Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Reservoir Engineering Equipment - Constant-Pressure Gas PorosimeterBy A. H. Heim
A method and apparatus for measuring gas porosities of rocks are described. The apparatus can be assembled from commercially available components. In principle, measurements are made by volume substitution at constant pressure. The maximum error is not more than 0.3 porosity per cent. Typical results are given. INTRODUCTION Determining the porosity of rock samples is one of the most important and yet most varied types of measurement in core analysis. Among the many techniques devised are the so-called "gas porosity" methods. An old and well known example is the Washburn-Bunting method.' The U. S. Bureau of Mines2-' described and later improved the apparatus for a now widely used method generally known as the "Boyle's law" method. In the present form of the Washburn-Bunting method,' the volume of air in the pores of a rock sample at atmospheric pressure is extracted and then collected in a graduated burette at atmospheric pressure. The volume of air is read directly as the pore volume of the sample. The absolute error in reading the collected volume of gas is independent of the total volume; thus, the relative error is larger when the volume is small, as it is for rocks of low porosity. In addition, the sample after measurement contains mercury, which limits its use for other analyses. The Bureau of Mines (or Boyle's law) method measures directly the solids volume of a sample from which the pore volume and porosity are derived, using a separate measurement of the bulk volume. Gas at a few atmospheres pressure is introduced into a sample chamber of known volume containing the rock sample. The pressure is accurately measured. Following, the gas is expanded into a burette at 1 atm, and the gas volume is read directly. From the initial pressure p, and the final pressure p2 and volume v,, the initial gas volume v1 is calculated using Boyle's law; that is, p1v1 = p2v2. Volume v, minus the volume of the empty sample chamber is the solids volume of the sample. The accuracy of the method is limited, unless corrections are made, by deviations of the gas from the "ideal" gas-law behavior assumed in the simple form of Boyle's law. The purpose of the present paper is to describe a method for measuring the gas porosity of a rock which avoids many of these difficulties. Gas volumes are measured directly with the same accuracy as the bulk volumes. Pressures of at least an order of magnitude larger than those of previous methods are employed to insure rapid penetration of the gas into the sample. While special equipment may be built to apply the method, the porosimeter may be constructed as well from commercially available components. For simplicity, the apparatus described will be referred to as the "Constant-Pressure gas porosimeter". THE CONSTANT-PRESSURE METHOD Fig. 1 shows schematically the arrangement of components comprising the present Constant-Pressure porosimeter. Briefly, the method is one of volume substitution and may be considered a null measurement. Omitting (for the present) some of the operational details, the method of measurement consists of the following three steps. 1. After evacuation, the volume of the measuring system (a ballast chamber, a manifold, two gauges and their connections) up to the sample chamber is filled with gas to a high pressure (- 1,000 psi). A sample of the gas at this pressure is trapped in one side of a sensitive differential pressure gauge to serve as the reference pressure for subsequent steps. 2. The evacuated sample chamber containing the rock sample is opened to the measuring system. As the gas expands into the chamber, the resulting decrease in pressure unbalances the differential pressure gauge. 3. The pressure is restored by means of a mercury volumetric pump. The volume of mercury injected exactly equals the free or void volume of the sample chamber (volume of empty chamber minus the solids volume of the rock within). From the injected volume and the known empty chamber volume, the solids volume is obtained and the porosity calculated. The pressure and the volume occupied by the gas are the same before and after opening the sample chamber. Expansion and compression of the gas are incidental operations and do not enter into the calculation of porosity. By the pressure balancing or nulling, the free volume of the sample chamber is merely substituted by an equal and measured volume of mercury. Since the measurements are at constant pressure, there are no compressibility corrections necessary for the sample chamber.
-
Institute of Metals Division - Latent Hardening in Silver and an Ag-Au AlloyBy B. Ramaswami, U. F. Kocks, B. Chalmers
The latent hardening of silver and an Ag-Au alloy was investigated by lateral compression, overshoot in tension and cormpression, and the stability of multiple-slib orientations. The latent hardening of a secondary slip systenz depends on its relation to the primary slip system. For most secondary slip systems the latent hardening is larger for Ag-10 at. pct Au than for pure silver. The maximum increase in. flow stress on a secondary slip system over that of the primary slip system was 40 pct. The work hardening during the lateral-compression test on the latent system after prestress on the primary system is iuterbreted in terms of the preferential distribution of barriers to dislocation movement with respect to the active slip system in work-lzardened fcc crystals. The work-hardening in fcc crystals is mainly due to the dislocation interactions and the barriers to dislocation movement formed as a result of reactions between dislocations of different slip systems. The operation of sources on the latent system depends on the flow stress of those systems; hence, the increase in flow stress of a latent system due to glide on an active system, which is called latent hardening, is an important element in understanding the phenomenon of work hardening. The problem of latent hardening has attracted the attention of many investigators in the past. For example, a theoretical study of the elastic latent hardening of the latent systems due to glide on an operative system has been made by Haasen' and ~troh. These calculations, however, neglect the stress required for the intersection of forest dislocations by the glide dislocations, a factor which would be important for producing macroscopic strains on the secondary slip systems. The importance of this factor will become evident from the results presented here. Attempts have also been made to determine the latent hardening of different slip systems by experimental means by the methods summarized in Table I.3-9 The experimental methods used have been subject to certain limitations. For instance, in the method used by Hauser,9 frictional constraints between the specimen and the compression platen were not eliminated by proper lubrication (see Hos- ford10). Secondly, with the exception of Kocks,6 Hauser,9 and Rohm and Kochendorfer,11 latent-hardening studies have been made on only one of the slip systems, i.e., on either the conjugate or the coplanar slip system; hence, extensive results are not available on the latent hardening of different slip systems in the same materials, with the exception of aluminum.6 It was therefore decided to study the latent hardening of the conjugate, critical and half-related slip systems in silver. Similar experiments were done in Ag-10 at. pct Au to study the effect of solute (gold) on the latent hardening of silver. Lastly, indirect evidence can be obtained by a study of the orientation stability of crystals of multiple-slip orientations in tension and compression. This method has been used by Kocks6 to supplement his studies of latent hardening in aluminum. Similar studies were made at room temperature in single crystals of silver. EXPERIMENTAL PROCEDURE The single crystals of the desired orientations were grown and the tensile test specimens were prepared as described in Ref. 12. The compression tests were made on 1/4-in.-cube specimens. The specimens were cut from single crystals, in the Servomet spark-erosion machine.13 The two cut surfaces were planed using the lowest available planing rate in the machine to minimize the deformation layer. A brass strip was used as the planing tool. This method of preparation ensured plane parallel faces for the compression tests. The deformed material was removed by prolonged etching in a weak etching solution. A weak etching solution was used to prevent pitting of the surfaces and to ensure uniform etching. About 25 to 50 µ of material were removed from all faces by the etching treatment. The specimens were then annealed for 24 hr at 940°C in oxygen-free helium and cooled in the furnace to room temperature over a period of 7 hr. After annealing, the orientation of the specimens was determined by Laue back-reflection technique to make sure that no recrystallization had occurred on annealing. The compression-test technique and setup are described in Ref. 14. The Laue back-reflection technique was used to study the overshoot in tension, the overshoot in compression, and the stability of the axial orientation in tension and compression. The tests were interrupted after every few percent strain to determine the axial orientation. In investigating the overshoot in compression, the operative system was determined by studying the asterism of the Laue spots.
