Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Minerals Beneficiation - Relative Effectiveness of Sodium Silicates of Different Silica-Soda Ratios as Gangue Depressants in Non- metallic FlotationBy C. L. Sollenbeger, R. B. Greenwalt
PERHAPS the most widely used dispersants or gangue depressants in nonmetallic flotation are sodium silicates, which vary in silica-to-soda ratio from 1 to 3.75. Typical manufactured silicates in order of decreasing solubility and increasing amounts of silica are Metso, silica-to-soda ratio of 1.00; D, 2.00; RU, 2.40; K, 2.90; N, 3.22; and S-35, 3.75.* References in flotation literature1,2 to the use of sodium silicates are often weak because they fail to mention the type of silicate used. Metso and silicate N have occasionally been mentioned, but when the type of silicate is not mentioned, it is usually assumed to be N, the cheapest of the soluble silicates and the one recommended by sodium silicate manufacturers as a flotation agent. In the All is-Chalmers Research Laboratories a systematic study was made of the effect of different alkali-silica ratios on the concentration by flotation of two scheelite ores. One of these was a high grade ore from the Sang Dong mine in Korea. The effect of such factors as pH; addition agents; and conditioning time, temperature, and pulp density on the flotation efficiency of this ore have been described previously. The other ore was a low grade ore from Getchell Mines Inc., Nevada. The mineralogy and techniques of concentrating this ore have been described by Kunze. Hereafter these ores will be referred to as the Korean and Nevada ores. Experiments were made with both to determine the effect of three factors—-type of silicate, concentration of silicate, and pH of the pulp—on recovery and grade of tungsten in a rougher concentrate. Average WO, content of the Korean ore was 1.50 pct and of the Nevada ore 0.27 pct. The predominant tungsten mineral in both ores was scheelite, which was accompanied by a small amount of powellite. The powellite and scheelite were finely disseminated through both ores and required a —200 mesh grind for liberation. Major gangue minerals in the Korean ore, in decreasing order of abundance, were amphi-boles, quartz, biotite, garnet, fluorite, and calcite. Bulk sulfides composed about 3 pct of the total weight. Gangue in the Nevada ore, in descending order of abundance, was garnet, alpha quartz, calcite, phlogopite, wollastonite, and amphiboles. Sulfide minerals were 3 to 4 pct of total weight. Batch flotation experiments were made with 500-g samples of ore, each sample wet-ground to 90 pct passing 200 mesh. The finely ground ore was floated in a Fagergren batch cell at 25 pct solids. The natural pH of the Nevada ore was 8.9 and of the Korean ore, 8.5. The D, RU, K, N, and S-35 sodium silicates were obtained in colloidal dispersions with varying amounts of water. The most alkaline, Metso, was in dry powdered form. For convenience in addition, 5 pct solutions by weight were prepared from each of the silicates, on the basis of dry sodium silicate dissolved in the correct amount of distilled water. Chemical analyses of the various silicates are given in Table I, together with the pH of the 5 pct solutions. A preliminary bulk sulfide float was made with secondary butyl xanthate as the collector and pine oil as the frother. The WO] analysis of the sulfide concentrate was nearly 1 pct for the Korean ore and about 0.1 pct for the Nevada ore. The tungsten contained in the sulfide concentrate constituted about 3 pct of the total tungsten in each ore. No effort was made to recover these tungsten values. The scheelite was floated with oleic acid. Adjustments in pH were made with sulfuric acid or sodium carbonate. A 1 pct solution of 85 pct Aerosol OT was sprayed on the froth and sides of the cell during the scheelite float to aid in dispersing the minerals and to decrease the entrapment of gangue particles. Six tests were planned for each of the six types of silicate in which concentrations of 1, 2, and 4 1b of silicate per ton of dry ore were investigated at both 6.5 and 10 pH. All tests were made at room temperature. The performance of each silicate was judged from the grade and recovery of WO, in the scheelite rougher concentrate. Tungsten recovery was calculated on the basis of the scheelite remaining in the ore after the preliminary sulfide float. Testing of each silicate at three levels of concentration and two levels of pH required 36 tests with each scheelite ore. Variance analyses were performed on the concentrate grades and recoveries to determine whether or not the type of sodium silicate, the concentration of sodium silicate, or the pH significantly affected recovery or grade. Results Concentrate Grade: A variance analysis of the concentrate grades for the Korean ore showed that concentration of the silicate and pH of the ore pulp were major factors in producing a high grade concentrate. Also, the silica- to-so da ratio was important as an interaction with pH. The concentrate grade vs silica-to-soda ratio is plotted in Fig. 1. The curves show that the concentrate grade improved with an increase in concentration of sodium silicate and also
Jan 1, 1959
-
Part VI – June 1968 - Papers - On the Nature of the Chill Zone in Ingot SolidificationBy H. Biloni, R. Morando
The surface structure and substructure of Al-Cu alloys solidified as conventional ingots and under particular conditions such as those used by Bower and Flemings are studied. The influence of lampblack coating on the mold walls is especially considered and the results compared with those obtained in copper and graphite molds where no coatings exist. When high heat extraction conditions exist the observations show that mechanism of copious nucleation is responsible for most of the chill zone. When the heat extraction through the mold walls is low, a coarse grain structure with dendritic morphology arises, with a size that depends on the degree of convection present, analogous to that analyzed by Bower and Flemings. In both cases the effect of the convection on the macroscopic and microscopic appearance is discussed. The ingot macrostructure consists of one or more of three zones: "chill zone", "columnar zone", and central "equiaxed zone". The mechanism of the columnar-equiaxed transition has been subject of considerable interest and at present at least three theories exist about the formation of the equiaxed region: 1) the constitutional supercooling theory1 maintains that the equiaxed crystals nucleate after the columnar zone has formed, as a result of the constitutional supercooling of the remaining liquid; 2) chalmers2 pointed out, however, that there were several objections to this proposal, and that consideration should be given to the possibility that all the crystals, equiaxed as well as columnar, originated during the initial chilling of the liquid layer in contact with the mold; 3) Jackson et aL3 and O'Hara and ~iller~ suggested that a remelting mechanism of the dendrite arms is responsible for the formation of the equiaxed region. After the work of Cole and Bolling and other authors6 it became evident that convection (natural, reduced, or forced) plays a very important role in the transition from columnar to equiaxed and on the size of the resultant equiaxed structure. Until recently the accepted explanation of the chill zone was that it occurs as a result of copious nucleation in the liquid layer in contact with the mold walls.798 The columnar region is a subsequent result of the growth of favorably oriented grains and, as a result of a selection mechanism studied by Walton and Chalmers,9 elongated grains with marked texture are formed. Recently, however, Bower and Flemings" using an ingenious laboratory experiment introduced the idea that the "copious nucleation" mechanism is not responsible for the formation of the chill zone and that the presence of convection, introducing some form of "crystal multiplication", plays a decisive role in the formation of the chill zone. Unfortunately, it is important to consider that for their conclusions Bower and Flemings extrapolated the results obtained in their special experiments to the case of conventional ingots, and that these authors only analyzed the macrostructures of the specimens. Let us consider the work by Biloni and chalmers" concerning predendritic solidification. These authors were able to show that a study of the segregation substructure of A1-Cu gives information about the nucleation and growth of crystals formed in contact with a cold surface. A spherical predendritic region characterizes the first part of every grain nucleated in contact with the surface as a result of the chill effect. The aim of this paper is to elucidate through the observation of the segregation substructure the conditions under which (in the Bower and Flemings type of experiments and in conventional ingots) either the nucleation or the multiplication mechanism gives rise to the structure in contact with the mold walls. I) EXPERIMENTAL TECHNIQUES The experiments were performed on two alloys: Al-1 wt pct Cu and A1-5 wt pct Cu. The purity of the aluminum was 99.99 pct and the copper 99.999 pct. The results obtained with both alloys were similar. In the Bower and Flemings type of experiments the apparatus employed to obtain rapid solidification against a surface was similar to that used by those authors. The liquid was drawn by partial vacuum into the thin section mold cavity. Plate casts were 5 cm wide and usually 7.5 cm high. The thicknesses of the cast were 0.1 and 0.3 cm. Two different materials were used for the mold, copper and nuclear-grade graphite. The internal mold surfaces were polished and left uncoated for some experiments. In other experiments, the copper or graphite surface was coated with a thin film of lampblack material. In some of these particular experiments one of the mold walls was left with an uncoated region (usually in the form of a cross). The conventional ingots were cast in graphite or copper molds. In different experiments the mold walls were sometimes uncoated or coated with lampblack material. The results obtained in conventional and Bower and Flemings copper molds were compared with those obtained with copper molds coated with a very thin film of graphite; the results obtained were essentially similar. The size of the conventional ingots was 5 cm diam and 7 cm high in all cases. The cast surfaces produced by the Bower and Flemings type of experiments and conventional methods were observed macroscopically and microscopically without any metallographic preparation. As Biloni and Chalmers showed," the observation of the chill surface can give considerable information about the structure and segregation substructure.
