant characteristic was the presence of three-vaned (cellular) dendrites of Mg2Znll. These dendrites were only found in alloys with more than the eutectic amount of magnesium. In some ingots fine hexagonal needles of Mg2Znll surrounding a core of MgZn2 were observed. They were probably due to incomplete alloying and seemed to have no effect on the eutectic morphology. In addition hexagonal spirals like those discussed by Fullman and wood5 and Hunt and acksonh ere observed in some ingots frozen without directional control. Both MgZZn,, and MgZnz were detected by X-ray diffraction in these alloys. Since the morphology could not be grown unidirectionally and no characteristic orientation relationship between the phases was found, further study was limited to the lamellar: rodlike, and three-vaned dendrite morphologies. Alloys of Eutectic Composition, No Dendrites. The mcrostructures of allovs with no three-vaned dendrites were either lamellar or rodlike depending on the growth rate. At rates below 10 cm per hr the morphology was lamellar, consisting of two sets of parallel plates intersecting at about 54 deg like the Mg-MgzSn eutectic described by raft.7 At growth rates faster than 14 cm per hr the microstructure showed rods of zinc in a matrix of MgnZnll, while intermediate rates yielded mixtures of rods and lamellae in small groups. The lamellar "grains" were often several millimeters in cross section, but contained small irregular areas which divided each grain into perfect islands 100 or 200 p in diam. Lamellae were parallel to each other throughout the grain in spite of these defects in the structure, Fig. 1. Rods, on the other hand, could only be produced in small groups arranged like fish scales and separated by irregular areas of appreciable thickness, Fig. 2. Alloys Not of Eutectic Composition, With Dendrites. In alloys with 3.1 to 3.35 wt pct ME,-. three-vaned dendrites bf MgzZnll were usually found surrounded by eutectic. At growth rates slower than about 10 cm per hr the dendrites were separated from each other by small areas of both lamellar and rod eutectic, Fig. 3.
Jan 1, 1969
-
Coal Water Slurry Fuels - An OverviewBy W. Weissberger, Frankiewicz, L. Pommier
Introduction In the U.S., about one-quarter of the fuel oil and natural gas consumption is associated with power production in utility and industrial boilers and process heat needs in industrial furnaces. Coal has been an attractive candidate for replacing these premium fuels because of its low cost, but there are penalties associated with the solid fuel form. In many cases pulverized coal in unacceptable as a premium fuel replacement because of the extensive cost of retrofitting an existing boiler designed to burn oil or gas. In the cases of synthetic fuels from coal, research and development still have a long way to go and costs are very high. Another option, which appears very attractive, is the use of solid coal in a liquid fuel form - coal slurry fuels. Occidental Research Corp. has been developing coal slurry fuels in conjunction with Island Creek Coal (ICC), a wholly-owned subsidiary. Both coal-oil mixtures and coalwater mixtures are under development. ICC is a large eastern coal producer, engaged in the production and marketing of bituminous coal, both utility steam and high quality metallurgical coals. There are a number of incentives for potential users of coal slurry fuels and in particular for coal-water mixtures (CWMs). First, CWM represents an assured supply of fuel at a price predictable into future years. Second, CWM is available in the near term; there are no substantial advances in technology needed to provide coal slurry fuels commercially. Third, there is minimal new equipment required to accommodate CWM in the end-user's facility. Fourth, CWM is nearly as convenient to handle, store, and combust as is fuel oil. Several variants of CWM technology could be developed for different end-users in the future. One concept is to formulate slurry at the mine mouth in association with an integrated beneficiation process. This slurry fuel may be delivered to the end-user by any number of known conveyances such as barge, tank truck, and rail. Slurry fuel would then be stored on-site and used on demand in utility boilers, industrial boilers, and potentially for process heat needs or residential and commercial heating. An alternative approach is to formulate a low viscosity pre-slurry at the mine mouth and to pipeline it for a considerable distance, finishing up slurry formulation near the