Jan 1, 1965
-
Metal Mining - Health and Safety Practices at PiocheBy S. S. Arentz
PLANNED health and safety programs have become an essential part of American industry because such programs lead to increased operating efficiency, improved labor relations, better public relations, and to substantial savings in compensation insurance. Those of you who have had the unpleasant duty of informing the wife or widow of one of your men of his serious injury or death while on the job, know that all the benefits of a successful safety program do not show on the balance S. S. ARENTZ, Member AIME, is General Superintendent, Nevada Operations, Combined Metals Reduction Co., Pioche, Nevada. AIME San Francisco Meeting, February 1949. TP 2741 A. Discussion of this paper (2 copies) may be sent to Transactions AIME before March 31, 1950. Manuscript received Jan. 6, 1949. sheet. These programs are of particular importance to the mining ,industry because mining's reputation as an unusually hazardous industry and the commonly isolated location of mining operations tend to focus attention on these problems. Description of Operations: Before proceeding with a discussion of our health and safety programs at Pioche, it may be proper to give a brief description of Pioche and of our operations there. Pioche is one of the early Nevada mining camps. It was founded shortly after the discovery of high grade silver ore in 1863 and mining has continued with more or less regularity to the present day. In an era of lawlessness, Pioche was notorious. The story persists that 75 men died with their boots on before one died a natural death, and old payroll records show that nearly as many gunmen were employed to stand off claim jumpers as there were miners working the mine. That was probably as close to a safety program as the times permitted. Pioche is situated in southeastern Nevada on the main highway between Ely and Las Vegas. The camp is on the flank of "Treasure Hill," near the original silver discovery, at an elevation of about 6000 ft. The present day population of about 2000 is primarily dependent upon the mines of the area, although Pioche also serves as the county seat of Lincoln Couqty and as the center of the surrounding livestock industry. The camp is served by a branch of the Union Pacific Railroad and receives power from the generators at Hoover Dam. The Pioche operations of the Combined Metals Reduction Co. were started in 1923 when the first complex lead-zinc ore was shipped to the company's mill at Bauer, Utah. The modern mill at Pioche was completed in 1941. The operations are medium sized in the nonferrous field, employing an average of 350 men in the mine, mill, and related works. The complex lead-zinc ore is mined from replacement deposits in a comparatively flat, extensively faulted, limestone horizon. Mining methods vary from stull-supported open stopes to filled square-set stopes. The thin bedded limestone and shale overlying the ore is allowed to cave as areas are mined out and caving frequently follows closely upon ore extraction. The relatively heavy ground and the numerous faults add to the problems of safe mining. The mine is well mechanized and the mill and surface plant are modern and well equipped. Labor is organized in a C.I.O. union and labor-management relations have been unusually harmonious. During most of the period since 1923 a competent supervisory staff worked to reduce safety hazards but the primary responsibility for safety rested on the individual workman. Accidents happened and all too frequently they were regarded by all concerned as unavoidable. In October 1939, the late Robert L. Dean became superintendent at Pioche. Most of his previous experience had been in the fields of iron and coal mining and from that experience he brought the concept that no accident is unavoidable. Many of the features of our present health and safety programs were initiated by Mr. Dean during his term as superintendent. Health Program: Our health program centers in Dr. Q. E. Fortier and his new, well-equipped, and well-staffed, modern hospital in Pioche. The program starts with a thorough pre-employment physical examination and is followed by yearly re-examinations at the expense of the company. The Pioche Mutual Benefit Association, to which all Pioche mine operators and employees belong, pays benefits covering hospitalization and surgery expense incurred by employee members and their families. The Association is governed by a board of directors elected by its members. The mine operators of the district donated the original capital and pay the monthly dues of the employee members. The employees pay the dues covering members of their families. Though not strictly a part of the
Jan 1, 1951
-
Natural Gas Technology - Natural Gas Hydrates at Pressures to 10,000 psiaBy H. O. McLeod, J. M. Campbell
This paper presents the results of the data obtained in the first stage of a long-range study at high pressures of the system, vapor-hydrate-water rich liquid-hydrocarbon rich liquid. The data presented are for the three-phase systems in which no hydrocarbon liquid exists. Tests were performed on 10 gases at pressures from 1,000 to 10,000 psia. One of these was substantially pure methane, and the remainder were binary mixtures of methane with ethane, propane, iso-butane and normal butane. Several conclusions may be drawn from the data. 1. Contrary to previous extrapolations, the hydrocarbon mixtures tested form straight lines in the range of 6,000 to 10,000 psia which are parallel to the curves for pure methane, when the log of pressure is plotted vs hydrate formation temperature. 2. The hydrate formation temperature may be predicted accurately at pressures from 6,000 to 10,000 psia by using a modified form of the Clapeyron equation. The total hydrate curve may be predicted by using the vapor-solid equilibrium constants of Carson and Katz' to 4,000 psia and joining the two segments with a smooth continuous curve between 4,000 and 6,000 psia. 3. The use of gas specific gravity as a parameter in hydrate correlations is unsatisfactory at elevated pressures. 4. The hydrate crystal lattice is pressure sensitive at elevated pressures. INTRODUCTION Prior to 1950 many studies had been made of the hydrate forming conditions for typical natural gases to pressures of 4,000 psia.""'"'"" Most of these attempted to correlate the log of system pressure vs hydrate formation temperature, with gas specific gravity as a parameter. One of the more promising correlations was made by Katz, et al, which utilized vapor-solid equilibrium constants. The only published data above 4,000 psia are those of Kobayashi and Katz7 for pure methane to a pressure of 11,240 psia. In the intervening years, most published charts for the high-pressure range have represented nothing more than extrapolations of the low-pressure data, with the methane line serving as a general guide. The reliability of these charts has become increasingly doubtful (and critical) in our present technology as we handle more high-pressure systems. The portion of our high-pressure hydrate research program reported here was designed to: (1) investigate the reliability of existing charts; (2) obtain actual data on gas mixtures to 10,000 psia; and (3.) develop a simple hydrate correlation that was more reliable than those which simply used specific gravity as a parameter. Binary mixtures of methane and ethane, propane normal butane, or iso-butane were injected into a high-pressure visual cell containing an excess of distilled water. Hydrates were formed and then melted to observe the decomposition temperature of the hydrates at pressures from 1,000 to 10,000 psia. EQUIPMENT The equipment consisted of a Jerguson 10,000-lb high-pressure visual cell, a 10,000-1b high-pressure blind cell and a Ruska 25,000-1b pressure mercury pump. The visual cell was placed in a constant-temperature water bath controlled by a refrigeration unit and an electric filament heater. A Beckman GC-2 gas chromatograph was used in analyzing the gas mixtures after each run was completed. EXPERIMENTAL PROCEDURE After evacuating the gas system, the heavier hydrocarbon was injected into the high-pressure mixing cell to that pressure necessary to give the desired composition. This cell then was pressured to 1,100 to 1,200 psia by methane from a high-pressure cylinder. The mixing cell holding the gas contained a steel flapper plate and was shaken intermittently over a period of 15 minutes. After mixing, the valve to the high-pressure visual cell containing excess distilled water was opened, and the gas mixture was allowed to flow into the cell. The temperature in the water bath was lowered 10" to 15'F below the estimated hydrate decomposition point. As a first check, the temperature was increased at a rate of 1°F every six minutes to find the approximate point of decomposition. It was again lowered 1.5° to 5°F to form hydrates. The temperature was raised to within l° of the estimated decomposition point and then increased 0.2F every 10 to 15 minutes until the hydrates decomposed. This procedure was repeated at various pressures to obtain 7 to 13 points for each mixture between 1,000 and 10,000 psia. After completion of the hydrate decomposition tests, the gas mixture composition was analyzed with a calibrated gas chromatograph. These gas analyses have an estimated error of ± .1 per cent.
-
Institute of Metals Division - Creep Characteristics of Some Platinum Metals at 1382°FBy ED. E. Furman, R. H. Atkinson
HITHERTO the practical creep testing of precious metals has received little or no attention. The only previous creep tests of precious metals have been made with wires under conditions such as to yield much more rapid rates of creep than in engineering tests.', ' Up to the present time the value of creep bars of adequate size, in the absence of real need for engineering data, has deterred investigators. However, the increasing use of platinum at high temperatures has demonstrated the need for reliable creep data for the guidance of engineers, especially those engaged in designing certain specialized chemical plant equipment. In order to supply this need, creep tests were conducted at 1382°F (750°C) on 0.290 in. diam specimens of platinum, 90 pct Pt, 10 pct Rh and palladium. The platinum was high purity, nominally 99.95 pct Pt. The 90 pct Pt, 10 pct Rh was of the same high quality as is used for making gauzes for the catalytic oxidation of ammonia. The palladium was also of high purity; two batches of palladium bars were tested, one deoxidized with calcium boride and the other with aluminum. Spectrographic examination of the palladium confirmed its good quality; the only significant impurities apart from the residual deoxidizers were traces of silicon and lead. Procedure The creep bars, which were furnished by Baker and Co. to our specification, were 6 ¾ in. in overall length with a 4½ in. (4 in. gage length) reduced section 0.290 in. in diam and had the ends threaded (?-NC16). It may be of interest that the bars were valued at up to $600 each. The specimens were supplied in a 50 pct cold-worked condition to facilitate attachment of the creep extensometer, which was of the push rod type. Because of the softness of the platinum and palladium, the extensometer rings were secured to the test section by means of circular knife edges instead of the usual pointed set screws. The extensometer rods extended through the bottom of the furnace and readings were taken with a 0.0001 in. "Last Word" dial gage fastened to the rods for the duration of the test. The bars were directly loaded by hanging weights from the lower specimen grip. All tests were conducted at 1382°F ± 2°F, and an effort was made to maintain the temperature gradient over the test section within 2°F. The ends of the furnace tube were packed with asbestos wool, which allowed a very slow circulation of air through the tube. Annealing was accomplished in the creep furnace before the load was applied. The platinum and palladium specimens were annealed at the test tem- perature for about 17 and 24 hr respectively; in the case of the rhodioplatinum it was found expedient to anneal for 1 hr at 1922°F (1050°C). Pilot samples cut from the same stock as the bars were used to check annealing procedures. Pertinent measurements of grain size and hardness were recorded. Results and Discussion The creep data obtained are given in Table I and the creep curves are plotted in Figs. 1, 2, and 3. Two platinum specimens, tested under a stress of 250 psi, had almost identical creep rates at 2000 hr, namely 0.000008 and 0.000009 pct per hr. A third platinum specimen, stressed at 400 psi, had a creep rate at 2000 hr of 0.000026 pct per hr; the reason for a rather sharp decrease in creep rate during the period from 1200 to 1600 hr is unknown. As it was thought that 90 pct Pt, 10 pct Rh would have a lower creep rate than platinum, the first sample was tested at 400 psi; however, the creep rate was approximately 50 pct greater. Microex-amination revealed that differences in grain size might be responsible for the unexpected result, as annealing at 1382°F developed an average grain diameter of 0.0021 in. in the rhodioplatinum specimen compared with 0.004 in. in the platinum bar. Annealing the alloy for 1 hr at 1922°F (1050°C) increased the average grain diameter to 0.0032 in. and materially improved the creep resistance, making it much better than platinum. A second specimen annealed at 1922°F (1050°C) and tested under a stress of 550 psi had a creep rate of 0.000022 pct per hr at 2000 hr, which was still substantially lower than that shown by the specimen annealed at 1382°F (750°C) and stressed at only 400 psi. In contrast to the creep behavior of the platinum and rhodioplatinum specimens, the palladium bars, whether deoxidized with calcium boride or aluminum, were characterized by high first stages of creep. However, after about 1200 hr of test, the creep