Jan 1, 1969
-
Extractive Metallurgy Division - The Calbeck Process for Refining Zinc OxideBy O. J. Hassel, W. T. Maidens, J. H. Calbeck
The rotary gas fired reheating furnace used by the American Zinc Oxide Co. at Columbus, Ohio for Therotarygasfiredreheatingfurnacerefining lead-free zinc oxide is described. The outstanding features of this operation are that the color of the zinc oxide is greatly improved, sulphur is eliminated, and cadmium arethatrecovered without densifying the product to an objectionable degree. IN 1919 Leland S. Wemple obtained a patent for a process of reheating zinc oxide wherein the "coarsening of grain due to excessive heating was avoided." He taught in his specification that if solid carbonaceous material, such as lamp black, was added to the zinc oxide in proper amounts prior to reheating, objectionable sulphur compounds could be removed and the color would accordingly be improved and no objectionable densification would occur because of the relatively low temperature required. The situation that made this invention imperative was the newly opened zinc oxide plant of the American Zinc, Lead & Smelting Co. in Hills-boro, Ill. This was one of the early Western Type American Process zinc oxide operations. Characteristic of all of these early Western operations using Tri-State and Western ores was the great difficulty encountered in obtaining a product low enough in sulphur to compete with the Eastern Type American Process zinc oxides which were made from ores containing very low sulphur percentages. Wemple demonstrated that the refining process of his invention produced a superior color and although this was true and a most welcome feature, the primary purpose of the early refining operations at Hillsboro was to reduce substantially the high sulphur content of the crude zinc oxide. Although many and varied attempts had been made for refining zinc oxide none of the processes had a commercial history of any consequence until Wemple's invention became standard practice for the American Zinc, Lead & Smelting Co. in 1919 and their operations have been unique in that substantially all of their lead-free zinc oxide has been reheated since the first installation at Hillsboro. This process has become known in the industry as refining. The furnace developed by Wemple and continued in use by the company from 1919 until 1943 was unusual and merits some consideration by way of review in this paper. The furnace was essentially a double hearth coal-fired muffle furnace with a mechanical raking system consisting of a central shaft supporting six rabble arms in each muffle. The untreated or "crude" zinc oxide was fed onto the outer rim of the top muffle, moved to the center where it dropped to the lower muffle and progressed to the outer rim where it was discharged into an alloy screw conveyor. The retention in this furnace was extremely short, about 5 min, and the shallow zinc oxide bed on the hearths of the muffles was being continuously turned by the fast moving rabbles. Soft coal was burned on the grates below the lower muffle and the long yellow flame necessary to carry the heat around both muffles resulted in a very inefficient combustion of the fuel. The temperature of the top of the lower muffle seldom exceeded 65 °C although the oxide itself often reached 700°C before discharge. The capacity of this furnace was approximately 1/2 ton per hr. In our plant at Columbus it was necessary to keep four of these furnaces running in parallel to take care of the production because, as mentioned above, every pound of zinc oxide produced during these 24 yr passed through one of these refining furnaces. An essential part of this refining operation was the use of carbonaceous material admixed with the zinc oxide fed to the furnaces. Between 1 and 2 pct of a bran produced in the processing of cotton seed was added to all zinc oxide charged to the furnaces. The bran ignited on the top hearth and was still burning when the charge fell from the top hearth to the bottom hearth making a cascade of sparks. The rapid turning of the zinc oxide caused these particles of bran to flash on the hearths behind each rabble; but the combustion, of necessity, had to be complete by the time the charge reached the outer rim of the bottom hearth, otherwise the finished product would be contaminated with the charred particles of bran which would give the zinc oxide an unsatisfactory color. Although this operation was initiated to reduce objectionable sulphur percentages, as time went on new properties of the product were appreciated which made advisable continuing the refining process long after other methods of sulphur reduction became known in the industry. The particle size and particle size distribution, the absence of colloidal fines and perhaps a unique surface condition gave this product an outstanding performance when used in paints. The Wemple furnaces installed in Columbus in 1919 had to be rebuilt frequently and were extravagant in the use of fuel. The raking mechanism and the muffles required excessive maintenance expense and as the furnaces wore out the problem arose whether to continue along this line or to explore the possibilities of obtaining similar or better results in the simpler and more commonly used rotary furnace. To this end special research was initiated in 1941 on a small laboratory rotary
Jan 1, 1951
-
Part I – January 1969 - Papers - An Energy Expression for the Equilibrium Form of a Dislocation in the Line Tension ApproximationBy Craig S. Hartley
An approximate expression is obtained for the energy of a closed dislocation loop in equi1ibriu)n with a constant net stress. The result obtained is valid for loops in isotropic or anisotropzc materials provided that they are suJficiently large that the energy per unit length of a segment of the loop can be approximated by that of an infinite straight dislocation tangent to the loop. It is shown that this approximation leads to very close agreement with a more rigorous calculation of the elastic energy of a circular glide loop. The Gibbs-Wulff Form, GWF, of a dislocation is the closed planar loop which has the smallest elastic self-energy of all possible loops having the same Burgers vector and enclosing a fixed area, A.' The energy of such a loop is related to the net resolved shear stress* required to expand the loop and to the stress required to activate a Frank-Read source.223 In the following sectiorls the problem of determining the form of the GWF is discussed and an approximate method for calculating its elastic self-energy is presented. It is demonstrated that the approximations employed lead to no serious errors when applied to a calculation of the elastic energy of a circular glide loop. This method is then used to obtain a closed form expression for the energy of GWFs in isotropic and anisotropic materials. THEORY Burton, Frank, and cabrera4 have proved that the relationship of the equilibrium shape of a two-dimensional array of atoms under the influence of the Gibbs free energy associated with unit length of its boundary, G(O), is that the polar plot of G(0) vs 0 is proportional to the pedal of the GWF.* The angle 0 is measured "The pedal of the polar graph ofG(0) vs0 is the envelope of tangents to the eraph.relative to some crystallographic reference direction. The difficulty in applying this result to a closed dislocation loop arises from the self-interaction of the loop. For a dislocation the energy analogous to G(0) is a function of the total configurati~n.~ Consequently the relation which determines the GWF is an integro-differential equation rather than the simple differen- tial equation which results when G(8) is a function of 0 alone. Mitchell and smialek3 and Brown~ have used the self-stress concept introduced by ~rown' to calculate the shapes of dislocations in equilibrium with an applied stress. In this approach the glide force on an element of the dislocation loop due to the interaction of the element with the rest of the loop is equated to the glide force exerted by the local applied stress. The shape of the loop is then adjusted so that the two forces above are equal at all points on the loop. It is possible to calculate the energies of such loops by noting that, for equilibrium with an applied stress, the energy is equal to pijbiAj (summation convention) where bi is the Burgers vector, p.. is the local net stress tensor, and Ai is a vector directed perpendicular to the plane of thd loop with magnitude equal to the area of the loop. Also Brown' has calculated the energy of a hypothetical polygonal GWF using the above technique and anisotropic elasticity. However, his indicated solution for the energy in the general case of an arbitrary GWF is only slightly less involved than an iterative solution of the integrodifferential equation referred to earlier. In the present work the approximation employed by DeWit and Koehler' is used to calculate the energy of a closed loop in equilibrium with an applied stress. That is, the energy of a loop segment, ds, is approximated by the product of ds and the energy per unit length of an infinite, straight dislocation in a cylinder coaxial with the tangent to the loop at the angular position of the segment. This is known as the "line tension" approximation. The inner cutoff radius of the elastic solution defines the core radius, while the outer cutoff radius is determined by some characteristic dimension of the loop. Actually, both of these radii vary with the edge-screw character of the segment. The effective core radius changes because of the orientation dependence of the Peierls width of a dislocation,8 and the outer radius should be the radial distance from the circumference of the loop to the center of symmetry of the area enclosed by the loop.g However, since the energy varies logarithmically with the ratio of these radii while depending directly on the effective elastic constants, only the effect of the latter is considered. This approximation also neglects the self-interaction of the loop segments. For small loops this will doubtless be extremely important, but for large glide loops produced by plastic deformation the self-interaction is not nearly so important in determining the energy of the loop. This point is illustrated by the following calculation of the energy of a circular loop. Consider a circular loop of radius R which lies in the XI - x, plane of an infinite isotropic continuum and whose Burgers vector makes an angle $ with xs. The first-order solution for the elastic self-energy is:'
Jan 1, 1970
-
Institute of Metals Division - Metallographic Identification of Nonmetallic Inclusions in UraniumBy R. F. Dickerson, D. A. Vaughan, A. F. Gerds
ALTHOUGH the metallurgy of uranium has been under intensive study since the early 1940's, no systematic effort has been made to identify the non-metallic inclusions in uranium. Uranium carbide (UC), which is probably the most common inclusion found in graphite-melted metal, has been tentatively identified by previous investigators, but the other nonmetallic inclusions have received little attention. Since metallography is a valuable tool in metallurgical studies, the metallographic identification of the nonmetallic inclusions in uranium is important. Such an investigation has been completed and the identification of slag-type inclusions and of uranium monocarbide, uranium hydride, uranium dioxide, uranium monoxide, and uranium mononitride is described. Metallographic Preporation It is often possible to prepare specimens for metal-lographic examination equally well by several methods. The specimens which were examined in this work were prepared by one of two acceptable methods. For the convenience of the reader, both methods will be discussed in detail and will be referred to simply as Method I or Method II in the subsequent sections. For both Methods I and 11, specimens for microscopic examination usually were mounted either in bakelite or in Paraplex room temperature mounting plastic. Method I—Specimens were ground in a spray of water on a revolving disk covered successively with 120-, 240-, and 600-grit silicon carbide papers. It was necessary to perform the final grinding operation carefully on worn 600-grit paper to keep the scratches as fine as possible. After washing and drying, the specimens were polished for 3 to 4 min on a slow speed wheel (250 rpm) covered with a medium nap cloth. Diamet Hyprez Blue diamond polishing paste, Grade 00, 0 to 2 µ, was used as abrasive with kerosene as lubricant on the wheel. Specimens were washed thoroughly in alcohol and final polished electrolytically in an electrolyte composed of 1 part stock solution (118 g CrO, dissolved in 100 cm3 H2O) with 4 parts of glacial acetic acid. A stainless steel cathode was used. At an open circuit potential of 40 v dc, a polishing time of 2 sec retained inclusions well with the bath at room temperature. If additional etching was required to sharpen the interface between the metal and the inclusions, an electrolyte composed of 1 part stock solution (100 g CrO3 and 100 cm8 H20) and 18 parts glacial acetic acid was used at room temperature. Best results were obtained by etching for from 10 to 15 sec at 20 v dc in the open circuit. Surfaces obtained by this method are suitable for microscopic examination. However, if desired, they may be etched further with other chemicals. Method 11—Rough grinding was done on a wet 180- or 240-grit continuous grinding belt. The specimen was then ground by hand successively on 240-, 400-, and 600-grit silicon carbide papers in a stream of water. Final polishing was accomplished on a 4 in. high speed wheel (3400 rpm) covered with Forstmann's cloth. Linde B levigated alumina, suspended in a 1 volume pet chromic acid solution, was the abrasive. Specimens usually were polished in 5 min or less by this technique. Often the inclusions present in the metal were identified in the mechanically polished condition. When etching was required to outline inclusions more sharply, one of the two following methods was used. In the first method, the specimen is etched lightly while electropolishing in the chromic-acetic acid solution described above (1 part of stock solution to 4 parts of acetic acid). The electrolyte was refrigerated in a dry ice-ethyl alcohol bath and specimens were etched at 60 v dc on the open circuit for 2 or 3 cycles of 3 to 4 sec each. The second technique utilizes electrolytical etching at about 10 v dc (open circuit) in a 10 pet citric acid solution at room temperature. X-Ray Diffraction Technique The major problem in the identification of inclusions in metals by X-ray diffraction techniques is the extraction of a sufficient amount of each type of inclusion to obtain an X-ray diffraction pattern. In the present study, X-ray diffraction patterns were obtained from individual inclusions of the order of 10 µ diam. The polished and etched samples shown in the micrographs were examined at a magnification of X54 or XI00 with a binocular microscope. This allowed sufficient working distance to extract the inclusions with a needle probe for powder X-ray diffraction analysis. Friable inclusions such as MgF2, CaF2, UO2, and UH3 could be freed from the metal by probing the as-polished and etched surface. The fine particles then were picked up on the end of a Vistanex-coated glass rod (0.002 in. diam) which was held in a brass adapter made to fit the powder X-ray diffraction camera. The end of the glass rod was centered in the path of the X-ray beam. In the case of the UC, UO, and UN inclusions which are smaller in size, more metallic in appearance, and less friable than the other inclusions, it was necessary to etch the inclusion in relief before extraction. UN inclusions etched sufficiently in relief in the electrolytic polishing solution described in Methods I and II by increasing the polishing time. UN inclusions were relief etched by extending the