end-user's plant. Finally, at the other extreme of manufacturing alternatives, washed coal would be shipped to a CWM manufacturing plant just outside the end-user's gate. Depending on fuel specifications and locations of the mine and end-user facility, any of these alternatives may make economic sense. They are all achievable in the near term using existing technology or variants thereof. The Coal-Water Mixture CWMs contain a nominal 70 wt. % coal ground somewhat finer than the standard pulverized ("utility grind") coal grind suspended in water; a complex chemical additive system gives the desired CWM properties, making the suspension pumpable and preventing sedimentation and hardening over time. Figure 1 shows the difference between a sample of pulverized coal containing 30 wt. % moisture and a CWM of identical coal/water ratio. The coal sample behaves like sticky coal, while the CWM flows readily. The combustion energy of a CWM is 96-97% of that associated with the coal present, due to the penalty for vaporizing water in the CWM. Potentially any coal can be incorporated in the CWM, depending on the combustion performance required and the allowable cost. CWMs are usually formulated using high quality steam coals containing around 6% ash, 34% volatile matter, 0.8% sulfur, 1500°C (2730°F) initial deformation temperatures, and energy content of 25 GJ/t (21.5 million Btu per st). Additional beneficiation to the 3% ash level can be accomplished in an integrated process. There are a number of minimum requirements which a satisfactory CWM must meet: pumpability, stability, combustibility, and affordability. In addition, a CWM should be: resistant to extended shear, generally applicable to a wide variety of coals, forgiving/flexible, and compatible with the least expensive processing. It was found that a complex chemical additive package and control of particle size distribution are necessary to achieve these attributes simultaneously, while maximizing coal content in the slurry fuel. Formulation of Coal-Water Mixtures A major consideration in the manufacture, transportation, and utilization of a slurry fuel is its pumpability, or effective viscosity. Most CWM formulations are nonNewtonian, i.e., viscosity depends on the rate and/or duration of shear applied. Viscosities reported in this paper were obtained using a Brookfield viscometer fitted with a T-spindel and rotated at 30 rev/min, thus they are apparent viscosities measured at a shear rate of approximately 10 sec-1. The instrument does reproducibly generate a shear field if spindle size and rotation rate are held fixed. By observing the apparent viscosities of several slurries at fixed conditions it is possible to obtain a relative measure of their viscosities for comparison purposes. A true shear stress-shear rate relationship at the shear rates at which the CWM will be subjected in industry may be obtained using the Haake type and a capillary viscometer. These viscometers are used for specific applications. However, for comparison purposes, apparent viscosities are reported.
Jan 1, 1985
-
Geology - Replacement and Rock Alteration in the Soudan Iron Ore Deposit, MinnesotaBy George M. Schwartz, Ian L. Reid
THE Soudan mine in the Vermilion district of northeastern Minnesota is the oldest iron mine in the state. It has shipped ore every year since 1884 and still contributes a yearly quota of high grade lump ore. No comprehensive report on the Vermilion iron-bearing district has appeared since Clements' monograph,' but Gruner2 discussed the possible origin of the ores in 1926, 1930, and 1932, and recently Reid and Hustad have added data on mining and geology .3, 4 For many years geologists of the Oliver Iron Mining Div., U. S. Steel Corp., have kept up to date a series of plans and vertical sections of the Soudan mine. In connection with mine operation considerable diamond drilling has been done, and this, together with the mine openings, has permitted a reasonably accurate picture of the structure of the orebodies and wall rocks. It has long been evident to geologists familiar with the mine that the ores were not a result of weathering, a point emphasized by Gruner in 1926 and 1930. As the deeper orebodies were developed it also became clear that replacement had played an important part in their development. In recent years it has been recognized that other iron ores were formed by replacement, as Roberts and Bartly5 have argued strongly for the deposits at Steep Rock Lake. On the basis of these facts G. M. Schwartz