Jan 1, 1952
-
Minerals Beneficiation - Foundation of General Theory of ComminutionBy F. X. Tartaron
This paper deals with basic physical phenomena, which when combined and interpreted, lead to the same mathematical equations that describe comminution phenomena. Thus, a physical model is described that corresponds to the mathematical model presented in the writer's previous papers. '12 In the mathematical model, the energy consumed in breakage is related to the volume or weight of material broken and the size of particles broken. The equation E=2.303 Ck-a log x1/x2 was derived by multiplying the volume or weight of each size in an ideal Gates-Gaudin-Schumann size distribution by an energy factor. The product of these two factors gives the energy distribution among the different sizes in a single size distribution. The energy of breakage of a specific constant weight of one size distribution to another size distribution is given by the equation E = constant/kn-1. In this case, where the volume or weight is constant, the energy is proportional to the size factor 1/kn-1. In what follows, a physical theory will be presented showing that the energy consumed in comminution is proportional to the volume or weight of the material broken and to the reciprocal of the size of this material raised to a constant exponent. THE VOLUME FACTOR The atomic theory of matter reveals that in solids, atoms or ions are arranged so as to be in equilibrium at specific distances from one another. Although the atoms or ions are oscillating, there is a definite determinable mean distance between them and this distance is a balance between repulsive and attractive electrical forces. It therefore requires force to separate the atoms or ions and when an outside force is applied, it first produces strain in increasing the distance between the atoms or ions. This strain increases to the breakage limit on application of sufficient force. In brittle materials, there is negligible plasticity and when an elastic limit is exceeded, breakage takes place. The work done is the force applied per unit area times the cross sectional area of the ideal particle multiplied by the maximum strain per unit length at right angles to the area times the length of the particle. Thus the work done is proportional to the area times the length, which is equivalent to the volume of the ideal particle. If more than one feed particle is considered broken, each particle must be subjected to sufficient strain so that the breakage limit of its contained atoms or ions is reached in order for the particle to be broken. Thus, the energy of breakage is proportional to the total volume of the particles broken. If the particles are of different sizes, the size factor must be included to get a correct determination of energy of breakage. In the preceding, it has been assumed that there is a constant binding force between the atoms throughout the volume being strained. This, of course, is not true. It is known that there are many irregularities in the structure of matter and the binding force differs markedly in different portions. But the differences are only discernible by examining extremely small subdivisions of matter. In one order of magnitude of volume, cracks can be discerned separately from non-cracked neighboring material. In a smaller subdivision of volume, lattice dislocations can be isolated. When these situations are brought into focus, mechanisms of their behavior can be learned, leading to a fuller understanding of phenomena that occur in larger scale subdivisions of matter. Very often, however, the mechanisms that operate in small scale subdivisions have negligible effect in those of large scale, and there still is a place for deriving a mechanism for large scale conditions. The quantum theory is extremely valuable for use with photons and electrons, but is of negligible use with ordinary atoms and molecules. This paper deals with relatively large scale subdivisions of volume present in comminution phenomena. Hence, the effects of cracks, lattice dislocations, misplaced atoms, etc., are smoothed out in an average, constant for each relatively large subdivision of volume. This attitude is supported by experience. If two 10 cc samples of the same ore were ground identically, the same product would be obtained. However, if two samples, each a cubic micron, were conceived to be broken, then one sample might contain a crack and the other not, hence a different product would be obtained. Experience shows that ordinary samples used in comminution, behave as though no irregularity existed
Jan 1, 1964
-
Reservoir Engineering–Laboratory Research - The Effect of Fluid Properties and Stage of Depletion on Waterflood Oil RecoveryBy M. D. Arnold, P. B. Crawford, P. C. Hall
An experimental study has been made to determine the optimum flooding pressures for four different oils. The oil formation volume factors ranged from 1.08 to 2.13, and solution gas-oil ratios ranged from about 200 cu ft/bbl to 2,250 cu ft/bbl. Viscosities ranged from 0.38 to 0.95 cp at the respective bubble points of the fluids and from 0.7 to 20 cp at atmospheric pressure. Water floods were conducted at various pressure levels from run to run. The recovery as a function of flooding pressure was found to be different for each fluid, with optimum gas saturations ranging from 7 up to 35 per cent. The data indicate that substantially higher recoveries may be obtained if water floods are conducted at an optimum pressure and that this optimum pressure is a function of fluid properties. The same core was used for all tests, and the reproduction of saturations for various runs indicates that wettability in the predominantly water-wet core did not change. INTRODUCTION A paper was presented by Bass and Crawford' which described an experimental study of the effects of flooding pressure and rate on oil recovery by water flooding. This work was conducted using high-pressure models operated in a manner similar to that of an actual reservoir, with gas saturations being obtained by a solution-gas-drive mechanism. They found that the greatest oil recovery was obtained for the system studied by flooding in the presence of a 5 to 7 per cent gas saturation. Another experimental study simulating field conditions was presented by Richardson and Perkins.' They used an unconsolidated sand pack containing kerosene-natural gas fluid and interstitial water. They flooded at various pressures and flooding rates. For their system it was found that the recovery was independent of the pressure level at which the water flood was performed. Kyte, et al," found that oil recovery by water flooding was increased as the free gas saturation at waterflood initiation was increased. However, after the initial gas saturation was increased above 15 per cent, the increase in oil recovery tended to level off. All of their runs were made at the same pressure using a light oil saturated with helium. The desired gas saturation was obtained by injecting helium into the core. Dyes' made calculations which showed that an optimum gas saturation of 12 to 14 per cent may result in an increase in oil recovery of 7 to 12 per cent over that obtained by flooding at the bubble-point pressure. Others have also found that the presence of a free gas saturation may increase the waterflood oil recovery. In each case shrinkage was small and changes in fluid properties with respect to pressure were small. A careful review of the literature reveals that at the present time there is a wide difference of opinion on the factors affecting waterflood recoveries. This diversity of opinion is probably due to the fact that very little research has been done which has taken into account the many variables existing in an actual field being water flooded. Since the literature contains little information on high-pressure waterflooding studies using various types of reservoir fluids, it was believed appropriate that such a study should be made. EQUIPMENT AND PROCEDURE All tests were made using the same consolidated sandstone core. Torpedo sandstone was used to turn a cylindrical core 13.5-in. long and with a 2.92-in. average diameter. The core had a porosity of 28 per cent and a permeability to brine of 146 md. This brine was made up by adding 20,000-ppm sodium chloride and 30,000-ppm sodium nitrite to distilled water. This was used as connate water and flooding water. No fresh water was ever brought in contact with the core, as tests showed the sandstone contained argillaceous material which swelled in the presence of fresh water and plugged the stone. The core was sealed in a section of 6-in. N-80 tubing with Woods metal filling the annulus. The core was mounted horizontally; an injection well was placed in the center of one end and a production well in the center of the other. Pressure control was maintained by placing a back-pressure regulator (upstream control) on the producing well. The "live" oil was stored in a separate bottle and water was injected into this bottle to displace the oil for saturating the core using a two-cylinder standard-proportioning pump. This same pump was used for water flooding the core at a constant rate. This system was enclosed in water jackets and the temperature was automatically main-
-
Institute of Metals Division - Properties of Chromium Boride and Sintered Chromium BorideBy S. J. Sindeband