Jan 1, 1957
-
Part VII – July 1968 - Papers - Dislocation Tangle Formation and Strain Aging in Carburized Single Crystals of 3.25 pct Silicon-IronBy K. R. Carson, J. Weertman
An attempt is made to ascertain the mechanism of tangle and cell formation and its dependence upon dislocation-interstitial carbon interactions. The strain-hardening behavior of single crystals of 3.25 pct Si-Fe was determined at 300° and 425°K and under conditions of both continuous and interrupted tensile strain. Significantly enhanced hardening was observed in crystals deformed at the elevated temperature, and it was further accentuated by interrupted straining. Transmission electron microscopy was used to study the resultant dislocation structures. Strain aging was found to aid tangle and cell formation at 425°K, but at both temperatures embryo tangles formed solely from primary glide dislocations, presumably by a process involving cross slip and "mushrooming". IN the course of plastic deformation all bcc metals and alloys develop a dislocation structure characterized by loose-knit groups of tangled dislocations. With increasing strain the tangles become more tightly knit and grow larger; finally a three-dimensional cellular substructure is formed:1 This process has been observed with the transmission electron microscope.'-l7 However, most investigations were confined to the study of nearly pure polycrystalline metals at relatively low temperatures. At intermediate temperatures, 0.17 to 0.14 Tm where T, is the melting temperature in degrees absolute, the mobility of interstitial impurities such as carbon is high enough to permit migration to nearby glide dislocations but is still low enough so that a significant drag force is exerted.18,19 it is also in this temperature range that a hump occurs in the curve of work-hardening rate vs temperature for iron. Analogous plots for tantalum" and columbiumzo show a definite upward trend in the work-hardening rate. Keh and Weissman1 have pointed out that this behavior may be explained solely on the basis of changes in the dislocation configuration: at low temperatures the dislocations tend to be relatively straight and uniformly distributed, but at intermediate temperatures tightly knit tangles and cellular substructure appear. The interference of these tangles with glide dislocations causes the observed increase in the work-hardening rate. This explanation appears reasonable, yet one might ask what factors cause tangle formation to be so favorable at intermediate temperatures. It seens likely that the strong dislocation-interstitial interactions which are known to occur in this temperature range are at least partly responsible," with the magnitude of the effect being proportional to the interstitial concentration. The purpose of the present work is to study the relationship between tangle formation and strain hardening in a bcc metal in the temperature range 0.17 to 0.4 Tm. Particular emphasis was placed upon a study of the effects of interstitial-dislocation interactions. Single crystals of 3.25 pct Si-Fe containing about 200 ppm of C in solid solution were used in the investigation for the following reasons: 1) The mobility of interstitial carbon in 3.25 pct Si-Fe is negligible at 300°K but increases rapidly at slightly elevated temperature22. Hence, differences between the flow curves and dislocation structures of crystals deformed at 300°K, 0.17 T,, and crystals deformed, say, at 425°K, 0.24 Tm, should be appreciable because of the enhanced dislocation-carbon interactions at the elevated temperature. This effect was accentuated in some samples by interrupted straining, thereby introducing a certain amount of aging. 2) Near room temperature, slip in suitably oriented 3.25 pct Si-Fe single crystals is largely confined to the (110) planes.23'24 Dislocation structures formed under conditions of single glide are the least complicated and their method of formation is the most easily discernable. 3) Dislocations in Si-Fe can be tightly locked with carbon atmospheres by a low-temperature aging treatment. The subsequent thinning of samples to foil thicbess causes little or no rearrangement in the dislocation structure.25 EXPERIMENTAL PROCEDURE Large single-crystal sheets of 3.25 pct Si-Fe were donated by Dr. C. G. Dunn of the General Electric Research Laboratory, Schenectady, N. Y. The orientations of the sheets were determined and slabs 1.0 by 0.25 by 0.05 in. were cut such that the desired tensile axis corresponded to the long dimension. The slabs were mechanically polished and subsequently decar-burized by heating at 1000°C for 3 days in a flowing wet-hydrogen atmosphere. A carbon content of about 200 ppm was introduced by heating at 805°C for 25 min in a flowing atmosphere of dry hydrogen containing heptane vapor. Shaped copper tools were then used to spark-machine at 0.125 by 0.50 in. gage length onto each slab. Vacuum annealing at 1225°C for 2 days followed by a quench into the cold end of the furnace to retain carbon in solid solution concluded the soecimen preparation. Continuous tensile flow curves for crystals of severa1 orientations Were obtained both at 300' and 425°K. A strain rate of 6.67 x 10-4 Per set was used in these and all other tests. Crystals oriented for single glide, B and D in Fig. 1, were subjected to a 3.5 pct plastic elongation to insure uniform slip along the gage length; they were then immediately subjected to interrupted strain cycling as indicated in Fig. 2(a). Each cycle consisted of unloading to 1.5 kg per sq mm, holding
Jan 1, 1969
-
Part II – February 1968 - Papers - Dynamic Nucleation of Supercooled MetalsBy J. J. Frawley, W. J. Childs
The dynamic nucleation of supercooled bismuth and Bi-Sn alloys has been studied over a frequency range of 15 to 20,000 cps. For low-frequency vibration, a minimum vibrational energy was required for enhancement of nucleation. Above this critical energy, the dynamic supercooling was less than static supercooling showing that vibration promoted nucleation. The amount of dynamic supercooling continued to decrease with increasing vibrational energy until a minimum or threshold value was reached. This minimum value of supercooling for nucleation remained constant joy all further increases in vibrational energy. For higher frequencies, similar results were observed. This behavior has been related to the necessity of cavitation for dynamic nucleation. When a liquid is cooled to a temperature below its equilibrium melting point, the solid phase is more thermodynamically stable. However, for solidification to occur, a two-step process, nucleation and subsequent growth of the solid phase, must occur. When a liquid is supercooled, that is cooled below the equilibrium melting point, the controlling process for solidification to begin is the rate of nucleation. Once nucleation has occurred, the solidification process is controlled by the rate of growth. Nucleation can be induced by two factors: either by a catalyst or by the use of mechanical shock. Numerous investigators1-4 have studied the effect of nucleation catalysis but much less systematic study has been made of nucleation by mechanical shock waves. The influence of vibrations on grain size in castings and ingots has been studied by many authors but no clear understanding of the mechanism or accurate prediction of the effect has been presented.5 It would be intuitively expected that the further the departure from equilibrium (i.e., the greater the supercooling), the easier it would be to induce nucleation. This has been quantitatively demonstrated both by walker6 and later by Stuhr,7 that the greater the degree of supercooling the easier it is to nucleate by a shock wave. Stuhr also attempted to obtain the mechanical energy required for nucleation of bismuth as a function of supercooling. He vibrated a crucible containing supercooled metal at low frequencies and various amplitudes and noted the corresponding dynamic supercooling obtained. The amount of supercooling was inversely proportional to the mechanical energy applied. Limitation of his experiment was the problem of the confinement of the liquid in the crucible without splashing and minimizing other unwanted modes of vibration. Tiller et al.8,9 did similar work on tin and Sn-Pb alloys using an electromagnetic stirring device. Their conclusions were that the magnitude of the magnetic field strength did not affect the amount of undercooling at which nucleation was initiated. While conclusive experimental results have been lacking to explain this effect of mechanical vibration on inducing nucleation, a number of theories have been proposed. Two of these theories are discussed below. 1) The Change in Melting:- Point Locally Due to the Change in Pressure (Clapeyron Equation). According to Vonnegut10 the most plausible explanation for the nucleation of a supercooled melt by cavitation is the effect of changing the melting point by a change in pressure. For materials where the volume decreases on solidification, an increase in pressure raises the melting point; for materials which expand on solidification, the melting point is raised for a decrease in pressure, i.e., rarefaction. Using the Clapeyron equation, the melting point of a metal can be calculated as a function of pressure. If it is assumed that the equation can also be used to calculate the temperature of nucleation of a supercooled melt as a function of pressure (i.e., the temperature of heterogeneous nucleation will increase with pressure at the same rate as the melting point), the amount of supercooling required for nucleation will be constant at all pressures as shown in Fig. 1. It is obvious that an isothermal change which results in an increase in melting point results in an equal increase in supercooling. This increase in supercooling may now be sufficient for nucleation. A pressure of 80,000 atm was calculated, using the Clapeyron equation, as the pressure required to increase the temperature of nucleation of nickel by 200°C. According to Lord Rayleigh,11 this very large pressure could be generated for a very brief period of time by the collapse of a cavity. This pressure wave is radiated in all directions from the collapsed cavity. If the temperature of the melt is slightly below its equilibrium melting temperature at atmospheric pressure, stable growth can follow; that is, once nucleation occurs, growth becomes the main driving force of the solidification process. This proposal has been extended to water which expands on freezing by assuming that nucleation occurs during rarefaction following the pressure pulse. This negative pressure pulse should follow immediately after the positive pressure pulse with its magnitude approaching the critical tensile strength of the liquid. The negative pressure developed during this period would raise the melting point of water and thus promote nucleation. Hunt and jackson12 have suggested this for water. Similarly, it could be postulated that bismuth which also expands on freezing could be nucleated during the negative pressure pulse. 2) Nucleation by a High-pressure Phase. An extension of the Clapeyron equation to systems where density decreased on freezing at atmosphere pressure has been proposed by Hickling.13 The phase diagram for water initially shows the well-known decrease in
Jan 1, 1969
-
Institute of Metals Division - New Metastable Alloy Phases of Gold, Silver, and Aluminum (TN)By N. J. Grant, B. C. Giessen, Paul Predecki
ALLOYS of gold, silver, and aluminum with elements of the groups BII, BIII, BIV, and BV were prepared by a rapid quenching technique (splat) and were examined by X-ray diffraction. Five new intermediate phases were found and will be described briefly herein. For the gold and silver systems, the concentration ranges having an electron/atom ratio e/a of 1.4 to 1.5 ("3/2 Hume-Rothery phases") were studied primarily. Master alloys were prepared from high-purity metals (99.9+ pct or better) by melting either in evacuated fused silica capsules or by nonconsum-able-electrode arc melting in an argon atmosphere. Small pieces, 20 to 50 mg, of each alloy were blast-atomized to form a splat, by a technique similar to that described by Duwez and Willens.1 The technique used for this study is described in detail in Ref. 2; it utilizes a resistance-heated graphite crucible with a small hole at the bottom, directed toward a metal substrate or quenching plate. The prepared alloy rests over the fine hole, through which it is expelled by an explosion shock wave in the form of fine droplets (1 to 50 µ) of molten metal onto a copper or silver substrate, which is maintained at about -190°C. The resulting very high cooling rates (see Ref. 2 for quantitative measurements) can prevent the process of nuclea-tion and growth in many instances, resulting in the formation of metastable phases. The splat particles were transferred to a GE-XRD5 diffractometer and maintained at -190°C, where they were examined with CuKa radiation. The samples were then allowed to warm to room temperature or were heated to higher temperatures until the equilibrium structures formed. Of fifteen alloy systems considered, nonequi-librium structures were encountered in six; these are described below and summarized in Table I. In the system Au-Sb a metastable £ phase (A3 type, hcp, a = 2.898 + 0.002A; c = 4.731 * 0.004A; c/a = 1.633) was found in the concentration range Au + 13 to 15 at. pct Sb. This phase is isomorphous with the stable phases in the systems Au-Cd, Au-In, and Au-Sn, all at an average e/a ratio of 1.4 to 1.5. The concentration range of one-phase metastable was deduced from the small amounts of supersaturated gold solid-solution phase present in the splat product. It was found that ? could also be retained by splatting onto a substrate held at room temperature: however, decomposed into the equilibrium phases Au + AuSb2 after heating to 200°C for 1/2 hr, or on holding the powdered splatted alloy at 20°C for several months. Calorimetric measurements will be made in an attempt to decide the question whether ? is metastable at all temperatures or whether it is a stable phase at low temperatures. There is evidence that another phase, possibly also close-packed but with a different stacking sequence, can be obtained by rapid quenching of alloys with a different antimony content. Klement, Willens, and Duwez3 reported the existence of an amorphous phase on quenching Au-Si alloys (25 at. pct Si) to - 196°C. They found that on heating to room temperature another phase of unknown crystal structure was formed. This was confirmed (see Table I); however, the new crystalline phase, designated as ?, could also be formed simply by rapid quenching to room temperature, and even was found to exist already in the as-cast Au + 20 at. pct Si alloy. It was found that ? decomposed into Au + Si on the specimen surface at room temperature. This behavior, and the question whether or not there is an equilibrium-temperature region for ?, have not yet been resolved. It is probable that ? (Au + 20 to 21 at. pct Si) is cubic of the -brass type (D81-3) with a = 9.60, + 0.01A and N = 52 atoms per cell [compare 6 (CU-Sn)4]. Except for two very weak lines, the powder pattern of about thirty lines could be indexed on this basis; however, a determination of the atom positions has not yet been attempted. For Au-Ge the C phase was observed at about 21 at. pct Ge as reported by Luo et at.5 Lattice parameters a = 2.876A, c = 4.73,A, c/a = 1.64 were found. In the Au-Pb system, formation of a ? phase was not observed, but in the lead-rich region at 75 at. pct Pb, broad peaks belonging to an amorphous phase were found. The maximum diffracted intensity occurred at 28 = 32.4 deg which is about 1 deg larger than the position of the (111) line of lead (Cuka). For Ag-Pb, an amorphous phase analogous to the one found in the Au-Pb system was observed; this metastable phase exists probably at about 75 at. pct Pb. Since no lead-rich alloys were tested, all alloys consisted of silver + amorphous phase at -190°C. In A1-Ge alloys, line-rich and complex powder patterns were obtained at about 30 at. pct Ge; they bear similarities to those of aluminum and germanium, but are of lower symmetry; the existence of more than one intermediate phase is possible. The authors are grateful to the Kennecott Copper Corp. for Fellowship support, and ARPA (Contract