suggested to members of the Oliver staff that it would be desirable to study the evidence of replacement, particularly the possible alteration of the wall rock which would be expected if the replacement was a result of hypogene solutions. Rock Formations: The formations directly involved in the iron orebodies of the Soudan mine are few though far from simple. The country rock is largely the Ely greenstone of Keewatin age consisting of a mass of metamorphosed lava flows, tuffs, and intrusives which have been more or less altered by hydrothermal solutions. The predominant rock is chlorite schist. Interbedded with the original flows and tuffs are a series of beds and lenses of jasper to which the name Soudan formation has been applied. In the Vermilion district the term jaspilite has been used for interbanded jasper and hematite. According to modern usage these jasper or jaspilite beds do not comprise a formation separate from the Ely greenstone, inasmuch as the beds of jasper are interbedded with the flows and tuffs of the upper part of the greenstone. It would more nearly accord with modern usage to consider the Soudan beds a member of the upper part of the Ely formation. Because of incomplete rock exposure and exploration the number of interbedded jaspilite beds is unknown. In the mine, however, as many as nine major beds of jasper are known on a cross-section of one limb of the syncline, with an equal number on the other limb. In addition diamond drill cores show beds of greenstone down to half an inch in thickness. The thin beds are probably always tuffs. Structure: Rock structure in the Soudan area is complex, and because there are no recognizable horizons within the greenstone it is extremely difficult to work out the details. Generally speaking, the major regional structure is an anticlinorium, the axis trending east-west, with a westerly pitch. The Soudan mine is related to a synclinal structure on the north limb of the anticline about a mile from the west nose of the folded iron formation. The general structure at the mine is that of a closely folded minor syncline on the major regional anticline. A cross fault has dropped the east side so that the bottom of the syncline has not been reached, whereas to the west it is well shown by the mine openings and diamond drill exploration. Throughout the mine the beds of jasper, and ore-bodies that have replaced the jasper, normally dip northward at angles of 80" or steeper. In detail the jasper beds are extremely folded, probably as a result of deformation while they were still relatively unconsolidated. Orebodies: Ore in the Soudan mine is mainly a hard, dense, bluish hematite. Locally ore has been brecciated and cemented by quartz. The vugs commonly occurring near the borders of orebodies are lined with quartz crystals. They seem to have formed as part of the ore-forming process and are evidence that no folding or compression of the ore has taken place. The orebodies are numerous, varying greatly in size. Many lenses of high grade hematite are too small to be mined. Some of the larger orebodies have been followed vertically for as much as 2500 ft and horizontally up to 1500 ft. The large ore-bodies are extremely irregular in outline in the plane of the beds of jaspilite. In width they are more regular, as they are strictly governed by the width of the jaspilite beds and the greenstone wall rock, which seems to have resisted replacement by hematite. At many places the orebodies replace the jaspilite completely and have a footwall and hanging wall of greenstone. At other places either one or both walls may be jaspilite. Geologists who have studied the orebodies in recent years agree that evidence for the replacement origin of the hematite bodies seems conclusive. AS noted above, many of the orebodies replace jaspilite beds from wall to wall with no evidence whatever of compaction. The replacement origin is also supported by details of the banding which is characteristic of the
Jan 1, 1956
-
Producing - Equipment, Methods and Materials - Evaluation of a Stabilizer Charged Gas Lift Valve for Multiple-Phase Flow Using Graphical Techniques: Discussion IBy E. P. Whittemore