Prior to discussing the metallurgy of sintered chromium borides, it is pertinent to outline some of the reasoning behind this investigation and the purposes underlying the work. This study was initiated as an aproach to the ubiquitous problem of a material for service at high temperatures under oxidizing atmospheres, and it was undertaken with a view to raising the 1500°F (816°C) ceiling to 2000°F (1093°C) or better. For the reason that no small, but rather a major, lifting of the high temperature working limit was being attempted, it was felt appropriate that a completely new approach be taken to this problem. A summary of the thinking behind this approach was published recently by Schwarzkopf.' In briefest terms, it was postulated that the following requirements could be set up for a material which would have high strength at high temperatures. 1. The individual crystals of the material must exhibit high strength interatomic bonds. This automatically leads to consideration of highly refractory materials, since their high energy requirements for melting are related to the strength of their atom-to-atom bonds. 2. On the polycrystalline basis, high boundary strength, superimposed on the above consideration, would also be a necessity. Since this implies control of boundary conditions, the powder metallurgy approach would hold considerable promise. Such materials actually had been fabricated for a number of years, and the cemented carbide is the best example of these. Here a highly refractory crystal was carefully bonded and resulted in a material of extremely high strength. That this strength was maintained at high temperature is exhibited by the ability of the cemented carbide tool to hold an edge for extended periods of heavy service. Nowick and Machlin2,3 have analytically approached the problem of creep and stress-rupture properties at high temperature and developed procedures whereby these properties can be approximately predicted from the room temperature physical constants of a material. The most important single constant in the provision of high temperature strength and creep resistance is shown to be the Modulus of Rigidity. On this basis, they proposed that a fertile field for investigation would be that of materials similar to cemented carbides, which have Moduli of Rigidity that are among the highest recorded. The cemented carbide, however, does not have good corrosion resistance in oxidizing atmospheres and without protection could not be used in gas turbines and similar pieces of equipment. It would be necessary then to attempt the fabrication of an allied material based upon a hard crystal which had good corrosion resistance as well. It was upon these premises that the subject study was undertaken and at an early stage it was sponsored by the U.S. Navy, Office of Naval Research. Since then, it has been carried on under contract with this agency. Chromium boride provided a logical starting point for such research, since it was relatively hard, exhibited good corrosion resistance, and, in addition, was commercially available, since it had found application in hard-surfacing alloys with iron and nickel. That chromium boride did not provide a material that met the ultimate aim of the study results from factors which are subsequently discussed. This, however, does not detract from the basis on which the study was conceived, nor from the value of reporting the results which follow. Chromium Boride While work on chromium boride proper dates back to Moissan,4 there has been a dearth of literature on borides since 1906. Subsequent to Moissan, principal investigators of chromium boride were Tucker and Moody,5 Wede-kind and Fetzer,6 du Jassoneix,7,8,9 and Andrieux." These investigators were generally limited to studies of methods of producing chromium boride and detennining its properties. Some study, however, was devoted to the chromium-boron system by du Jassoneix,7 who did this chemically and metal-lographically. This system is not amenable to normal methods of analysis by virtue of the refractory nature of the alloys involved, and the difficulties of measurement and control of temperature conditions in their range. Dilatometric apparatus is nonexistent for operation at these temperatures. Du Jassoneix made use of apparent chemical differences between two phases observed under the microscope and reported the existence of two definite compounds, namely: Cr3B2 and CrB. These two compounds, he reported, had quite similar chemical characteristics, but were sufficiently different to enable him to separate them. The easiest method for producing chromium boride is apparently the thermite process, first applied by Wede-
Jan 1, 1950
-
Institute of Metals Division - Tensile Fracture of Three Ultra-High-Strength SteelsBy J. W. Spretnak, G. W. Powell, J. H. Bucher
Tlze room-temperature tensile fracture oj smooth, round specitnens of three ultrnhigh- strength steels tempered to a wide range of strength levels was studied by means by light and electron-microscopic examination of the fracture surfaces. The fracture of AISI 4340 and 300 M at all the strength levels studied, and H-11, except after tempering at 1200° and 1300°F, occurs in three stages. The initiation of fracture is internal (except in some lightly tcmpeved specimers in which fracture is initiated at surface flaws), and is nucleated largely by separation at metal-second phase intevjaces. TIze voids grow and, coalesce to form a crack. When the crack has reached a sufficienl size, rapid propngutio~z ensues. Failure in this stage of fracture usually occurs by dimpled rupture of inicroshear stefis. In the case of H-11 tempered in the 1125° to 1300°F range, fracture in the shear steps is predominantly by concentrated deformation without void formation. The termination of fracture is usually occomplished by the formation of a shear lib in which fracture occurs by shear dimpled rupture. In the case of H-11 tempered at 1200° and 1300°F, no shear lip was obserued, and the radial elelments extend to the surface—a true termination slage does not exist. ThE tensile fracture of several metals and alloys has been investigated.2-4 In the case of polycrystal-line materials, cup-cone fracture usually results. The mechanism of cup-cone fracture may be summarized as follows.5 Cavities are formed in the necked region of the specimen. They usually are initiated by inclusions or second-phase particles. The cavities extend outwards by means of internal necking, and a crack lying about perpendicular to the length of the specimen is formed in the necked region. Subsequent crack growth occurs by the spread of bands of concentrated plastic deformation inclined at an angle of 30 to 40 deg to the tensile axis. Cavities are formed in the bands of concentrated deformation. The deformation bands zigzag across the bar with the net result that mac-roscopically the crack extends about perpendicular to the specimen axis. The final separation, or cone formation, appears to occur by continued crack propagation along one of the deformation bands out to the surface of the specimen. The micromechanics of the tensile fracture of ultrahigh-strength steels have not been thoroughly investigated. Larson and carr6,7 studied the tensile-fracture surfaces of AISI 4340 with a low-power microscope and reported that three stages of fracture could be observed in general. A centrally located region characterized by circumferential ridges, an annular region characterized by radial surface striations, and a peripheral shear lip were found. It was first pointed out by 1rwin8 that the central region is very probably one of fracture initiation and slow growth, and that the annular, radially striated region is one of rapid crack growth. Presumably the crack grows slowly, assuming roughly a lenticular shape, until it is large enough for the initiation of rapid propagation. In this investigation, it was attempted to determine the fine-scale aspects of the room-temperature tensile fracture of some ultrahigh-strength steels, and to relate the variation in fracture mode with microstructure. The steels studied were AISI 4340, 300M, and H-11 tempered to a wide range of strength levels. I) EXPERIMENTAL PROCEDURE The compositions of the steels studied are given in Table I. The steel was received in the form of hot-rolled bar stock 5/8 to 1 in. in diameter from which oversized specimens were machined and heat-treated. The heat treatments employed are given in Table 11. Subsequent to heat treatment, the specimens were ground to the final dimensions and stress-relieved by heating for 1 hr at 350°F (with the exception of the as-quenched steel). Standard smooth round specimens of 0.252-in. diameter and 1-in. gage length were tested in a Tinius Olsen Universal Testing Machine using a cross-head speed of 0.025 in. per min. The relatively coarse aspects of the fracture topography were determined by light-microscopic examination of sections through the fracture surface of nickel-plated specimens. A direct carbon-replication technique9 was used in the electron-microscopic study of the fracture surfaces. The replicas were examined in the electron microscope, and stereo pairs of electron micrographs were taken. The stereo pairs were then examined using a Wild ST4 Mirror Stereoscope. Carbide and inclusion particles extracted in the replicas were analyzed by selected-area electron diffraction. II) EXPERIMENTAL RESULTS The mechanical testing data are summarized in Table 111. The values reported are the average of
Jan 1, 1965
-
Institute of Metals Division - Electrical Resistivity of Dilute Binary Terminal Solid SolutionsBy W. R. Hibbard
THE classical work on the electrical conductivity of alloys was carried out by Matthiessen and his coworkers1 in the early 1860's. He attempted to correlate the electrical conductivity of alloys with their constitution diagrams, but the information regarding the latter was too meager for success. Guertler2 reworked Matthiessen's and other conductivity data in 1906 on the basis of volume composition (an application of Le Chatelier's principle with implications as to temperature and pressure effects), and obtained the following relationships between specific conductivity and phase diagrams (plotted as volume compositions) : 1—For two-phase regions, electrical conductivity can be considered as a linear function of volume composition, following the law of mixtures. 2—For solid solutions, except intermetallic compounds, the electrical conductivity is lowered by solute additions first very extensively and later more gradually, such that a minimum occurs in systems with complete solid solubility. This minimum forms from a catenary type of curve. Intermetallic compound formation with variable compound composition results in a maximum conductivity at the stoi-chiometric composition. Landauer" has recently considered the resistivity of binary metallic two-phase mixtures on the basis of randomly distributed spherical-shaped regions of two phases having different conductivities. His derivation predicts deviations from the law of mixtures which fit measurements on alloys of 6 systems out of 13 considered. Volency (Ionic Charge) Perhaps the first comprehensive discussion of the electrical resistivity of dilute solid-solution alloys was presented by Norbury' in 1921. He collected sufficient data to show that the change in resistance caused by 1 atomic pct binary solute additions is periodic* in character. The difference between the period and/or the group of the solvent and solute elements could be correlated with the increase in resistance. Linde5-7 determined the electrical resistivity (p) of solid solutions containing up to about 4 atomic pct of various solutes in copper, silver, and gold at several temperatures. He reported that the extrapolated"" increase in resistance per atomic percent addition is a function of the square of the difference in group number of the solute and solvent as follows: ?p= a + K(N-Ng)2 where a and K are empirical constants and N and Ng are group numbers of the constituents. This empirical relation was subsequently rationalized theoretically by Mott,8 who showed that the scattering of conduction electrons is proportional to the square of the scattering charge at lattice sites. Thus, the change in resistance of dilute alloys is propor-t,ional to the square of the difference between the ionic charge (or valence) of the solvent and solute when other factors are neglected. Mott's difficulty in evaluating the volume of the lattice near each atom site where the valency electrons tend to segre-gate: limited his calculations to proportionality relations. Recently, Robinson and Dorn" reconfirmed this relationship for dilute aluminum solid-solution alloys at 20°C, using an effective charge of 2.5 for aluminum. In terms of valence, Linde's equation becomes ?P= {K2 + K1 (Z8 -Za)2} A where K1 and K2 are coefficients, A is atomic percent solute, Z, is valence of solvent, and Zß, is valence of solute. Plots of these data for copper, silver, gold, and aluminum alloys are shown in Fig. 1. The values of K1 and K2 are constant for a given chemical period (P), but vary from period to period. The value of K, increases irregularly with increasing difference between the period of the solvent and solute element (AP), being zero when AP is zero. The value of K, appears to have no obvious periodic relationship. All factors other than valence that affect resistivity are gathered in these coefficients. Because of the nature of the coefficients, Eq. 1 is of limited use in estimating the effects of solute additions on resistivity unless a large amount of experimental data are already available on the systems involved. It is the purpose of the first part of this report to investigate the factors that may be included in the coefficients of Linde's equation. On this basis, it is hoped that the relative effects of solute additions on resistivity can be better estimated from basic data, leading to a more convenient alloy design procedure. It is well 10,11 that phenomena that decrease the perfection of the periodic field in an atomic lattice, such as the introduction of a solute atom or strain due to deformation, will also increase the electrical resistivity. Thus, in an effort to relate changes in electrical resistivity to alloy composition, it appears appropriate to consider the atomic characteristics related to solution and strain hardening