Jan 1, 1965
-
New Techniques in Beneficiation of Phosphate RockBy J. E. Lawver, J. D. Raulerson, Charles C. Cook
The agriculture industry has made great strides during the past decade to increase agriculture yields through increased use of fertilizers. Increased use of fertilizers may prevent, or at least delay, mass starvation due to the alarming increase in world population. Phosphate was added to soil as a plant nutrient in the form of calcined bones at least 2000 years ago (Anon., 1964), and man has used phosphate minerals as a source of fertilization in one form or another for at least 100 years. During 1977 the world produced about 116 Mt of phosphate rock, with about 86% used for fertilizers and another 4% for animal feed supplements. More than three-fourths of the total production comes from the United States, Morocco, and the Soviet Union. From a mineral beneficiation point of view, the major sources of phosphate rock and the methods of beneficiation can be classified as follows: marine deposits not containing appreciable carbonate minerals, marine deposits requiring a francolite carbonate mineral separation, igneous deposits not containing appreciable carbonate minerals, and igneous deposits requiring apatite carbonate mineral separation. [ ] Guano, mostly from Chile and Peru, accounts for 0.1% of the total world production, and the calcium phosphates from Ocean, Nauru, and Christmas Islands and the aluminum and iron phosphates from Brazil and Aruba account for less than 4% of the world production and are thus not considered in this classification (Lawver, et al.). At present, marine phosphorite deposits account for about 75% of the world's production; the igneous deposits account for 20%. The igneous deposits low in carbonate minerals are easily concentrated by crushing, grinding, and apatite flotation. The most important igneous deposits are those of the Kola Peninsula, USSR (Woodrooffe, 1972). The igneous deposits high in carbonate materials are of corn appreciably more difficult to beneficiate, but they have been concentrated by froth flotation for a number of years. An interesting but rather complicated flowsheet of this type is at Phalabonva, in the Republic of South Africa (Lovell, 1976). The Phalaborwa deposit is an igneous complex of pyroxenite with a central core of carbonatite surrounded by a serpentine- magnetite-apatite rock called phoscorite. The phoscorite containing about 10% P2O5, 35% magnetite, and 35% calcium magnesium carbonate is currently being processed. The process involves comminuting the material for fiberation and subjecting it to a copper float using a potassium amyl xanthate as collector and triethoxybutane as a frother followed by a magnetic separation of the tailings to produce a feed for phosphate flotation. This process produces a phosphate concentrate containing greater than 36% P2O5 at a P2O5 recovery ranging from 75 to 80%. Considerable success has been claimed for recovering apatite from carbonate-bearing ores at the Jacupiranga Mine of Serrana S/A (Silva and Andery, 1972). The carbonatite currently being mined contains an average of only 5% P205 and is concentrated using a unique flotation process (Andery, 1968) to yield 96% P205 concentrates. The ore contains about 12% apatite, 5% magnetite, 80% calcite plus dolomite, and minor amounts of phlogopite, olivine, zircon, ilmenite, and pyrochlore. Feed preparation consists of crushing to -31.75 mm (-1 M in.), rod milling in closed circuit with hydrocyclones to about 92% (-50 mesh), and two-stage cyclone desliming of the -50 mesh sands at 20 m. Weight recovery in the deslimed feed is normally 85 to 88% and the corresponding P2O5 recovery is usually about 90%. The deslimed feed is conditioned at 60 to 70% solids for 15 min at pH = 8-10 with 0.6 kg/t of causticized starch for iron oxide and calcite-dolomite depression. The conditioned slurry is diluted to 20 to 30% solids, about 0.2 kg/t of fatty acid or soap collector is added to the conditioner discharge, and the reagentized ore is subjected to rougher-scavenger flotation with additional fatty acid added to the scavenger float. The scavenger concentrate is returned to rougher circuit distributor, and the rougher concentrate froth is subjected to two stages of cleaner flotation to yield a final apatite concentrate analyzing 36 to 38% P205. Flotation recovery of P205 is, in general, above 90% when treating fresh carbonatite. The high-carbonate flotation tails normally analyze 1 % P2O5 or less and are suitable for portland cement production. The marine deposits. Types 1 and 2 of central Florida are representative of enormous reserves of phosphate rock that will undoubtedly account for much of the world's production in the near future. Until very recently the sedimentary deposits high in carbonate minerals (Type 2) have not been considered reserves due to the difficulty in making a francolite-carbonate separation. Although no commercial plant has yet been built to beneficiate Type 2 ore, laboratory and pilot plant data indicate the process is viable. If so, the reserves of Florida and similar deposits throughout the world will be substantially increased. A discussion of the beneficiation of these two types of sedimentary deposits and the relation of the resulting concentrates to the fertilizer industry of the United States is the subject of this paper.
Jan 1, 1981
-
Mineral Economics - "Depletion" in Federal Income Taxation of MinesBy K. S. Benson
DEPLETION is a subject of vital importance to the mining industry. Yet, in spite of its importance, its significance is not generally understood. The purpose of this discussion is to clarify the main aspects of the subject from the viewpoint of a metal mine taxpayer. To define the term depletion, it is necessary to distinguish among its various uses. In the economic or geological sense, depletion means the exhaustion of a natural resource. A mineral deposit is a wasting asset and once exhausted is nonrenewable. Millions of years were needed to produce an ore deposit, which may be consumed in a few years and which cannot be replaced except by the discovery of new sources of supply. The wasting asset feature of the mining industry has a vital bearing on the impact of the Federal Income Tax Law on this industry. This is recognized in the law by the various provisions dealing with the depletion allowance, and in this sense the term depletion has an income tax meaning. Depletion from the tax viewpoint means the statutory deduction from gross income designed to permit the return to the taxpayer of the capital consumed in the production and sale of a natural resource. The mining enterprise realizes income on the extraction and sale of minerals and a portion of the income realized represents capital consumed. As the resource is exhausted, the mining enterprise approaches the end of its existence unless new sources of supply can be acquired. Depletion from the tax viewpoint is a creature of statute with limited meaning and application and, in essence, is a method for amortizing the value of the primary asset of a mining enterprise. An example can best illustrate the significance of depletion from the tax viewpoint. Compare a manufacturing concern with a mining company. In computing taxable income of a manufacturing concern, consideraion is given to the cost of producing such income, the principal costs being capital investment for plant and equipment, labor, and raw materials going into the products produced. A mining enterprise, on the other hand, is faced with a different problem because its principal asset is the natural resource which it is producing. In computing its taxable income, consideration is given also to its capital investment for plant and equipment and the cost of labor; but in addition, recognition must be given to the fact that a portion of the proceeds realized on the sale of mineral represents capital. Without such recognition, the mining company would be taxed not on income but on capital and income, and Congress has never intended that capital be taxed as income. Thus, when depletion allowable is referred to in the mining industry, it means the statutory deduction allowable in computing taxable income of a mining enterprise. For guidance the appropriate provisions of the Internal Revenue Code, Income Tax Regulations, and the judicial decisions interpreting and construing them must be examined. It is important to identify and distinguish three methods of determining the allowance for depletion: 1—Cost depletion, 2—Discovery depletion, and 3—Percentage depletion. The basic method is cost depletion and in addition some taxpayers may be entitled to use discovery depletion and other taxpayers may be entitled to use percentage depletion. Discovery depletion and percentage depletion, however, are mutually exclusive and if a taxpayer is entitled to percentage depletion, he is not entitled to discovery depletion. By statute, a metal mine taxpayer is entitled to use cost depletion or percentage depletion, whichever produces the highest deduction. Thus, discovery depletion is merely of academic interest to such taxpayers and to most others. Briefly and broadly speaking, these methods of determining depletion may be described as follows: 1—Cost Depletion: Under this method, the allowable deduction for depletion is based upon the cost of the particular deposit to the taxpayer, unless the deposit was owned prior to Mar. 1, 1913, in which case the taxpayer may use the fair market value of the deposit on that date or actual cost, whichever is higher. This method is sometimes described as basis depletion or adjusted basis depletion, but in this discussion it will be referred to as cost depletion. 2—Discovery Depletion: Under this method, the allowable deduction for depletion is based on the fair market value of the deposit at the date of discovery or within 30 days thereafter and was originally designed to take into account deposits discovered subsequent to Feb. 28, 1913. 3—Percentage Depletion: Under this method, the allowable deduction for depletion is based on a specified percentage of the income realized during the taxable year from a particular property. As stated, the concept of depletion is based upon the exhaustion of a natural resource as distinguished, for example, from the concept of depreciation based on the exhaustion of property used in trade or business. From the tax viewpoint, depletion first became important in the administration of the Corporation Tax Act of 1909, which provided for an excise tax on net income. As soon as this act went into effect, mining taxpayers attempted to claim a deduction for depletion in computing net income although there was no specific mention of a deduction for depletion in the statute. The courts in these cases uniformly held that the statute did not permit an allowance for depletion in computing net income and also held that the provision permitting a reasonable allowance for depreciation did not include depletion. These early cases are quite significant because they establish the principle that the
Jan 1, 1952
-
Electrical Logging - A Quantitative Analysis of the Electrochemical Component of the S.P. CurveBy M. R. J. Wyllie