Experience with the ASC multipoint gas lift system was obtained in Colonia zone of the West Montalvo field near Oxnard, Calif. The wells in this pool produce from depths varying from 10,500 to 12,000 ft. Oil gravity is generally 14 to 15' API with a few extremes of 12 and 20" API. Some salt water is produced which causes some very viscous emulsions. Viscosities at 150F (which is the approximate wellhead temperature) vary from 5,000 to 100,000 SSU. Most of the production is by gas lift, although a few wells are produced by rod and hydraulic pump. About half of the gas-lift wells are on continuous flow and the remainder are on intermittent lift using large, ported, pilot-operated valves for single-point transfer of gas from casing to tubing. Gas-liquid ratios vary from about 6 to 10 Mcf/bbl of gross fluid lifted. Wells are produced to a 450-psi trap system. The following remarks will be confined to intermittent lift only, since this is the type of lift which has been achieved with the ASC valve system. The maximum gross fluid which has been produced by single-point intermittent lift is about 350 B/D in 3-in. tubing and 200 B/D in 21/2-in. tubing with gas-liquid ratios of approximately 7 to 9 Mcf/bbl. Some design changes could reduce this ratio. The ASC multipoint system has provided production as high as 480 BOPD in 21/2-in. tubing with gas-liquid ratios just under 4 Mcf/bbl. To be able to apply the multipoint system, it is recommended that a detailed explanation be obtained concerning transition-point pressure and stabilizer setting—what its significance is to the string design, how it may work for or against the operation of the well, how it is related to tubing sensitivity and how it affects the unloading operation. The unloading operation may only be of academic interest in a technical paper, but to the production foreman, unloading and setting the valves in operation is a very real problem and should be understood in detail. One item touched lightly in the paper was the unloading valve. This valve controls the maximum pressure at which the well can be operated. When lifting heavy viscous fluids, it is most important to set this valve for the maximum possible realistic operating pressure at the surface. If the well lifts easily, it is simple to set the ASC valves at a lower operating pressure and the unloading valve will remain closed; but if the well happens to be heavier to lift than anticipated, it may be desirable to operate on the unloading valve itself and use all the energy obtainable at the bottom of the hole. In the Colonia pool very heavy wet-gas gradients are experienced due to the viscosity of the liquid and the dense mist which is left behind a slug of fluid. There are many combination strings of 3- and 21/2-in. tubing. This aggravates the wet-gas gradient problem and provides wet-gas gradients of about 50 to 70 psi/1,000. An advantage which multipoint lift has provided is increased slug efficiency through better maintenance of pressure under the slug and decreased fall back as the slug passes up the tubing. By using multipoint injection, wet-gas gradients have been reduced to about 30 psi/1,000. This has reduced bottom-hole operating pressure and given a production increase. The ASC valve is not a simple device. It's operation is difficult to understand, and it must be understood to be used efficiently in gas-lift design. Operating problems are difficult to diagnose—whether they be caused by the fluid lifted, valve malfunction, lift gas rate, or operating pressure. Calculations and reasoning are required to find out what is causing the problem. Inherent in the ASC valve is the inability to create large pressure differentials across a slug. Large differentials may be required to overcome the inertia of very viscous fluid as it is being accelerated in the bottom of the hole. This is tied back to the design of the unloading valve and is one reason for the importance of setting the unloading valve for the highest possible operating pressure. ~u; to the narrow spread the ASC valves provide, it is impossible to cycle slower than about 24 cycles/day on choke control. If small production of 150 BOPD and less is expected, a surface time-cycle controller will be required if the most economical operation is to be achieved. To achieve a satisfactory operation, the operator must keep a record of any changes made in the operating pressure of the ASC valves. Anything which may cause changes in casing pressure in excess of the stabilizer setting will change the valve operating pressure, and if this is not noted from daily inspection of the well casing-tubing pressure recorder charts, the operator will lose control of the well. Significant results can be achieved using ASC valves; however, considerable knowledge is required to design with them, and attention to detail is required for satisfactory field operation.