Jan 1, 1955
-
Economics Of Pacific Rim CoalBy C. Richard Tinsley
Like most minerals, coal is inherently a demand-limited commodity. The very sedimentary nature of its occurrence implies greater availability potential than demand. But this situation is overridden by economics among fuels, between coals, and within coal blends. Such considerations make coal forecasting a very hazardous profession indeed. THERMAL COAL If one thought that the lead times involved with a mining project were very long, one has obviously not been exposed to the planning process in the electric generation business - a process seriously confounded by shifts in load growth, environmental pressures, capital intensity, security of fuel sourcing, inter-fuel economics, and so on. But as a general rule, the near-term forecasts for thermal coal can reliably be based on a bottom-up, plant-by-plant analysis. Cement plant conversions can also be reasonably estimated next in order of reliability, although they have a much wider spectrum of coal qualities and fuel sources to choose from with a notably higher tolerance for sulfur and ash. Finally, industrial demand can be assembled from the estimates for conversions by pulp/paper plants, chemical plants, etc. The industrial sector is harder to estimate, since it may involve small boilers or dual-fired units. Assessing demand in the Pacific Rim is relatively a straightforward process in the near term because the major importing countries are all located on the Asian continent with either negligible or very minor (yet stable) indigenous coal production, (itself often operated on a subsidized basis). Furthermore, all imports are seaborne. These major importers are Japan, Korea, Taiwan, and Hong Kong with Thailand, Singapore, and Malaysia up-and-coming consumers. The suppliers to this market all have substantial reserves to back up decades of exports to these countries. Australia, the US, Canada, South Africa, China, and the USSR dominate the supply side. The second oil-shock of 1979/1980 has convinced the importers that reliance on oil can be expensive and eminently interruptible. Thus, they are determined to diversify away from oil' to nuclear and coal for generating electricity and for coal for other purposes where possible. This trend is seen to continue even in the face of the oil glut worldwide and oil-price reductions in early 1982. But the importers are also convinced that reliance on one coal source and, in particular, one infrastructure route for the coal chain from mine to consumer can be equally expensive and interruptible. Strikes in the US and Australia; excessive demurrage at certain ports; relegation of coal to a lower priority on multiple-use railroads in the USSR and China; and concern over escalation on high-infrastructure or high-freight coal chains are among the risks worrying the importers. As a consequence, Pacific Rim thermal coal purchases are being allocated among supplier nations, between ports, and within each country. An example of Japan's shift away from Australia and toward the US and Canada is shown in the estimates in Table 1. But the confidence of the import estimates deteriorates sharply beyond the plant conversion timetables and construction schedules in the near term. If part of the second generation of coal-fired power plants can handle lower-energy coals, the field of suppliers could widen to accept sizeable tonnages from Alaska, Wyoming, Alberta, or New Zealand resources. These supply sources generally have some infrastructure or freight advantage to compensate for their lower quality and to compete on a delivered energy-unit basis. These also offer diversification in sourcing. And the possibility of coal liquefaction in Japan further widens the sourcing network. A great number of Pacific Rim coal forecasts have been generated, especially for Japanese thermal-coal imports which are expected to grow strongly in the 1980's. Since the Japanese themselves have not yet settled their energy policy, the exact numbers are hard to call. Nevertheless, at 50 million tonnes of imports in 1990, Japan would consume 50-60% of the total Asian thermal coal imports as shown on Tables 2 and 6. The next most important consumers are the "island" nations of Korea, Taiwan, and Hong Kong (see Tables 3-5). All three are embarking on power plant developments usually with captive unloading facilities, capable of accepting more than 100,000-dwt vessels. Korea, with no-indigenous bituminous coal, is not especially enamoured with US coals, which are deemed too heavily loaded by freight and infrastructure costs -- up to 70% of the delivered price. Thermal coal contracts are presently split to Australia (70%) and to Canada (30%). Korea Electric Power Co. is already considering second-generation boilers capable of burning lower-quality coals than the present standard. Korea does burn domestic anthracite.
Jan 1, 1982
-
Part I – January 1969 - Papers - The Low-Temperature Region (-27° to+40°C) of the Lead-Indium Phase DiagramBy Eckhard Nembach
The phase diagram of the system Pb-In has been investigated between -27° and + 40°C, using nzainly X-ray dijfraction. In accordance with t her mo dynamic measurements by Heumann and Predel, a segregation occurs at low temperatures, though not in the form of a nziscibility gap. THE phase diagram of the system Pb-In has been the subject of extensive investigations,1'1 but recently Heumann and prede13 concluded from their thermodynamic data that a new feature should occur below room temperature. These authors observed that the maximum values for the enthalpy and entropy of mixing, which occurred at a composition of 50 at. pct Pb, were +400 and —1.7 cal per g-atom deg, respectively. From this the authors estimated that a miscibility gap should occur below 30°C, centered at 50 at. pct Pb. Resistivity measurements seemed to support this view. These authors proposed the phase diagram outlined in Fig. 1. Three phases exist at 30°C: the tetragonal indium phase with c/a > 1, the tetragonal intermediate phase a, with c/a < 1, and the fcc lead phase. During an investigation of the superconducting properties of Pb-In alloys. it has been observed4 that aging a specimen with 50 at. pct Pb for 14 days at -18°C decreased the superconducting transition temperature about 0.13"K and tripled the transition width. In this paper, the results of an investigation of the Pb-In phase diagram in the temperature range from — 2T to +40°C are reported. Superconductivity and X-ray methods have been used. 1) SPECIMEN PREPARATION The materials were provided by the American Smelting and Refining Co. According to the manufacturer their purity was 99.999 pct. The weighed amounts of the constituents were sealed in quartz tubes under an atmosphere of 10 torr helium, mixed for 24 hr in a rocking furnace at 380°C, quenched in ice water, and homogenized at 20" to 30°C below the solidus line, established by Heumann and Predel. The annealing times were 144 hr for specimens containing Less than 30 at. pct Pb and 36 hr for the remainder. 2) SUPERCONDUCTIVITY EXPERIMENTS The specimens were quenched from the homogeniza-tion treatment into ice water and their superconducting transition temperatures T, measured. The procedure used has been described in Ref. 4. The transition was detected by the change of the mutual induc- tance of two coaxial coils containing the sample. T, was defined as the temperature at which 50 pct of the total change in inductance had occurred. The repro-ducibility with which T, could be measured was i0.002"K. Then the specimens with lead contents between 38 and 75 at. pct were aged for 7 days at temperatures between -30" and 40°C. If this treatment caused T, to change by more than 0.005"K or the width of the transition to increase by more than 0.002"K, it was concluded that the specimen had undergone a phase change and no longer consisted only of the fcc lead phase: as it did immediately after homogenizing. The result is shown in Fig. 2. From this one can estimate at what temperatures and concentrations phase changes occur. The X-ray measurements were based on these preliminary results. 3) X-RAY EXPERIMENTS Because of the softness of the material, relatively coarse powders. 75 p, had to be used, which were filed in a helium atmosphere from homogenized specimens. The powders were annealed at least 30 min at temperatures between 120" and 16OJC, depending on their concentration, and quenched in ice water. Then their X-ray patterns were taken at -178°C with a Picker diffractometer, model 3488K, and a cold stage. on which the specimen was in thermal contact with a liquid-nitrogen reservoir. In this way the following relation was established for the fcc lead phase: a = 4.697 + 0.00247C for 40 5 C 5 75 11 where n is the lattice constant (A) and C is the at. pct of lead. The coarseness of the powder made it impossible to use lines with 0 > 75 deg; therefore n was averaged from lines with 45 deg 5 0 5 75 deg. The results were reproducible to within i0.05 pct. Relation [I] is very similar to the one found by Heumann and Predel at room temperature. Following this, homogenized specimens with compositions between 15 and 56 at. pct Pb were aged for at least 10 days at temperatures between -27" and
Jan 1, 1970
-
Extractive Metallurgy Division - Developments in the Carbonate Processing of Uranium OresBy F. A. Forward, J. Halpern
A new process for extracting uranium from ores with carbonate solutions is described. Leaching is carried out under oxygen pressure to ensure that all the uranium is converted to the soluble hexavalent state. By this method), alkaline leaching can be used successfully to treat a greater variety of ores, including pitchblende ores, than has been possible in the past. The advantages of carbonate leaching over conventional acid leaching processes are enhanced further by a new method which has been developed for recovering uranium from basic leach solutions. This is achieved by reducing the uranium to the tetravalent state with hydrogen in the presence of a suitable catalyst. A high grade uranium oxide product is precipitated directly from the leach solutions. Vanadium oxide also can be precipitated by this method. The chemistry of the leaching and precipitation reactions are discussed, and laboratory results are presented which illustrate the applicability of the process and describe the variables affecting leaching and precipitation rates, recoveries, and reagent consumption. THE extractive metallurgy of uranium is influenced by a number of special considerations which generally do not arise in connection with the treatment of the more common base metal ores. Perhaps foremost among these is the very low uranium content of most of the ores which are encountered today, usually only a few tenths of one percent. A further difficulty is presented by the fact that the uranium often occurs in such a form that it cannot be concentrated efficiently by gravity or flotation methods. In these and other important respects, there is evident some degree of parallelism between the extractive metallurgy of uranium and that of gold and, as in the latter case, it has generally been found that uranium ores can best be treated directly by selective leaching methods. It is readily evident that this parallel does not extend to the chemical properties of the two metals. Unlike gold, which is easily reduced to metallic form, uranium is highly reactive. It tends to occur as oxides, silicates, or salts. Two ores are of predominant importance as commercial sources of this metal: pitchblende which contains uranium as the oxide, U3O51 and carnotite in which the uranium is present as a complex salt with vanadium, K2O-2UCV3V2O5-3H2O. These ores may vary widely in respect to the nature of their gangue constituents. Some are largely siliceous in composition, while others consist mainly of calcite. Sometimes substantial amounts of pyrite or of organic materials are present and these may lead to specific problems in treating the ore. Further complications may be introduced by the presence of other metal values such as gold, copper, cobalt, or vanadium whose re- covery has to be considered along with that of the uranium, or whose separation from uranium presents particular difficulty. In general, there are two main processes for recovering uranium in common use today.'