The relationship between the electromotive force (E.M.F.) across a shale barrier and the concentrations of sodium chloride solutions on either side has been investigated. It is shown that the action of a shale barrier is analogous to a glass membrane separating two acid solutions of different hydrogen ion concentrations. The shale behaves as a sodium electrode and is responsive to the activities of the sodium ions in the two solutions in such a way that the potential can be calculated by means of the Nernst equation. This conclusion is confirmed by laboratory experiments. In a borehole the total E.M.F. of a shale cell is the algebraic sum of the ~otential across the shale and a boundary potential. The relationship between total E.M.F. and the resistivity ratio of two sodium chloride solutions is indicated for a number of formation temperatures. The E.M.F. thus predicted is then compared with the .elf potential read from an electric log and good agreement is demonstrated. Based on both the self potential and resistivity curves of the electrical log. a method is given for calculating connate water content in a bed having in-tergranular porosity and containing both connate water and hydrocarbons. INTRODUCTION The first paper on electrical well logging by C. and M. Schlumberger and E. G. Leonardon in 1934' attributed the self potential curve principally to streaming potentials, i.e. to electroki-netic effects. Almost immediately great difficulties were encountered in reconciling many of the curves they obtained with this interpretation. and a ~econd paper' by the same authors soon appeared. In this second paper self potentials were attributed to the combined effects of streaming potentials and electrochemical potentials, the electrochemical potential being considered the result mainly of the interaction of fluids of differing salt concentrations, i.e. a boundary potential, and partly of potentials set up at the faces of impermeable materials. Some experiments involving a gray clay for the impermeable material were quated. The Schlumbergers and Leonardon deduced from the equation for a simple boundary ~otential that the electrochemical potential, as opposed to the electrokinetic potential, could be expressed in the form E=Klog- .......1 pe where K is a constant, pm the mud resistivity. p, the resistivity of the connate water in a porous bed. However, no general expression for the constant K was obtained. Although the literature between 1934 and 1943 contains a number of quotations of their results, the valuable work of the Schlumbergers and Leonardon was not extended so that the electrochemical potential has been generally attributed wholly to boundary potentials between the mud in the borehole and the connate waters in porous formations. Unfortunately, however, the fundamental premise of all these papers, that a boundary potential can give rise to current flow in a borehole, is thermodynamically untenable. As will be shown. the fact that the electrochemical potential can be fairly accurately express as E = K log pm/pc, a form in which a boundary potential may also be written, is partly fortuitous. The boundary potential is indeed an integral part of the expression for the electrochemical potential in a horehole, but in magnitude it represents only about 20% of the total potential. In 1943 an important step in the elucidation of electrochemical potentials was made by Mounce and Rust3 who showed that if a wall of shale separated two compartments which contained saline solutions of different concentrations, and if the two solutions were themselves brought into contact in the pores of a porous inert membrane (such as unglazed porcelain) a current flowed through the shale and saline solutions. The direction of positive current was from the shale into the more dilute solution. The paper of Mounce and Rust, while repeating some of the observations of the Schlumbergers and Leonardon, seems to be the first to show that the shale was the seat of a genuine electrochemical effect capable of causing current flow. In the same paper Mounce and Rust pointed out the similarity between the fundamental conditions of their experiment and the conditions which existed when a bed of shale in the ground was simultaneously in contact with a porous sand containing saline connate water and mud fluid of salinity different from that of the water in the sand. Since it is now generally recognized that the S.P. curve measures ohmic potential changes in the mud fluid in the well bore resulting from changes in current flow, it is apparent that currents having their origin in the electrochemical interaction of mud filtrate and connate waters with shale beds are a very important portion of the total S.P. The work of Mounce and Rusta and others appears to indicate that, in general, the electrochemical portion of a particular kick on a S.P. curve far exceeds any electrokinetic potentials resulting either from streaming potentials or Dorn effects. The Dorn effect, or sedimentation potential. arises when small particles are allowed to fall through certain fluids under the influence of gravity. a difference of potential being observe? between two electrodes placed at different levels in the stream of falling particles. The Dorn effect is unlikely to affect seriously the S.P. curve as now measured. A successful analysis of the electrochemical aspects of the S.P. log should
Jan 1, 1949
-
Part X – October 1969 - Papers - The Electrical Resistivity of the Liquid Alloys of Cd-Bi, Cd-Sn, Cd-Pb, In-Bi, and Sn-BiBy J. L. Tomlinson, B. D. Lichter
Electrical resistivities 01 liquid Cd-Bi, Cd-Sn, Cd-Pb, In-Bi, and Sn-Bi alloys were measured using an electrodeless technique. The resistivities ranged from 50 to 160 microhm -cm, temperature dependences were positive, and no sharp peaks in the composition dependence of the resistivity were observed. On the basis of these observations, it was concluded that the alloys are typical metallic liquids. The electron con-cent9,ation was calculated from the measured resis-tizlity and available thermodynamic data using a model which attributes electrical resistivity to scattering by density and composition flzcctuations. A correla-tion was shown between the departure of the electron concentration from a linear combination of the pure component valences and the value of the excess integral molar free energy. Calculation of the temperature dependence of the electrical resistivity showed a need for more detailed thermodynamic data in these systems and led to suggestions for improvement in the concept of residual resistivity in the fluctuation scattering model. THE electrical resistivity of liquid metals provides information regarding interatomic interactions and their effects upon structure. In this experiment an electrodeless technique was used to measure the electrical resistivities of liquid alloys of Cd-Bi, Cd-Sn, Cd-Pb, In-Bi, and Sn-Bi, and the results were used with thermodynamic data to calculate a parameter which reflects the tendency toward localization of electrons due to compositional ordering. It was found that the resistivities of these alloys are generally metallic in magnitude and temperature dependence. The electrical and thermodynamic properties are discussed in terms of the fluctuation scattering model'22 which supposes that the electrical resistivity arises from scattering due to a static average structure and departures from the average due to fluctuations in density and composition. Further, this model is compared with the pseudopotential scattering model of Ziman et al.3-5 EXPERIMENTAL PROCEDURES Alloy samples were prepared from 99.999 pct pure elements obtained from American Smelting and Refining Company (except tin which was obtained from Consolidated Smelting and Refining Company.) J. L. TOMLINSON, Member AIME, formerly Research Assistant Division of Metallurgical Engineering, University of Washington, Seattle, Wash., is now Physicist, Naval Weapons Center, Corona Laboratories, Corona, Calif. 0. D. LICHTER, Member AIME, is Associate Professor of Materials Science, Department of Materials Science and Engineering, Vanderbilt University, Nashville, Tenn. This work is based on a portion of a thesis submitted by J. L. TOMLINSON to the University of Washington in partial fulfillment of the requirements for the Ph.D. in Metallurgy, 1967. Manuscript submitted May 31, 1968. EMD Weighed portions were sealed inside evacuated silica capsules, melted, and homogenized before the resistivity was measured. The resistivity of a liquid alloy was measured by placing the sample inside a solenoid and noting the change in Q. According to the method of Nyburg and ~ur~ess,~ the resistivity of a cylindrical sample may be determined from the change in resistance of a solenoid measured with a Q meter as T7--5--W =R7JT^ ='Kc-lm(Y) [1] where L, R, and Q = wL/R are the inductance, series resistance, and Q of the solenoid. The subscript s refers to the solenoid with the sample inside; the subscript 0 refers to the empty solenoid. Kc is the ratio of the sample volume to coil volume and y = 2 [bei'0(br)-j ber'o(br)~\ br\_bero(br) +j bei0 (br) expressed with Kelvin functions which are the real and imaginary parts of Bessel functions of the first kind with arguments multiplied by (j)3'2. The argument of the function Y is hr where r is the sample radius and b2 = po~/p, i.e., the permeability of free space times 271 times the frequency divided by the resistivity in rationalized MKS units. Since Eq. [I] cannot be solved explicitly for p, values of Kc. lm(Y) were tabulated at increments of 0.1 in the argument by. A measurement of Q, and Q, determined a value of Kc . lm (Y) and the corresponding value of br could be read from the table. From the known r, uo,, and w, the resistivity, p, was determined. The change in Q was measured after letting the encapsulated Sample reach equilibrium inside a copper wire solenoid. The solenoid was contained in an evacuated vycor tube in order to retard oxidation of the copper while operating at high temperatures and heated inside a 5-sec-tion nichrome tube furnace capable of obtaining 900°C. Temperature was determined with two chromel-alumel thermocouples, one in contact with the solenoid 30 mm above the top of the sample and the other inserted in an axial well at the other end of the solenoid and secured with cement so that the junction was 2 mm below the bottom of the sample. Temperature readings were taken with respect to an ice water bath junction, and the voltage could be estimated to the nearest thousandth of a millivolt. The lower thermocouple was calibrated by observing its voltage and the Q of the coil as the temperature passed through the melting points of samples of indium and tellurium. The upper thermocouple reading was systematically different from the lower thermocouple reflecting the temperature difference due to a displacement of 60 mm axially and 6 mm radially. Calculations show that the gradient over the sample was less than 2 deg. Q was measured by reading a voltage related to Q from a Boonton 260A Q meter with a Hewlett Packard
Jan 1, 1970
-
Industrial Minerals - Conditioning and Treatment of Sulphide Flotation Concentrates Preparatory for the Separation of Molybdenite at the Miami Copper CompanyBy C. H. Curtis
HE valuable mineral content of the current feed -*- to the Miami concentrator is as follows: copper, 0.7 pct total; molybdenum, 0.01. Flotation of this ore yields a sulphide concentrate containing: chalco- cite, 44 pct; molybdenite, 0.5; pyrite, 50.0; insol, 5.5. A combination of potassium ethyl xanthate and pentasol amyl xanthate as collectors, and pine oil as frother, are used in this flotation. Rejection of pyrite is encouraged by holding the amount of collectors used to the minimum consistent with copper recovery and by operating at high alkalinity (equivalent to 0.35-0.40 lb CaO per ton solution of pH 11.0). The molybdenum recovery in the sulphide concentrates under the above flotation conditions is approximately 50 pct of that originally present in the ore. Taking into account the acid soluble molybdenum, indicated molybdenite recovery is 75 to 80 pct. The attempt to separate the molybdenite into an acceptable molybdenum product begins with the bulk sulphide flotation concentrate just described. This concentrate is composed of chalcocite, whose floatability has been promoted to the fullest extent possible for the sake of its recovery from the ore, together with the pyrite which has been activated along with the copper mineral. The problem is to deaden the copper and iron minerals, and to float the molybdenite. Obviously in the accomplishment of this end, conditioning and preparation of the pulp, prior to flotation, plays an all important role. The first step is thickening to 50 to 60 pct solids, with milk of lime added to the thickener feed to maintain an alkalinity of the pulp equivalent to a pH of 8.5 to 8.8 during its residence in the thickener. The purpose of the thickening is primarily to reduce the volume of pulp for subsequent treatment. However, the relatively prolonged retention of the pulp in the thickener at the desired alkalinity is known to have a favorable depressing effect upon pyrite. There is a limit for this alkalinity above which a depressing effect upon molybdenite occurs. The thickened pulp (alkalinity: 0.015 lb CaO per ton, pH 8.8), discharges into an agitator, retention time approximately 2 hr, to which additional lime is added to raise the alkalinity to 0.35 to 0.40 lb CaO per ton solution, pH 11.6. This additional lime is required for pyrite depression and can be tolerated without loss of molybdenite because of the limited time of contact in the conditioner tank. The pulp leaving the lime conditioner passes through two successive steaming tanks, which are mechanically agitated, and into which live steam is admitted directly into the pulp near the bottom of the tanks. The temperature of the pulp is maintained as near boiling as possible. The steaming time is approximately 4 hr. The pulp leaving the last steamer has an alkalinity of about 0.04 lb Cao per ton solution, pH 8.7. It is believed that oxidation of the copper and iron sulphides occurs during steaming, the resulting sulphates reacting the calcium hydroxide to calcium sulphate and thus reducing the alkalinity. Since the steamer-feed solution is already saturated with calcium sulphate, the calcium sulphate produced during steaming is precipitated. It is believed that this calcium sulphate is precipitated preferentially on copper and iron mineral surfaces thus decreasing their floatability. Aside from the "lime chemistry" during steaming, pine oil is displaced from the pulp and xanthate decomposed, which has a major effect upon the deadening of the copper and iron sulphides. Following steaming, the hot pulp is admitted to another conditioning tank wherein it is aerated, primarily for cooling, but incidentally for additional oxidation of the copper and iron sulphides. The resulting "deadened" pulp is then diluted to 20 pct solids, a specific collector for molybdenite, ordinary stove oil, is added and the separation of the molybdenite by flotation is undertaken at a pH of 8.5 to 8.8 in standard Miami air-flotation ma-chines. B-22 frother is used when necessary. A re-grind of the thickened rougher concentrates is made prior to the first cleaning operation chiefly for rejection of insoluble in subsequent flotation. The cleaner concentrate is then stepped up to 90 pct MoS, in an 8-cell Denver flotation machine No. 18. Sodium silicate is added to the cleaner circuit. Its effect is to flocculate molybdenite and stabilize the froth. In summary, it may be stated: 1. Separation of molybdenite into an acceptable product from sulphide copper concentrates by flotation involves preliminary preparation and conditioning of the pulp, which is of major importance. 2. This preparation and conditioning consists of several successive steps: (A) Thickening to 50 to 60 pct solids at controlled alkalinity to reduce volume of pulp and to contribute to depression of pyrite. (B) Agitation at high-pulp density for limited time with additional lime to provide for depression of pyrite. (C) Steaming at high-pulp density for decomposition of xanthate and xanthate surface films, evolution of pine oil, and oxidation of sulphide minerals other than molybdenite. The latter involves sulphating of lime with probable precipitation of calcium sulphate preferentially on copper and iron minerals. (D) Aeration at high-pulp density for cooling, and for further oxidation of copper and iron sulphide minerals. (E) Dilution of pulp to 20 pct solids and addition of specific collector for molybdenite, common stove oil. It is hardly necessary to point out that this rather drastic procedure for depression of previously activated copper and iron sulphide minerals, without at the same time depressing molybdenite, is possible due to the inherently high floatability and refractory nature of molybdenite. However, molybdenite is susceptible to depression by excessive lime which must therefore be limited to the amount consistent with satisfactory molybdenite recovery. The steaming procedure is being carried on at Miami Copper Co. under license agreement with Janney, Nokes, and Johnson, holders of letters patent on the process.