Jan 1, 1965
-
Minerals Beneficiation - Radioactive-Tracer Technique for Studying Grinding Ball WearBy J. E. Campbell, G. D. Calkins, N. M. Ewbank, M. Pobereskin, A. Wesner
GRINDING for size reduction affects the economics of many processes and products. It is essential as the first step in many industrial processes and is also a finishing step for materials with properties depending on particle size, such as talc, cement, and silica sand. Intermediate and fine grinding are vital operations in the U. S. cement industry, which is producing more than 250 million bbl of cement per year.' Wear of the grinding media is a large part of the grinding operation cost. Problems encountered in grinding cement are so complex that evaluation of efficiency and economy of grinding media is difficult.2 It has been especially difficult to evaluate the relative effectiveness of different types of balls because there are no good testing techniques. Many other industrial operations can be evaluated on a laboratory scale with reasonable accuracy. This does not hold true for evaluation of grinding balls. The consistent results obtained in a laboratory test under a given set of conditions are not always borne out in field application. Rough evaluations of the effectiveness of various compositions and types of grinding balls have been made in the field by using a full charge of one type in a mill and comparing the production record with another run using another type of ball. This method is time-consuming and not very precise, as the second run may not have been carried out under identical conditions. Laboratory-scale tests, on the other hand, have yielded inconclusive results, and many investigators have turned their attention to the development of a field testing technique. Field testing small sample lots of grinding balls has been impractical because it is difficult to identify and recover the test specimens from the grinding mill, and individual groups of balls that have undergone different heat treatments can not be separated.".4 To overcome these difficulties, previous investigators have identified the balls by distinctive marks, notches, and drilled holes, but this procedure has three serious drawbacks: 1) Grinding characteristics and quality of the steel balls may be affected. 2) Physical markings may be worn away in the grinding process, especially during a prolonged run. 3) Recovery from the bulk of the charge will be extremely difficult because the markings are hard to see and may be masked by a coating of the product. To circumvent these difficulties, a radioactive-tracer technique was proposed for recovery and separation of steel grinding balls and subsequent evaluation of the various compositions of the balls. The proposed technique involved five basic operations: 1) Thermal-neutron irradiation activation5 of each group of test grinding balls to a different level of specific radioactivity. 2) Addition of groups of radioactive steel-ball specimens into a ball tube mill. 3) Recovery of radioactive steel-ball specimens from the bulk of the mill charge. 4) Separation of the various groups by their specific radioactivity. 5) Evaluation of actual grinding ball wear. Before any physical tests were performed, required neutron irradiation intensity and time were calculated. Probable composition of the steels to be used was ascertained. An examination was made of the radioactive nuclides8 to be formed which would contribute measurably to the radiation level immediately after irradiation and during the test operation. The radioisotopes formed, their types of radiation, and their half lives are listed in Table I. Of these radioisotopes only iron-59 and chromium-51 were significant for the actual wear test. The intensity of radiation that could be detected by a Geiger counter when the test was completed was the basis for the minimum activation level established. The intensity of radiaton that could be safely handled at the beginning of the test was the basis for the maximum activation level, although this was not considered a major problem. Ten groups of grinding balls of various composition and/or surface or heat treatment were to be tested. One group was designated for the minimum irradiation time. The remaining groups were designated for irradiation periods that increased by increments of 33 pct from that of each preceding group. This difference was considered enough for separation and identification of the groups by comparison of specific activity. Potential Hazards: Possible radiation hazards that might be encountered during this experiment were evaluated for the three important phases: 1) the radiation hazard of placing balls and removing them from the mill, 2) contamination of the product cement by radioactive material worn from the balls, and 3) contamination of the steel by the radioactive balls left in the mill. The radiation intensity expected from the whole group of radioactive balls was calculated to be 250 milliroentgen per hr at 1 ft. This meant the balls would require special shielded packaging and warning labels on the shipping containers. In a radiation field of 250 mr per hr a man can work for 1 hr without exceeding maximum permissible weekly exposure. Since the balls could be dumped into the mill in a matter of seconds, relatively little radiation exposure was anticipated at this stage of the operation. If the weight loss in the balls was 7.7 pct per month and the cement feed through the mill was