.2 One of these employs an acid solution such as dilute sulphuric acid to extract the uranium from the ore. A suitable oxidizing agent such as MnO, or NaNO, is sometimes added if the uranium in the ore is in a partially reduced state. The uranium dissolves as a uranyl sulphate salt and can be precipitated subsequently by neutralization or other suitable treatment of the solution. The second process employs an alkaline leaching solution, usually containing sodium carbonate. The uranium, which must be in the hexavalent state, is dissolved as a complex uranyl tricarbonate salt, and then is precipitated either by neutralizing the solution with acid or by adding an excess of sodium hydroxide. The latter method has the advantage of permitting the solutions to be recycled, since the carbonate is not destroyed. This is essential if the process is to be economical, particularly with low grade ores. With each of these processes, there are associated a number of advantages and disadvantages and the choice between using acid or carbonate leaching is generally determined by the nature of the ore to be treated. In the past, more ores appear to have been amenable to acid leaching than to carbonate leaching and the former process correspondingly has found wider application. With most ores, acid leaching has been found to operate fairly efficiently and to yield high recoveries. One of the main disadvantages has been that large amounts of impurities, such as iron and aluminum, sometimes are taken into solution along with the uranium. This may give rise to a high reagent consumption and to difficulties in separating a pure uranium product. Excessive reagent consumption in the acid leach process also may result
Jan 1, 1955
-
Reservoir Engineering - General - Restoration of Permeability to Water-Damaged CoresBy D. K. Atwood
Experiments resulted in a satisfactory laboratory method for restoring permeability to clay-containing cores damaged by fresh water. Clay contents of a number of field cores were measured, and permeabilities of plugs from these same cores were then deliberately reduced with fresh water. This damage is attributed to swollen and dispersed clays occupying the pore space. After damaging, a number of experiments were performed to meaJure the amount of damage and to establish some means by which permeability could be restored. The experiments included flooding the damaged cores with water-miscible fluids such as salt water, acetone, isopropyl alcohol and ethanol. Permeability was not successfully restored in these experiments. However, part of the damage was repaired by flooding with oil; when water was removed by distillation in the presence of immiscible fluids such as air or toluene, permeability was completely restored. This evidence suggested that swollen and dispersed clays could be collapsed to their original volume by strong interfacial and capillary forces. It was further postulated that the required forces could be generated by flooding the damaged cores with a solvent partially miscible with water. The flooding experiments were repeated using n-hex-an01 as the partially miscible solvent. Permeability was restored to five of six damaged cores and substantially increased in the sixth. A large fraction of the restored permeability was retained even after water saturation was raised to its original value with 12 per cent salt water. INTRODUCTION Sharp reductions in permeability often occur when relatively fresh water contacts clay-containing formations during drilling and workover operations. These permeability losses are caused by removing inorganic ions from the environment surrounding the clay, and consequent swelling and/or dispersion of clay minerals into the available pore space.' This phenomenon is generally termed clay damage, fresh-water damage, or simply formation damage; it causes large losses in current revenue by preventing oil wells from making their allowable production. Attempts to repair the damage and restore permeability by flowing salt water solutions or brines through clay-damaged cores containing montmorillonite have been unsuccessful.' This irreversibility is thought to result from formation of brush-heap, or edge-to-face, structures when the dispersed clay is flocculated. The brush-heap structures occupy much more space than the close packed domains present before damage.' One solution of the problem is to destroy the clay-water brush-heap and thus restore permeability. Because no satisfactory method existed for restoring permeability to clay-containing formations damaged by fresh water, the work described in this paper was under taken. The laboratory experiments generally consisted of deliberately damaging fresh cores containing clay and then attempting to repair this damage by various means. Results indicate that generating strong interfacial forces within the pore space of damaged cores collapses the clay brush-heap and restores permeability. These forces are most conveniently generated by flowing partially water-miscible solvents, such as n-hexanol, through a core. THEORY OF THE DAMAGE PROCESS The most common clay mineral groups known to cause permeability damage to formations are the mont-morillonites, kaolins, chlorites and illites. These clays are constructed of particles which can adsorb water on their surfaces and edges and, in the case of montmorillonite, between layers of the basic particle itself. This adsorption increases as water salinity decreases. At low salinities the particles disperse into the aqueous phase. When the clays present in the formation are kaolin, chlorite and illite, dispersion accounts completely for permeability damage to porous media. However, unlike the other clays, montmorillonite particles can imbibe water and adsorb ions between layers of sub-particles, or platelets. These platelets have net negative charges on their faces and are held together by exchangeable (or removable) cations such as Na and Ca decrease in ion concentration (salinity) in the fluid surrounding a particle causes migration of water into the clay layers and disperses the basic particle, while diffusion removes the original exchangeable ions from between the platelets. Once these ions are removed, the facing negative platelets repel each other, causing the montmorillonite to swell until, for all practical purposes, the individual platelets are dispersed. For this reason, fresh-water* damage is much more severe in sands containing montmorillonite than it is in sands containing other clays. Many investigators have shown that even trace amounts of montmorillonite can be responsible for marked reduction in the permeability of reservoir sands in the presence of fresh water." ." Monaghan and others have shown that fresh-water damage in montmorillonite-containing cores cannot be
Jan 1, 1965
-
Part IX – September 1969 – Papers - Preferred Orientations in Cold Reduced and Annealed Low Carbon SteelsBy P. N. Richards, M. K. Ormay
The present Paper extends the previous work on cold reduced, low carbon steels to preferred orientations developed after various heat treatments. In recrystal-lized rimmed steel, cube-on-comer orientations increased with cold reductions up to 80 pct. Above that {111}<112> and a partial fiber texture with (1,6,11) in the rolling direction dominated. During grain growth, cube-on-corner orientations have been observed to grow at the expense of {210}<00l>. In re-crystallized Si-Fe (111) (112) and cube-on-edge type orientations are dominant near the surface and the (1,6,11) texture near the midplane for reductions up to 60 pct. With larger reductions {111)}<112> and the (1,6,11) texture are dominant. In cross rolled capped steel a relationship of 30 deg rotation was observed between the (100)[011] of the rolling texture and the main orientations after re crystallization. Most orientations present in recrystallized specimens can be related to components of the rolling texture by one of the following rotations: a) 25 to 35 deg about a (110) b) 55 deg about a (110) C) 30 deg about a (Ill) THE orientation texture of recrystallized steel is of interest where the product is to be deep drawn, because preferred orientation is related to anisotropy of mechanical properties such as the plastic strain ratio (r value);1,2 and in electrical steel applications where a high concentration of [loo] directions in the plane of the sheet improves the magnetic properties of the material. It is interesting to note that both these aims are to a large extent achieved commercially, even though the orientation texture of cold rolled steel does not show large variation3 and the recrystallized orientations are generally given as being related to the as rolled orientations mostly by 25 to 35 deg rotations about common (110) directions.4-6 There is, as yet, no single completely accepted theory on recrystallization. The three mechanisms that have been investigated and discussed are: a) Oriented growth b) Oriented nucleation c) Oriented nucleation, selective growth Largely from the observations of the recrystalliza-tion process by means of the electron microscope,7-11 there is now considerable evidence that the "nucleus" of the recrystallized grain is produced by the coalescence of a few subgrains to form a larger composite subgrain, which finally grows by high angle boundary migration into the deformed matrix. From the intensive work on the recrystallization of rolled single crystals of iron, Fe-A1 and Fe-Si al-loys4-" he following observations have been made: 1) The change in orientation during primary recrys-tallization can usually be described as a rotation of 25 to 36 deg about one of the (110) directions. 2) The (110) axes of rotation often coincide with poles of active (110) slip planes. 3) If several orientations are present in the cold rolled structure, the (110) axis of rotation will preferably be a (110) direction that is common to two or more of the orientations. 4) With larger amounts of cold reduction (70 pct or more) departure from these observations became more frequent. 5) After larger cold reductions, rotations on re-crystallization about (111) and (100) directions have been observed. K. Detert12 infers that a rotation relationship of 55 deg about (110) directions is also possible, by stating that the recrystallized orientation {111}<112> can form from the orientation {100}<011> of cold reduced partial fiber texture A.3 The observation by Michalak and schoone13 that (lll)[l10] formed during recrys-tallization in fully killed steel containing (111)[112],— as well as (001)[ 110] which is related to the {111}<011> by a 55 deg rotation about <110>-implies a possible 30 deg rotation relationship about the common [Ill]. Heyer, McCabe, and Elias14 have recrystallized rimmed steel after various amounts of cold reduction, by a rapid and by a slow heating cycle and found that the preferred orientations strengthened with increased cold reduction. The most pronounced orientation up to about 70 pct cold reduction was found to be {1 11}< 110>, after 80 pct cold reduction both {111}<110> and {111}<112>, after 85 and 90 pct cold reduction, {111}<112>, and after 97.5 pct cold reduction it was {111}<112> and (100)(012). In the present work, the orientation textures of the recrystallized specimens are examined under various conditions of steel composition, amount and method of cold reduction, and method of recrystallization. The relationships between the preferred orientations of the as rolled and recrystallized specimens, and the conditions for the formation of the various orientations during recrystallization are investigated.