Jan 1, 1951
-
Industrial Minerals - Conditioning and Treatment of Sulphide Flotation Concentrates Preparatory for the Separation of Molybdenite at the Miami Copper CompanyBy C. H. Curtis
HE valuable mineral content of the current feed -*- to the Miami concentrator is as follows: copper, 0.7 pct total; molybdenum, 0.01. Flotation of this ore yields a sulphide concentrate containing: chalco- cite, 44 pct; molybdenite, 0.5; pyrite, 50.0; insol, 5.5. A combination of potassium ethyl xanthate and pentasol amyl xanthate as collectors, and pine oil as frother, are used in this flotation. Rejection of pyrite is encouraged by holding the amount of collectors used to the minimum consistent with copper recovery and by operating at high alkalinity (equivalent to 0.35-0.40 lb CaO per ton solution of pH 11.0). The molybdenum recovery in the sulphide concentrates under the above flotation conditions is approximately 50 pct of that originally present in the ore. Taking into account the acid soluble molybdenum, indicated molybdenite recovery is 75 to 80 pct. The attempt to separate the molybdenite into an acceptable molybdenum product begins with the bulk sulphide flotation concentrate just described. This concentrate is composed of chalcocite, whose floatability has been promoted to the fullest extent possible for the sake of its recovery from the ore, together with the pyrite which has been activated along with the copper mineral. The problem is to deaden the copper and iron minerals, and to float the molybdenite. Obviously in the accomplishment of this end, conditioning and preparation of the pulp, prior to flotation, plays an all important role. The first step is thickening to 50 to 60 pct solids, with milk of lime added to the thickener feed to maintain an alkalinity of the pulp equivalent to a pH of 8.5 to 8.8 during its residence in the thickener. The purpose of the thickening is primarily to reduce the volume of pulp for subsequent treatment. However, the relatively prolonged retention of the pulp in the thickener at the desired alkalinity is known to have a favorable depressing effect upon pyrite. There is a limit for this alkalinity above which a depressing effect upon molybdenite occurs. The thickened pulp (alkalinity: 0.015 lb CaO per ton, pH 8.8), discharges into an agitator, retention time approximately 2 hr, to which additional lime is added to raise the alkalinity to 0.35 to 0.40 lb CaO per ton solution, pH 11.6. This additional lime is required for pyrite depression and can be tolerated without loss of molybdenite because of the limited time of contact in the conditioner tank. The pulp leaving the lime conditioner passes through two successive steaming tanks, which are mechanically agitated, and into which live steam is admitted directly into the pulp near the bottom of the tanks. The temperature of the pulp is maintained as near boiling as possible. The steaming time is approximately 4 hr. The pulp leaving the last steamer has an alkalinity of about 0.04 lb Cao per ton solution, pH 8.7. It is believed that oxidation of the copper and iron sulphides occurs during steaming, the resulting sulphates reacting the calcium hydroxide to calcium sulphate and thus reducing the alkalinity. Since the steamer-feed solution is already saturated with calcium sulphate, the calcium sulphate produced during steaming is precipitated. It is believed that this calcium sulphate is precipitated preferentially on copper and iron mineral surfaces thus decreasing their floatability. Aside from the "lime chemistry" during steaming, pine oil is displaced from the pulp and xanthate decomposed, which has a major effect upon the deadening of the copper and iron sulphides. Following steaming, the hot pulp is admitted to another conditioning tank wherein it is aerated, primarily for cooling, but incidentally for additional oxidation of the copper and iron sulphides. The resulting "deadened" pulp is then diluted to 20 pct solids, a specific collector for molybdenite, ordinary stove oil, is added and the separation of the molybdenite by flotation is undertaken at a pH of 8.5 to 8.8 in standard Miami air-flotation ma-chines. B-22 frother is used when necessary. A re-grind of the thickened rougher concentrates is made prior to the first cleaning operation chiefly for rejection of insoluble in subsequent flotation. The cleaner concentrate is then stepped up to 90 pct MoS, in an 8-cell Denver flotation machine No. 18. Sodium silicate is added to the cleaner circuit. Its effect is to flocculate molybdenite and stabilize the froth. In summary, it may be stated: 1. Separation of molybdenite into an acceptable product from sulphide copper concentrates by flotation involves preliminary preparation and conditioning of the pulp, which is of major importance. 2. This preparation and conditioning consists of several successive steps: (A) Thickening to 50 to 60 pct solids at controlled alkalinity to reduce volume of pulp and to contribute to depression of pyrite. (B) Agitation at high-pulp density for limited time with additional lime to provide for depression of pyrite. (C) Steaming at high-pulp density for decomposition of xanthate and xanthate surface films, evolution of pine oil, and oxidation of sulphide minerals other than molybdenite. The latter involves sulphating of lime with probable precipitation of calcium sulphate preferentially on copper and iron minerals. (D) Aeration at high-pulp density for cooling, and for further oxidation of copper and iron sulphide minerals. (E) Dilution of pulp to 20 pct solids and addition of specific collector for molybdenite, common stove oil. It is hardly necessary to point out that this rather drastic procedure for depression of previously activated copper and iron sulphide minerals, without at the same time depressing molybdenite, is possible due to the inherently high floatability and refractory nature of molybdenite. However, molybdenite is susceptible to depression by excessive lime which must therefore be limited to the amount consistent with satisfactory molybdenite recovery. The steaming procedure is being carried on at Miami Copper Co. under license agreement with Janney, Nokes, and Johnson, holders of letters patent on the process.
Jan 1, 1951
-
Institute of Metals Division - Effect of Temperature on the Lattice Parameters of Magnesium Alloys - DiscussionBy R. S. Busk
Niels Engel (University of Alabama, University, Ala.)— In this paper it was pointed out that the electron-gas and energy-band theory accounts for the fact that the lattice parameters exhibit a sudden change when the electron concentration (number of bonding electrons per atom) exceeds a certain number around two. This statement is said to support and prove the electron-gas theory. But this theory is not able to account for a series of experimental data. Also several expectations, deduced from this theory, are not found to exist. In Figs. 6 and 7 the energy bands of the second and third periods are given as they must be assumed in order to account for the electrical properties of the elements in these periods. In Figs. 6 and 7 the electron-gas and energy-band theory is compared with the electron-oscillator hypothesis in accounting for the properties of the elements in the second and third periods. Fig. 6 shows the second period, The energy-bands are overlapping and separated to be in agreement with the electrical conductivity of the elements. The oscillator hypothesis explains conductivity due to electron vacancies. In graphite there is a closed s-shell in every other atom and two vacancies in the others. Conductivity is therefore only maintained by migration of s-electrons in graphite. In boron there are no s-electrons. The diatomic molecules of nitrogen and oxygen and the paramagnetism of oxygen can be accounted for by a similar behavior as the s-electrons of the bonding electrons. But this explanation will deviate too much for the purpose of this discussion. Fig. 7 shows the third period. In the energy-band picture about two s-electrons are assumed in magnesium and aluminum, but only one s-electron is assumed in silicon. The diamond lattice is assumed to be controlled by a sp3 hybrid. However the electron distribution develops ideally according to the oscillator hypothesis. Only sodium, magnesium, and aluminum exhibit electron vacancies and conductivity. To account for the insulator properties in Si, P, and S in the third period it must be assumed that the four last added p-electrons must be taken up in bands containing only one electron per band.' (Compare the electron band picture in Hume-Rothery.' Hume-Rothery does not consider the insulator properties of the nonmetals.) In the second period already the first p-electron must have entered a single electron band. Based on the energy-band picture in Figs. 6 and 7, the following questions must be asked: 1—Is it consistent with the energy-band idea that electrons of the same kind (p-electrons) can be divided into separated bands? 2—Is it consistent with the energy band idea that single electron bands can exist? 3—Why are the first two p-electrons (in boron and diamond) separated into two single electron bands in the second period, but overlapping in the third period (aluminum)? 4—Why are s-electrons and d-electrons taken up in continuous overlapping bands, while p-electrons are divided into single electron bands? 5—Why do the peaks and valleys (y and w and further x and z) of the energy band below four electrons per atom not show up in the electrical conductivity of alloys? For example consider the Li-Mg system or the alloys between Mg and three electron metals where the mentioned discontinuity in the lattice parameter is found. 6—Why does the beginning of the p-electron band (x) not show up in the lattice constants similar to the filling up of the s-electron band (z) ? In magnesium alloys the electron-gas theory postulates the first Brillouin zone to be filled at about two electrons per atom. This is claimed to explain the sudden change in lattice spacing and c/a values of several magnesium alloys when the electron concentration exceeds a few percentage points over two electrans per atom. This was emphasized in the paper by Busk. If the electron-gas energy-band theory is correct a sudden change in electrical conductivity and possibly other properties .should be expected when the same electron-concentration or temperature is exceeded. A sudden change in lattice spacing or other properties should also be expected when the filling degree is such that p-electrons are introduced into the p-band, for example at x in Figs. 6 and 7. Such phenomena are at found by experiment. and If the number of electrons should vary with the energy level depending on the average number of bonding electrons per atom, the electrical conductivity should be expected to vary in accordance with the energy band layout (Figs. 6 and 7) caused by different numbers of conducting electrons at different filling up degrees. Nothing indicating such a behavior is observed. In addition to these discrepancies between the electron-gas and energy-band theory and measured data, the theory violates the principles developed along with the Bohr theory of atomic structure. According to these principles a filled shell is saturated and therefore unable to form bonds. Therefore two S-electrons per atom should form a closed or saturated shell, which has been pointed out as accounting for the inability of helium to form bonds. Beryllium, magnesium, or calcium atoms with two s-electrons should be expected to form inert atoms with properties almost like the helium atoms. Several other inconsistencies and disagreements with measured data of the energy-band theory can be mentioned. Some of these are discussed with reference to other papers. 8 Because the electron-gas and energy-band theory seems to fail on several points, I have developed another theory which can account for all the phenomena the electron-gas theory is able to account for. This new theory is further able to account for things which are impossible to explain by the electron-gas theory at the present state.