Jan 1, 1958
-
Part VI – June 1968 - Papers - Deformation Theory of Hot Pressing-Yield CriterionBy A. C. D. Chaklader, Ashok K. Kakar
The basic density equation originally dericed ' to predict the increase in density of a compact of spherical particles with the progressive deformation at the points of contact has been further modified to include the yield strength of the material. This has been done by assuming that the contact areas grow to stable sizes under a fixed stress which is equal to three times the yield strength. The final equation has the form: where Do and D me the initial and final bulk densities of the compact, u is the applied pressure, and Y is the yield strength of the material. This equation was tested with the data obtained on spheres of lead, K-Monel, and sapphire. The calculated yield strength t~alues for lead and sapphire are within the range of values reported in the literature. A few of the earliest hot pressing models proposed to explain the mechanism by Murray, Livey, and williams2 and then by McClelland3 are based on a plastic flow mechanism. However, more recent investigations suggest that the overall densification process is a combination of several mechanisms, such as particle rearrangement, fragmentation, plastic flow, and stress-enhanced diffusional creep. While fragmentation and particle rearrangement are considered to be responsible for the densification in the early stages,"475 it has been concluded that the final stages of hot pressing are controlled by stress-enhanced diffusional creep.516 The manner in which the densification takes place, i.e., by fragmentation, particle rearrangement, plastic flow, or stress-enhanced diffusional creep, would depend upon the type of material, the temperature, and the stress level used during the hot-pressing experiments. Metal compacts can be expected to have a much greater contribution from plastic flow than ceramic oxides. Also, plastic flow would be a significant contributing factor to densification at high temperatures and high stresses. Most of these works, directed towards elucidation of densification mechanism, have dealt with kinetics of the process. The results of most of the authors vary from one another and they have proposed either new empirical or semiempirical equations to fit their data. The densification rate was found to vary with the type of the powder, shape and size of the powder, initial packing density of the compact, and a few other factors such as rate of heating, pressure, and so forth. Beyond the initial stages, the densification process has been considered to be as time-dependent flow, controlled by a diffusional process, e.g., Nabarro-Herring creep. Palm our, Bradley, and johnson' have attempted to use modified creep rate equations to interpret the data of densification under hot-pressing conditions. Beyond the initial stages, however, the densification would be controlled by a process depending upon the temperature, pressure, and size of the powders. It is the authors' belief that such densification cannot be exclusively controlled by a single process and so attempts should be made to study some observable phenomenon like microstructure, yield strength, and so forth. The emphasis of this work has been toward studying the densification problem from a more fundamental point of view. Some of the principal variables, like initial packing density, mode of packing, and size of the powders, have been controlled to a great extent. The total strain produced on pressure application (instantaneous) in such a case can be considered to be due to plastic and elastic deformation. The elastic component of the strain can be determined by decreasing the load to the initial value. The strain remaining then can be correlated with the contact areas produced by deformation and the corresponding applied load. In a previous paper,' the possible deformation behavior of spheres in a compact has been theoretically analyzed and experimentally tested. The change in contact area radius a relative to the particle radius R was related to the bulk density and the bulk strain for simple and systematic modes of packing. Tt was found that a density equation relating the above parameters can be represented by: where D and Do are the bulk densities of the compact at any value of a/R and a/R = 0, respectively. This basic equation should hold for any material as it was derived from geometrical considerations alone. An attempt has been made in this work to include the yield strength in the above density equation, so that a knowledge of the properties of any material can be used in predicting the densification behavior during the hot-pressing process. THEORETICAL CONSIDERATTONS The deformation of two spheres in contact under a static load can be compared to the deformation occurring between a hard spherical indentor and the flat face of a softer metal. Tt has been shown theoretically by both ~encky~ and lshlinskyg and experimentally by ~abor" that, for a material incapable of appreciable work hardening, the mean pressure required to produce plastic yielding (for deformation occurring between flat face and a hemispherical indentor) is approximately equal to three times the elastic limit, Y, of the material (in tension or compression experiments). Tabor has further observed that the same relationship is valid in the case of work-hardening materials, if the elastic limit at the edge of the indenta-
Jan 1, 1969