Jan 1, 1970
-
Producing - Equipment, Methods and Materials - Productivity of Wells in Vertically Fractured, Damaged FormationsBy L. R. Raymond, G. G. Binder
One primary purpose of hydraulic fracturing as a well stimulation technique is to overcome formation damage. The literature provides ways of designing fracture treatments and evaluating their results but not of incorporating formation damage in vertically fractured wells. Results of an investigation of this problem are presented in this paper. Prediction of stimulation ratios in vertically fractured, damaged wells is accomplished with a mathematical model relating stimulation ratio to relative conductivity of fractures whose lengths are not more than about half the drainage radius of the well. Comparison of results from the new model to results in published predictions verify its utility; these results also show that the range of stimulation ratios that can be predicted for undamaged wells is extended to include relative conductivities of less than 300. This extension is important when using fracturing to stimulate wells with high production rates and high native formation permeabilities. For example, large increases in daily oil production rate can be obtained with stimulation ratio increases as low as 1.25. The importance of complete fracture fill-up (uniform proppant packing) is shown through use of the mathematical model. If, at the mouth of a fracture, only a small fraction (1/2 percent) of the total fracture length is not packed with proppant, nearly all the polential stimulation increase is lost. Proppant crushing, compaction and embedment have been shown in laboratory studies to be responsible for low fracture conductivities in wells producing from highly stressed formations. Equipment and methods for testing the effect of stress (overburden) on conductivity of fructures in consolidated and unconsolidated sands are discussed in this paper. Laboratory tests with simlilated fractures in cores from both types of formations showed that crushing, compaction and embedment seriously affect conductivity. Results indicate that similar laboratory tests should be made when accurate knowledge of fracture conductivity is needed to assure good stimulation results for important wells. The chief factor in stimulation ratio reduction was found to be overburden pressure, but the size and type of proppant and the hardness of the formation have significant effects. Fracture conductivity reductions of up to 50 percent were observed with sand propping fractures in consolidated cores; a reduction of 83 percent was measured for an unconsolidated core. The range of effective overburden pressures for which conductivities were measured was from 100 to 5,000 psi. An example fracture design and evaluation problem indicates the usefulness of considering formation damage in planning well stimulation jobs. When damage exists, but its extent and the degree of permeability reduction are not estimated from diagnostic tests, the formation permeability used in planning the job may lead to under-designing. As the example shows, too low a target stimulation ratio can lead to much lower production rates (by half) than could be attained otherwise. Solutions of equations representing several special cases of the mathematical model are presented in graphical form and details of the derivations of the equations are given in the Appendix. INTRODUCTION Since its inception in 1947, hydraulic fracturing has proven to be an effective and widely accepted stimulation technique. In the past 18 years the ability to execute a successful hydraulic fracturing treatment has been substantially increased. The development of design and evaluation procedures1,2 has been one of the major contributions to this increased skill. However, as the art of hydraulic fracturing has moved closer to a science, new problems concerning the design and evaluation of the optimal hydraulic fracturing treatment have arisen. Three questions are pertinent to these problems. I. How is a fracturing job evaluated in a damaged well? 2. What is the effect on the stimulation ratio of not filling the fracture in the vicinity of the wellbore? 3. What is the effect of overburden pressure on fracture conductivity and, consequently, the stimulation ratio? A primary objective of fracturing a well is to stimulate production by overcoming wellbore damage. Presently. however, there is no rational basis for designing or evaluating the optimal fracturing treatment in a damaged well. All present fracture design and evaluation techniques assume that proppants can be uniformly placed in fractures. This assumption may be in serious error, particularly for the portion of a fracture directly adjacent to the wellbore. In this area, turbulence of the injected fluid can cause the proppant to be swept farther into the fracture. Also, loss of fluid from the fracture to the
-
Producing–Equipment, Methods and Materials - The Evaluation of Vertical-Lift Performance in Producing WellsBy R. V. McAfee
The fundamentals of vertical-lift performance are examined with the aid of computer-calculated flowing gradient charts. Flowing and gas-lift well performance characteristics are determined from available well test data. The effect of tubing size, gas-liquid ratio and wellhead pressure is discussed for both flowing and gas-lift wells. The effect of gas-injection pressure, formation gas, bottom-hole pressure and valve spacing is also discussed for gas lift wells. From these studies conclusions may be reached for improving or prolonging natural flow, obtaining optimum lift efficiency when natural flow ceases and improving existing gas-lift systems. The techniques perfected satisfy the requirement that the time involved to conduct an evaluation be practical for operating personnel. INTRODUCTION Flowing pressure gradients furnish the key to successful evaluation of vertical-lift performance in producing wells. Command of multiphase flow gradients in some readily usable form is a necessity before operating personnel can competently include vertical-lift performance evaluation of both flowing and artificial-lift wells in their over-all consideration of production efficiency. A readily usable form cannot be overemphasized since most of the decisions which confront the production engineer with a problem well must be made quickly. In moving a barrel of oil from the reservoir to the stock tank, the major portion of energy generally is expended in the vertical-lift phase. This may or may not be of concern during the flowing life of a well, depending upon the production requirements. It becomes of some concern when the flow performance of the well becomes erratic, and a conscious effort must be made to maintain natural flow. It is at this time that the first steps may be taken to modify existing conditions to relieve unnecessary limitations to proper flow. When natural flow ceases and some form of artificial lift must be installed, the amount of energy expended in lifting liquids becomes quite obvious. It is at this time, if no other, that lifting efficiency becomes important because that part which must be supplied from an outside source is now related directly as a cost per barrel of oil produced. Ten years ago, the majority of gas-lift wells were produced with gas-well gas. Today, the majority are produced by closed rotative gas-lift systems. This permits a direct evaluation of well performance in terms of horsepower requirements and has resulted in mixed conclusions as to the success of gas lift based upon the relative efficiency of a particular system. An increased awareness of the need to resolve vertical-lift performance on a readily usable, scientific basis was inevitable. An indication of the need for better applied science in this field is the often-asked question of whether or not gas-lift can efficiently deplete a given well or reservoir. This question cannot possibly be answered without first evaluating reservoir, surface and vertical-lift performance both as encountered today and as anticipated throughout the life of the well or wells. The technique presented in this paper was originally developed to upgrade gas-lift installation design from an applied art to an applied science. It has since been successfully used not only for this purpose, but also for the whole field of vertical-lift performance in its broadest sense. Lift efficiency should be considered important while the well is still flowing, as well as after natural flow ceases. Correct interpretation and proper modification of the vertical-lift performance of a producing well can provide dramatic improvement in production performance and/or efficiency. STATEMENT OF THEORY AND DEFINITIONS Fig. 1 illustrates the three divisions of production which will be used in this paper. The terms are a modified version of those presented in the very fine paper by Gilbert.' The fields of reservoir and surface performance both have been greatly improved over the years. A study of those writings which may be found indicates that the field of vertical-lift performance has not progressed as well. There are two possible reasons for this lack of progress. 1. It has not been recognized as a scientific field in itself by the oil companies, as has reservoir engineering. 2. The equipment companies have confined their efforts to mechanical design research rather than the more basic study of vertical-lift performance of producing wells. Both organizations must have an economic stimulus for doing research in this field, and most of the results obtained in past work has been so erratic as to arouse little enthusiasm. The basic purpose of interpreting vertical-lift performance is to predict operating conditions below the surface of the ground from available data. The success of the interpretation depends upon the accuracy with
-
Part V – May 1968 - Papers - Effect of Carbon on the Strength of ThoriumBy R. L. Skaggs, D. T. Peterson
The effect of carbon in solid solution on the plastic behavior of thorium was studied by measuring the flow stress of Th-C alloys from 4.2" to 573°K and at several strain rates. Carbon was found to strengthen thorium primarily by increasing the thermally activated component of the flow stress. The strengthening due to carbon was directly proportional to the carbon content and decreased rapidly with increasing temperature up to 423" K. The flow stress also increased with increasing strain rate. The strengthening appears to be due to a strong short-range interaction between carbon atoms and dislocations. A yield point was observed in the Th-C alloys which increased with increasing carbon content. JTREVIOUS study of the mechanical properties of thorium has been confined largely to the measurement of the engineering properties. Work prior to 1956 has been summarized by Milko et al.1 who reported that additions of carbon to thorium sharply increased the room-temperature strength. In addition, the yield strength was observed to decrease rapidly over the temperature range from 25" to 500°C. In 1960, Klieven-eit2 measured the flow stress of thorium containing 400 ppm C. He found that over the temperature range from 78" to 470°K the flow stress was strongly dependent on temperature and rate of deformation. A drop in the load-elongation curve, or a yield point, was observed over most of the above temperature range. Above 470°K, the flow stress was nearly independent of temperature and strain rate. This strong temperature and strain rate dependence of flow stress is not generally observed in fcc metals. It is, in fact, more typical of the behavior reported for bcc metals. Bechtold,3 Wessel,4 and conrad5 have pointed out the striking difference between the commonly studied bcc metals and fcc metals in regard to the effect of temperature and strain rate on the flow stress. Zerwekh and scott6 studied the plastic deformation of thorium reported to contain 12 ppm C. They found that this material did not obey the Cottrell-Stokes law as expected for fcc metals. In addition, they found values of the activation volume smaller by an order of magnitude than expected for an fcc metal. They concluded that thorium was strengthened by a randomly dispersed solute. Thorium differs from many other fcc metals that have been studied extensively in that it shows a relatively high carbon solubility at room temperature. Mickleson and peterson7 report the solubility limit at room temperature to be 3500 ppm C. The lowest value reported is that of Smith and Honeycombe8 who report the limit to be 2000 ppm C at 350°C. The pres- ent investigation was a systematic study of the flow stress and yield point phenomenon of thorium over a broad range of carbon content, temperature, and strain rate. EXPERIMENTAL PROCEDURE The thorium used in this investigation was produced by the reduction of thorium tetrachloride with magnesium as described by Peterson et a1.' Chemical analysis of the original ingot after arc melting and electron beam melting is shown in Table I. Alloys were prepared by arc melting this thorium with high-purity spectrographic graphite. Threaded specimens with a gage length 0.252 in. diam by 1.6 in. long were used for the constant stress or creep measurements. These specimens were machined from rod which had been cold-rolled and swaged to % in. diam. Tensile specimens were prepared by swaging annealed 3/8 -in.-diam rod to 0.102 *0.001 in. The as-swaged wire was cut to lengths of 2 in., annealed, and the center 1-in. gage length elec-tropolished to 0.100 ±0.001 in. The specimens were gripped for a length of 3 in. at each end by a serrated four-jaw collet which was tightened by a tapered compression nut. No slipping occurred in the grips and negligible deformation was observed outside the 1-in. gage length. Both the creep and tensile specimens were annealed at 730°C under a vacuum of 1 x X Torr. The resulting structures consisted of equiaxed recrystallized grains with a grain size of 3200 grains per sq mm for the tensile specimens and 2200 grains per sq mm for the creep specimens. After the specimens were prepared, samples were analyzed for nitrogen, oxygen, and hydrogen. The results of these analyses are given in Table 11.