Jan 1, 1953
-
Part III – March 1968 - Papers - Growth of Single Crystals of ZnTe and ZnTe1-x Sex by Temperature Gradient Solution ZoningBy Jacques Steininger, Robert E. England
Single crystals of ZnTe and ZnTe1-,Sex with x up to 0.13 have been grown from the elements by temperature gradient solution zoning using excess tellurium as a solvent. Best results have been obtained with charges with the compositions 45/55 at. pct Zn, Te, for ZnTe and increasing amounts of selenium for ZnTe1-xSex. The temperature in the molten zone was maintained at about 1070°C with a gradient of about 10°C per cm. Chemical analyses of quenched ZnTe ingots show tellurium concentrations in the molten zone as high as 70 pct with concentration differences across the zone of 1 to 2 at. pct Dark dots which are observed by transmitted light microscopy in as-grown crystals can be removed by annealing in zinc vapor at 900 C. INTEREST in wide band gap semiconductors has led to a new study of ZnTe and ZnTel-xSex crystal growth. ZnTe is the only II-VI compound with a wide band gap (2.3 ev) that can be made p type with low resistivity. Attempts to make it n type with low enough resistivity to be useful for p-n junctions have so far been unsuccessful.1 ZnSe has a band gap of 2.65 ev but can be made n type only. However, ZnTel-xSex solid solutions with x as low as 0.36 have been made both highly n and p type2 with a minimum band gap around 2.12 ev3 at room temperature and appear to hold the best promise for efficient injection electroluminescence in the visible. ZnTe has the lowest melting point of the zinc chal-cogenides (1295°C) and consequently attempts have been made to grow crystals from both the liquid and the vapor phase.4 Complicated apparatus is required for growth from stoichiometric melts because of the high vapor pressures of the elements at the melting point of ZnTe and because of the problem of quartz devitrification. Small crystals have thus been grown in high-pressure equipment by Fischer5 and by Narita et a1.6 with pressures of the order of 50 atm of argon to prevent excessive evaporation from the melt. Large crystals of ZnTe can be obtained by growth from the vapor phase4 but they often present numerous dislocations and inclusions. An improvement in the quality of vapor- grown ZnTe crystals was reported by Albers and Aten7 by equilibration of mixtures of small crystals with compositions lying on either side of the solid single-phase field at fixed temperature. The same technique was later applied by Aten8 to the growth of ZnTe1-xSex crystals with less than 1 pct inhomo-geneity. Because of the higher liquidus temperatures of the solid solutions and the high vapor pressure of selenium, previous attempts to grow ZnTel-xSex from the melt have been limited and unsuccessful.9 The phase diagram of the Zn- Te system is reproduced in Fig. 1, based on data from Kobayashi10 and Kulwicki.11 Carides and Fishher12 have reported lower liquidus temperatures on the tellurium-rich side, but their data would require confirmation. The liquidus temperature on the tellurium-rich side decreases rapidly with increasing tellurium concentration and the Te2 vapor pressure over the liquidus also decreases accordingly.'3 The decrease in liquidus temperature and vapor pressure therefore makes it possible to use conventional apparatus if there is a sufficient excess of tellurium in the melt. Single crystals of ZnTe have thus been grown by Kucza,14 in a modified Bridgman technique, from solutions containing up to 60 at. pct of Te by lowering unsupported quartz ampoules through a temperature gradient at about 1200°C. Under these conditions, the phase diagram indicates that the entire charge is initially molten. Crystal growth can therefore proceed by normal freezing and rejection of excess tellurium into the melt. The modified Bridgman technique has several major limitations. Because of the rejection of excess tellurium into the melt during freezing, the melt composition and the temperature at the growth interface vary continuously. They tend to follow the liquidus until the eutectic which is very close to pure tellurium (447°C, >99 pct Te). Since the solidus composition also varies with temperature,15 crystals grown by this method are inhomogeneous. They present small variations from stoichiometry which may affect their structure and physical properties. The simultaneous increase in tellurium content and decrease in melt temperature also combine to reduce the rate of diffusion of tellurium away from the growth interface, thereby causing constitutional supercooling and possibly dendritic growth. To minimize these effects, the initial melt composition is in practice kept relatively close to stoichiometry (less than 60 pct Te). This however limits the possibilities of operating at low temperatures and pressures. This paper describes a modified method of crystal growth by temperature gradient solution zoning (TGSZ) which is an adaptation of the temperature gradient zone-melting technique developed by pfann16 and of the traveling solvent method of Mlavsky and weinstein.I7 The TGSZ method now applied to the growth of ZnTe and ZnTel-xSex crystals is characterized by its very simple experimental arrangement and sample preparation technique. Unlike the modified Bridgman technique, there is no increase in the tellurium concentration in the melt and therefore it is possible to operate at lower temperatures and pressures. This method is also suitable for maintaining a constant temperature at the growth interface.
Jan 1, 1969
-
Part XI – November 1968 - Papers - Phase Diagrams and Thermodynamic Properties of the Mg-Si and Mg-Ge SystemsBy E. Mille, R. Geffken
The Mg-Si and Mg-Ge phase diagrams were rede-levtnined by thermal analysis, and the existence of a single congruent melting compound in each system was confirmed. The melting points of the two compounds Mg2Ge and ,Wg2Si were found to be 1117.4° and 1085.0°C respectively. The euteclics for the Mg-Ge system occur at 635.6°C (1.15 at. pcl Ge) and 696. 7°C (64.3 at. pct Ge); for the Mg-Si system the eutectics are at 6376°C (1.16 at. pct Si) and 945.6°C (53.0 al. pcl Si). The phase diagrams and known thermodynamic data were used to calculate activity values for both systems. The activities calculated for the Mg-Ge system agreed very well with those previously published. Partial molar enthalpy values for the Mg-Si systetn were calculated from the phase diagram for the composition region where no experimental values have been reported. THE phase diagram for any system is an important source of thermodynamic data. Steiner, Miller, and Komarek1 have derived equations which permit calculation of the activity in binary systems with an inter-metallic compound! if the liquidus and enthalpy data are known. The thermodynamic properties of the Mg-Ge and Mg-Si systems have recently been determined in this by by an isopiestic method, and it was considered that it would be interesting to compare these directly determined values with those computed from the phase diagram. The basic features of the Mg-Ge and Mg-Si systems are essentially similar. The one intermediate compound present in each system. Mg2X, crystallizes in the antifluorite structure and melts congruently. Raynor4 has accurately determined the temperature and composition of the magnesium-rich eutectic in both the Mg-Ge and Mg-Si systems. Klemm and West-linning5 investigated the entire Mg-Ge liquidus, employing sintered alumina crucibles; the purity of the magnesium and germanium starting materials was not reported. The melt was not stirred, and the temperature was automatically recorded to an accuracy of ±3°C. The authors reported large weight changes due to magnesium evaporation between 50 and 67 at. pct Mg. The Mg-Si system has been studied by a number of investigators, and the results have been compiled by Hansen and Anderko.6 Significant discrepancies exist between the two principle investigations of voge17 and Wohler and Schliephake.8 Two different grades of silicon were used by Vogel, one of 99.2 pct purity and the other quite impure, containing 6 pct Fe and 1.7 pct Al. The magnesium purity was not specified. The melts were contained in graphite crucibles with porcelain thermocouple protection tubes under an atmosphere of hydrogen. Samples weighing 10 g were rapidly heated to 50° to 100°C above the liquidus: held, and then rapidly cooled without stirring. Accuracy was ±1 at. pct which is equivalent to a maximum error in temperature of ±18°C. Wohler and Schliephake used 97.9 pct Mg and 99.48 pct Si. The graphite crucibles contained a stirrer and the 15-g samples were melted under an atmosphere of streaming hydrogen. The samples were chemically analyzed after each run. Because of the scarcity of the data, the impurity of the starting materials, and the resultant uncertainty and inconsistency in the published liquidus values, it was decided to undertake a reevaluation of the Mg-Ge and Mg-Si phase diagrams by thermal analysis. EXPERIMENTAL PROCEDURE Alloys were prepared from 99.99+ pct Mg (Dominion Magnesium Ltd.) with impurities in ppm: 20 Al, 30 Zn, 10 Si, <1 Ni, <1 Cu. <10 Fe; 99.999 pct Ge (United Mineral and Chemical Corp.), and 99.999 pct Si (Wacker Chemie Corp.). All graphite parts were machined from high-density (1.89 g per cu cm) G-grade graphite obtained from Basic Carbon Corp. with a total ash content of 0.04 pct. Boron nitride parts were machined from rods of National-grade H.B.N. boron nitride. All graphite and boron nitride pieces were baked out under running vacuum at 1100°C for 24 hr before us Cylindrical graphite crucibles (1; in. OD, 23/4 in. long, l3/8 in. ID) were tightly closed with threaded graphite covers which had 21/4-in.-long thermocouple wells and 1/4-in.-diam off-center holes for stirrers. The cover and thermocouple well were machined from a single piece of graphite. A stirrer was made from a flat cylindrical graphite plate perforated with five 3/16-in.-diam holes and a 1/2-in.-diam central hole, and was held parallel to the crucible bottom by a 1/4-in.-diam. 4-in.-long graphite rod which screwed into the plate and extended up through a tightly fitting hole in the crucible cover. An iron core enclosed in a glass capsule was attached to the stirrer with an 18-in.-long molybdenum wire, so that the stirrer could be magnetically raised and lowered from outside the system. One crucible and stirrer with essentially the same dimensions given above was made entirely of boron nitride. Chunks of magnesium were premelted, cast into 11/2-in.-diam. rods, and then cut into lengths varying from a to 1 in. A 5/16-in. hole was drilled through the center of each piece to accommodate the thermocouple well and the individual pieces were then cleaned and rinsed with acetone. The total weight of an alloy was 50 to 70 g in the Mg-Ge system and 40 to 60 g in the Mg-Si system. The pure components were weighed to an accuracy
Jan 1, 1969
-
Institute of Metals Division - Uranium-Titanium Alloy System (Discussion page 1317)By M. C. Udy, F. W. Boulger
AN incomplete phase diagram for the U-Ti systern was determined earlier 1 and more recently, a tentative diagram was presented for the uranium-rich end of the system.' In the present re-examination of the whole system of U-Ti alloys, high purity materials were used. Melting stock for the alloys was high purity uranium, containing about 0.09 pct C as the only appreciable impurity, and high purity iodide-process titanium purchased from New Jersey Zinc Co. Both metals were cold rolled to about 1/6 in. thickness, sheared to about I/' in. squares, and cleaned by pickling. The alloys were arc melted under a helium atmosphere in a water-cooled copper crucible. A thoriated-tungsten electrode was used. The furnace chamber was evacuated, then flushed with helium, prior to each melting. It was finally filled with stagnant helium at one atmosphere pressure. Each alloy was remelted three times after the original melting, to insure homogeneity. The alloy button was turned bottom side up before each re-melting operation. Some 22 alloys were examined. Their compositions were spaced at appropriate intervals between 100 pct Ti and 100 pct U. Analyses were made on chips taken after fabrication. The major contaminant was carbon, which varied from 0.03 to 0.08 pct. It appeared in the microstructure as titanium carbide. Alloy compositions were calculated to a carbon-free basis for consideration on the diagram. Tungsten and copper, possible contaminants from the melting operation, were generally less than 100 parts per million each. Fabrication All alloys were forged and rolled to bars approximately V8 in. square. They were clad either in SAE 1020 steel or in a 5 pct Cr-3 pct Al-Ti-base alloy, depending on the fabrication temperature. A temperature of 1800°F (980°C) was used for alloys near the compound composition. This necessitated using the titanium-base alloy, since iron reacts with titanium at this temperature, producing a low melting alloy. Other alloys were fabricated at 1450°F (790°C), using steel jackets. No iron-titanium reaction occurred at this temperature. The jackets were welded in place in an argon atmosphere. Those alloys sheathed in steel were declad and then reclad between rolling and forging operations. On the other hand, those clad with the titanium alloy were cut to a roughly rectangular shape prior to clading and were then carried through both the forging and rolling operations without opening. Those alloys near the compound composition were found to be cracked when the clading was removed. The cracked materials had been plastically deformed, however, and at least some of the cracking had OCcurred during cooling. Heat Treatment The rolled bars, after being declad and shaped to remove surface contamination, were all given an homogenizing treatment of 160 hr at 2000°F. (Samples were taken for analysis following the declading and shaping operations.) All were heat treated at the same time in one furnace, but each was sealed in a purified argon atmosphere in an individual Vycor glass tube. Argon pressure was such that it was approximately atmospheric at temperature. One end of each tube contained titanium chips and this end was heated to 1200°F (650°C) for 10 min prior to the heat treatment. This purged the atmosphere of residual reactive gases. The balance of the tube was warmed during the purge to liberate adsorbed moisture and gases, which also reacted with the hot chips. The bars were furnace cooled from the homogenization treatment. Specimens of each alloy were water quenched after 2 hr heating at 1000°, 1200°, 1400°, 1600°, 1800°, and 2000°F (540°, 650°, 760°, 870°, 980°, and 1095°C). In addition, some were treated at intermediate temperatures of 1300°, 1500°, and 1700°F (705", 815", and 925°C) and at 2150°F (1175°C). Specimens, about '/s in. cubes, were cut from the bars, sealed in individual Vycor tubes, and heat treated as described. All specimens heat treated at the same temperature were processed together. Samples were quenched by breaking the Vycor tube rapidly under water. Metallographic Examination Specimens were mounted in bakelite and ground wet on 180 grit paper held on a 1750 rpm disk. They were then ground wet by hand, using 240, 400, and 600 grit papers. The rough grinding was continued long enough to get well below the surface. Specimens were mounted separately because of the variation in the rate of etching between alloys. The specimens were polished with rouge on a 4 in., 1725 rpm wheel covered with Miracloth. Alloys on the titanium side of the compound composition were etched with a solution of 2 pct hydrofluoric acid in water saturated with oxalic acid. A few crystals of ferric nitrate were added as a bright -ener. Specimens were immersed 5 sec, polished to remove the etch, then re-etched. With the higher titanium alloys, it was often necessary to start the etch on the polishing wheel, because of the formation of a passive film. In some instances, a plain 2 pct hydrofluoric etch was satisfactory. For the alloys on the uranium side of the compound, a distinction between the compound and the uranium phase developed after standing a short time in air. This could be hastened by the application of heat, such as obtained by placing the specimen on a radiator. A deep etch was necessary to develop details in the uranium-rich phase, such as the Widmanstaetten pattern sometimes obtained by quenching y uranium. A 2 pct hydrofluoric acid solution was used for this deep etching.