Jan 1, 1969
-
Institute of Metals Division - Role of the Binder Phase in Cemented Tungsten Carbide-Cobalt AlloysBy J. T. Norton, Joseph Gurland
IN spite of the extended use and high state of practical development of the cemented tungsten carbides, the structure of these alloys is still a matter of considerable controversy. The characteristic high rigidity and rupture strength of sintered compacts have been attributed to a continuous skeleton of tungsten carbide grains, formed during the sintering process. This view is based mainly on the work of Dawihl and Hinnuber,1 who reported that a sintered compact of 6 pct Co maintained its shape and some of its strength after the binder was leached out with boiling hydrochloric acid. After leaching, only 0.04 pct Co was reported to remain in the compact. They also showed that the assumed increasing discontinuity of such a skeleton, as the cobalt content is increased, could be made to account for the observed discontinuous increase of the coefficients of thermal expansion, the loss of rigidity, and the impaired cutting performance of alloys of more than 10 pct Co. Contradictory evidence was cited by Sanford and Trent,' who mentioned that a sintered compact was destroyed by reacting the binder with zinc and leaching out the resulting Zn-Co alloy. The skeleton theory also does not account for the observed change of strength of sintered compacts as a function of cobalt content. If the skeleton is responsible for the strength, the latter would be expected to decrease with increasing binder content. Actually, the strength increases and reaches a maximum around 20 pct Co. In addition, tungsten carbide is brittle and undoubtedly very notch sensitive. The highest value found in the literature for the transverse rupture strength of pure tungsten carbide prepared by sintering is 80,000 psi.3 herefore, such a skeleton does not easily account for a rupture-strength value of 300,000 psi and higher, commonly found in sint.ered tungsten carbide-cobalt compacts. In view of the conflicting data present in the literature, experiments were undertaken to determine whether the sintering of tungsten carbide-cobalt alloys leads to the formation of a carbide skeleton or whether the densification behavior and the properties of cemented compacts are consistent with a structure of isolated carbide grains in a matrix of binder metal. The specimens were prepared from powders of commercial grade. Tungsten carbide powder ranged in particle size from 0 to 5x10-4 cm. Mixtures of tungsten carbide and cobalt were ball milled in hexane for 48 hr in tungsten carbide lined mills. After milling, the specimens were pressed in a rectangular die (1x1/4x1/4 in.) at 16 tons per sq in. NO pressing lubricant was used. Sintering of the tungsten carbide-cobalt compacts was carried out in a vertical tube furnace equipped with a dilatometer (Fig. I), by means of which the change of length of the powder compacts could be followed from room temperature to 1500°C. An atmosphere of 20 pct H, 80 pct N was maintained inside the furnace. Decarburization of the samples was prevented by the presence of small rings of graphite inside the furnace tube. The temperature of the sample was measured by a platinum-platinum-rhodium thermocouple, which also was part of a temperature control system able to maintain a constant temperature within ±100C. Pure tungsten carbide compacts were prepared by sintering the carbide without binder or by evaporating the binder from sintered compacts in vacuum at 2000°C. Since complete densification of these samples was not desired, they were sintered only to 60 or 80 pct of the theoretical density of tungsten carbide. The specimens were prepared for metallographic examination by polishing with diamond powders and etching with a 10 pct solution of alkaline potassium ferricyanide. Cobalt etches light yellow and the carbide gray. The amount of porosity is exaggerated since it is difficult to avoid tearing out carbide particles, especially from incompletely sintered samples. Experimental Observations A number of specific experiments were carried out in order to study some particular aspect of the sintering problem. The details of these experiments, together with their results, are as follows: Electrolytic Leaching: The binder was removed by electrolytic leaching from sintered tungsten carbide-cobalt compacts for the purpose of determining the continuity of the carbide phase. The method used was based on the work of Cohen and coworkers4 on the electrolytic extraction of carbides from annealed steels. If the sample is made the anode, using a 10 pct hydrochloric acid solution as the electrolyte, the binder is dissolved, but the rate of solution of tungsten carbide is negligible. A current density of 0.2 amp per sq in. was applied. As shown in Fig.
Jan 1, 1953
-
Institute of Metals Division - Internal Friction of Tungsten Single CrystalsBy R. H. Schnitzel
Internal-friction peaks have been observed in tungsten single crystals at about 300° and 400°C. The characteristics of these peaks are similar to interstitial peaks observed in other bee metals; therefore, the origin of these peaks appears to he the Snoek mechanism. The interstitial responsible for the peak at about 300°C has not been identified. Carburizing increases the magnitude of the peak at about 400°C; consequently, it appears reasonable to suppose that the specific interstitial associated with this peak is carbon. The activation energies associated with the 300° and 400°Cpeaks are about 35,000 and 45,000 cal per mole, respectively. INTERNAL - friction peaks resulting from the stress-induced diffusion of interstitials (Snoek relaxation peaks) have been frequently observed in bee metals.1-5 Attempts to detect Snoek relaxation peaks in tungsten have, however, not been fruitful.' Failure to find Snoek peaks in sintered tungsten can perhaps be attributed to one or more of the following difficulties: a) the relatively low purity of the sintered tungsten; b) the lack of extensive metallurgical knowledge about tungsten-interstitial alloys, such as suitable interstitial dosing and quenching procedures; and c) the inconsistency of some of the interstitial analyses of tungsten, which reflects itself in one's inability to be sure of the nature of the specimens. This present investigation did not overcome all of these difficulties for successful tungsten internal-friction measurements. Some of these difficulties still persist and new difficulties were encountered during the course of this investigation. Nevertheless, the use of electron-beam tungsten single crystals having somewhat greater purity levels than sintered tungsten combined with appropriate carburizing and quenching procedures permitted a reasonable attempt to be made. As a consequence, internal-friction peaks were observed in these tungsten single crystals at about 300° and 400°C. These peaks were found to be unstable, since they annealed rapidly away during a sequence of internal-friction measurements. Hence, it was necessary to construct an apparatus having a faster heating rate to study some of the details of these peaks. From the behavior of these peaks as well as our knowledge of similar peaks in other bee metals, one can reasonably conclude that these peaks are caused by residual interstitial impurities within these crystals. Further investigation of these peaks after the application of various metallurgical treatments lent credence to this supposition. EXPERIMENTAL TECHNIQUE The internal friction of tungsten single crystals was measured using two different pieces of apparatus both of which are of essentially the same conventional design, namely the KE type of torsion pendulum. The important difference between these two types of apparatus was in the attainable heating rate and method of protection of the specimen from atmospheric contamination. The apparatus designated "number 1" was enclosed in a vacuum chamber which was heated by an externally mounted furnace. It had a slow rate of heating which was estimated to be about 4°C per min from room temperature to about 350°C and then about 1°C per min to 600°C. The internal friction of tantalum was measured with this apparatus and the established Snoek peaks were found.' These tantalum peaks in the temperature range from room temperature to 400° C served as a check for the apparatus. The apparatus designated "number 2" having a faster heating rate than number 1 was not elaborate. It consisted of a mounted nickel tube to which split heating elements were attached. Argon was used as the protective atmosphere. The measured heating rate was about 12° to 15°C per min whereas the cooling rate was somewhat slower at about 10° C per min because of the increased difficulty encountered in stabilizing the temperature. No surface oxidation of the specimen was noted after any test. This apparatus was also checked with the known peaks of tantalum.1 The preparation of the single-crystal specimens for internal-friction measurements consisted of centerless grinding the crystals from an approximate 0.200 in. diameter to 0.030 to 0.040 in. in diameter, and then electropolishing them to about 0.020 in. in diameter. Single crystals processed in this manner are designated as being in the virgin condition. Since the length of crystal varied from 3 to 9 in., the test frequency varied from about 1 to 2 cps. The frequencies of measurement, axial orientations, and chemical analyses for the various crystals are listed in Table I. The controlled addition of carbon into tungsten is a difficult problem. Attempts to find the critical conditions necessary for an equilibrium treatment were not fruitful. Therefore, a simple nonequi-librium method was used. The addition of carbon to these crystals consisted of appropriately combining three treatments—carburizing to achieve a case, annealing to partially dissolve the carbon into the
Jan 1, 1965