Jan 1, 1955
-
Part X – October 1969 - Papers - Electrowinning of Hafnium from Hafnium TetrachlorideBy M. M. Wong, D. E. Couch, G. M. Martinez
The Bureau of Mines electrowon hafnium metal with an average oxygen content of' 150 ppm at 700°C from an electrolyte containing 27 wt pct LiCl, 62 wt pct RbCl, and 11 wt pct HfC14. The average anode and cathode current efficiencies were 90 pct at anode and initial cathode current densities of 86 amp per sq ft. Haf-nium metal with an average oxygen content of 440 ppm was electrowon at 800oC from an electrolyte containing 90 wt pct KC1 and 10 wt pct HfCl4. The average anode and cathode current efficiencies were similar to those obtained in the LiCL-RbCl-HfCl, electrolyte. The chlorine gas given off at the graphite anode was vented through either a silica or a graphite tube to prevent cell corrosion. THE current method for the commercial production of high-purity hafnium is the thermal decomposition of Hfl4.1 The iodide method is not adaptable to continuous process techniques. Nettle, Hiegel, and Baker2 studied the electrorefining of hafnium from hafnium sponge containing 800 ppm oxygen. They failed to obtain hafnium with 600 ppm oxygen in their initial deposits and obtained AEC specification for oxygen only after 75 pct of the soluble hafnium had been removed from the electrolyte. Calculations using their data indicated this was approximately 4 lb of hafnium. The electrolyte was then used to produce approximately 3 lb of hafnium with a low oxygen content. However, no data are shown concerning the amount of anode material initially used or what percent of it was dissolved, therefore, results are not suitable for evaluation of a continuous operation. In general, it was not possible to consistently obtain low oxygen content metal with the electrolytes described by Nettle, Hiegel, and Baker. Wong, Hiegel, and Martinez3 investigated the electrorefining process for hafnium and showed that even by strict control of electrolyte composition only relatively low oxygen reduction could be obtained. The oxygen contained in the hafnium anode material tended to transfer to the cathode deposit and only a limited purification was possible. Both the "iodide" and the "electrorefining" processes depend upon hafnium sponge as a starting material. The sponge is normally produced by magnesium reduction of HfC14 ' and does not meet AEC specifications for hafnium metal. Since only 30 pct of the anode feed could be utilized3 in the electrorefining cells, the Bureau of Mines developed an electrowinning process. HfC14 was used as the feed material for the electro-winning process described in this report. Many of the electrolytes used in the electrorefining studies3 ap- peared to be suitable carrier-electrolytes for HfC14. However, in the initial studies on electrowinning, it was desirable to use electrolytes that had low solidus temperatures and could be operated over a wide temperature range to investigate parameters of the process. Therefore, electrolytes containing LiC1, NaC1, KC1, RbC1, CsC1, and HfC14, in various combinations were explored. EQUIPMENT Chlorinator. Hafnium carbide was chlorinated to produce HfC14 in the batch-type chlorination shown in Fig. 1. Chlorination temperatures were measured with a thermocouple placed in the center of the HfC charge. A flow meter was used to monitor the helium and chlorine. The exhaust side of the silica chlorina-tor tube was equipped with a flask for collecting organic material released during the initial heating of the HfC. The temperature of an internal heater, which extended from the HfC14 condensing flask to the hot end of the chlorinator, was adjusted to prevent the HfC14 from condensing before entering the collection flask. Helium and excess chlorine were exhausted through the lid of the collection flask to an aqueous NaOH solution. Sublimer. Initial studies were conducted using a sublimer, Fig. 2, made by placing a 13/8-in. OD nickel thimble 11 in. long, inside a 11/2-in. ID nickel bell 12 in. long, and locking it in place. This unit was loaded with HfC14 and partially immersed in the molten electrolyte for sublimation directly into the electrolyte. In another sublimer shown in Fig. 3, the HfC14 was contained in a "resin reaction flask". Quartz wool, previously heated to 600aC, secured between two nickel wire screens, was placed just above the HfC14 powder. The lid contained a vacuum outlet, a gage, an argon inlet, and an air-cooled pipe for condensing the HfC14. This sublimer was evacuated and heated. The sublimation temperature was not critical and the sublimer operated satisfactorily at all temperatures between 250" and 350°C. Electrolytic Cell. The electrolyte chamber, Fig. 4, was made of mild steel 8-in. schedule 20 pipe, 30 in. long. The exterior was metallized with a Ni-Cr alloy. The electrolytes were contained in a 16 gage nickel or iron liner with a nickel heat shield on top. The cell was heated by a resistance furnace. A 21/2-in. ID by 25 in. long air lock was connected to one port of a two-port cell cover assembly through a slide valve. The cover assembly of the air lock was electrically insulated from the cell and was equipped with a rubber sleeve that provided for the passage of the cathode lead. This allowed the cathode deposits to be removed and a new nickel cathode to be introduced without allowing air to enter the cell. A tube-rod assembly was bolted to the other port on the cell cover assembly and was sealed by a packing seal. The tube-rod assembly consists of a graphite
Jan 1, 1970
-
Uranium Severance Taxes - Some PerspectivesBy Lynn C. Jacobsen
Among the unforeseen consequences of the 1973 Arab oil embargo has been a considerable array of new or increased taxes on the so-called energy minerals. These taxes will be the subject of this report. Both Federal and State taxes have been enacted, but I will be concerned mostly with state severance taxes and particularly those on uranium. Severance taxes are considered to include all taxes having the distinctive feature of being applied on a natural resource at the stage of extraction. The tax may be based on units of production or on value, and if on values it may be on gross value or on gross value less either arbitrary or cost-related deductions. The tax has a number of aliases - resource excise tax, conservation tax, privilege tax, mining excise tax, ad valorem production tax, and more - and this makes comparison of tax burdens among states difficult. The windfall profit tax on oil is an example of a severance tax at the Federal level. Severance taxes are an established feature of state tax systems, but they continue to be a controversial issue, and proposals to raise or modify existing severance taxes are regularly submitted to the legislatures of the Western energy producing states. No concensus exists as to what is a reason- able and proper level of severance taxation or to the form it should take. The taxes which have been adopted by the various states reflect the interaction of a variety of interests and the specific circum- stances in each state. What follows is a summary of theoretical, practical, and emotional viewpoints and arguments that surface in any statehouse in which a severance tax bill has been introduced. The New Mexico experience will be heavily relied upon. THE ECONOMISTS Marginal effects. A severance tax which is based on a gross percentage of revenue or on units of production is a constant addition to variable costs, and to the mine operator has the same effect as any other increase in operating costs. The direction of these effects is straightforward: the tax will cause the property to have a lowered present value, to be mined at a lower rate than without the tax, raise the minimum grade that will be mined, lead to lower total recovery, make marginal properties sub-marginal and discriminate in favor of richer, more profitable operations (Lockner, 1965; Steele, 1967). In the short run, production facilities are fixed and imposition of a severance tax will have little effect on production levels. In the longer term, capital is mobile and investment and exploration expenditures will shift from minerals and jurisdictions with high taxes to those with low taxes. Over a considerable range of taxation the effect will be to change the relative position of the taxing state, but an overly optimistic evaluation of the capacity of mineral producers to absorb a tax can bring an industry to a halt. It is generally acknowledged that imposition of high severance taxes on taconite in Minnesota stopped development completely, and that only the adoption of a constitutional amendment limiting the amount of taxes that could be imposed in the future brought the firms back and encouraged them to make the huge investments required (Weaton, 1969). A tax which is a percentage of the net operating income (gross revenue less cash operating costs) does not influence the cut-off grade for recovery nor change the time preference for extraction, and hence, is free of the negative features of the tax applied to gross revenues or units of production. In theory it is a more efficient tax but relative administrative complexity and inherent difficulty in predicting revenue have discouraged its use. The Wyoming severance tax on uranium, which uses grade of ore as well as price in establishing taxable value, is the most cost related, and hence, the most neutral and efficient of the various state severance taxes on uranium. Economic rent. Despite the discrimination and the anti-conservation aspect inherent in most severance taxes, economists generally endorse their use because they are seen as a vehicle to appropriate rents - that is, returns greater than the long-run competitive supply price. Conspicuous examples of supposed economic rents are the returns to oil producers because of the OPEC cartel, the returns of the uranium producers under AEC buying contracts in the 19501s, and the high prices obtained by the uranium producers for contracts entered into in the 1976-1979 period. Mining of coal in the Western states is believed by some to generate huge economic rents because of the OPEC caused increase in price of a competitive fuel (McLure, 1978, p. 261), and possibly because of clean air regulations favoring the burning of low-sulfur coal. In theory, such surplus returns could be taxed completely away without affecting supply. In practice, the situation is more complex (Steele, 1967, pp. 234-236); economic rent of mineral production is an elusive quantity involving as it does replacement costs, and technical and market risk, and it, like beauty or pornography, probably exists mostly in the eye of the beholder. Rent may also be perceived to be present in the upper portion of a cyclic market which also has a downside. Where rent exists, it is almost certain to be short-lived - cartels self- destruct, government subsidies end, competitive adjustments occur - but the taxes imposed to capture it tend to be immortal. There is little doubt that the perception of un- usual and undeserved (obscene) profits in the mid- and late 1970's was a major factor in the adoption of energy mineral taxes strikingly higher than had been previously considered. At the New Mexico legislature of 1977 supporters of a moderate tax were repeatedly confronted with some variant of the statement, "You can't expect me to believe that a
Jan 1, 1982